Tải bản đầy đủ (.doc) (4 trang)

Độ phức tạp của thuật toán pot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (121.6 KB, 4 trang )

ĐỘ PHỨC TẠP CỦA THUẬT TOÁN
Một chương trình máy tính thường được cài đặt dựa trên một thuật toán
đúng để giải quyết bài toán hay vấn đề. Tuy nhiên, ngay cả khi thuật toán đúng,
chương trình vẫn có thể không sử dụng được đối với một dữ liệu đầu vào nào đó
vì thời gian để cho ra kết quả là quá lâu hoặc sử dụng quá nhiều bộ nhớ (vượt
quá khả năng đáp ứng của máy tính).
Khi tiến hành phân tích thuật toán nghĩa là chúng ta tìm ra một đánh giá về
thời gian và "không gian" cần thiết để thực hiện thuật toán. Không gian ở đây
được hiểu là các yêu cầu về bộ nhớ, thiết bị lưu trữ, của máy tính để thuật
toán có thể làm việc. Việc xem xét về không gian của thuật toán phụ thuộc phần
lớn vào cách tổ chức dữ liệu của thuật toán. Trong phần này, khi nói đến độ
phức tạp của thuật toán, chúng ta chỉ đề cập đến những đánh giá về mặt thời
gian mà thôi.
Phân tích thuật toán là một công việc rất khó khăn, đòi hỏi phải có những
hiểu biết sâu sắc về thuật toán và nhiều kiến thức toán học khác. Ðây là công
việc mà không phải bất cứ người nào cũng làm được. Rất may mắn là các nhà
toán học đã phân tích cho chúng ta độ phức tạp của hầu hết các thuật toán cơ sở
(sắp xếp, tìm kiếm, các thuật toán số học, ). Chính vì vậy, nhiệm vụ còn lại
của chúng ta là hiểu được các khái niệm liên quan đến độ phức tạp của thuật
toán.
Ðánh giá về thời gian của thuật toán không phải là xác định thời gian tuyệt
đối (chạy thuật toán mất bao nhiêu giây, bao nhiêu phút, ) để thực hiện thuật
toán mà là xác định mối liên quan giữa dữ liệu đầu vào (input) của thuật toán và
chi phí (số thao tác, số phép tính cộng,trừ, nhân, chia, rút căn, ) để thực hiện
thuật toán. Sở dĩ người ta không quan tâm đến thời gian tuyệt đối của thuật toán
vì yếu tố này phụ thuộc vào tốc độ của máy tính, mà các máy tính khác nhau thì
có tốc độ rất khác nhau. Một cách tổng quát, chi phí thực hiện thuật toán là một
hàm số phụ thuộc vào dữ liệu đầu vào :
T = f(input)
Tuy vậy, khi phân tích thuật toán, người ta thường chỉ chú ý đến mối liên
quan giữa độ lớn của dữ liệu đầu vào và chi phí. Trong các thuật toán, độ lớn


của dữ liệu đầu vào thường được thể hiện bằng một con số nguyên n. Chẳng hạn
: sắp xếp n con số nguyên, tìm con số lớn nhất trong n số, tính điểm trung bình
của n học sinh, Lúc này, người ta thể hiện chi phí thực hiện thuật toán bằng
một hàm số phụ thuộc vào n :
T = f(n)
Việc xây dựng một hàm T tổng quát như trên trong mọi trường hợp của
thuật toán là một việc rất khó khăn, nhiều lúc không thể thực hiện được. Chính
vì vậy mà người ta chỉ xây dựng hàm T cho một số trường hợp đáng chú ý nhất
của thuật toán, thường là trường hợp tốt nhất và xấu nhất.
Chúng ta trở lại ví dụ về thuật toán tìm hộp nặng nhất trong n hộp cho
trước, nhưng lần này ta làm việc trên một thể hiện khác của vấn đề. Ðây là một
thuật toán tương đối đơn giản nên chúng ta có thể tiến hành phân tích được độ
phức tạp. Trước khi phân tích độ phức tạp, ta nhắc lại đôi điều về thuật toán này.
Tìm số lớn nhất trong một dãy số
Bài toán : Cho một dãy số a có n phần tử a
1
, a
2
, a
n
. Hãy xây dựng thuật
toán để tìm con số lớn nhất trong dãy a.
Nhận xét
1. Nếu dãy chỉ có 1 phần tử thì phần tử đó là số lớn nhất.
2. Giả sử dãy có n phần tử và ta đã xác định được phần tử lớn nhất là amax .
Nếu bổ sung thêm phần tử thứ an+1 vào dãy mà an+1 > amax thì an+1 chính là
phần tử lớn nhất của dãy có n+1 phần tử. Trường hợp ngược lại, nghĩa là an+1 ?
amax thì amax vẫn là phần tử lớn nhất của dãy có n+1 phần tử.
Thuật toán
1. Ghi nhớ a

max
= a
1
.
2. i = 2.
3. Nếu (i ? n) thì thực hiện các bước sau, ngược lại sang bước 5.
3.1. Nếu (a
i
> a
max
) thì
3.1.1. Ghi nhớ a
max
= a
i
.
3.2. Tăng i lên 1.
4. Trở lại bước 3.
5. Phần tử lớn nhất dãy a chính là amax .Kết thúc.
Trong thuật toán trên, để đơn giản, ta chỉ xem chi phí là số lần so sánh ở
bước 3.1 và số lần "ghi nhớ" trong bước 3.1.1. Trường hợp tốt nhất của thuật
toán này xảy ra khi con số lớn nhất nằm đầu dãy (a
max
= a
1
); trường hợp xấu nhất
xảy ra khi con số lớn nhất nằm ở cuối dãy (a
max
=a
n

) và dãy được sắp xếp theo
thứ tự tăng dần.
Dựa theo sơ đồ khối của thuật toán, ta nhận thấy rằng, trong mọi trường
hợp của bài toán, phép "ghi nhớ" ở bước 3.1 luôn được thực hiện và số lần thực
hiện là n-1 (ứng với việc xét từ phần tử a
2
đến a
n
). Ta gọi đây là chi phí cố định
hoặc bất biến của thuật toán.
Trường hợp tốt nhất : do a
max
= a
1
suy ra, với mọi i > 2, a
i
< a
max
. Do đó,
điều kiện a
i
>a
max
ở bước 3.1 luôn không thỏa nên bước 3.1.1 không bao giờ được
thực hiện. Như vậy, chi phí chung cho trường hợp này chính là chi phí cố định
của bài toán.
T = f(n) = n-1
Trường hợp xấu nhất :
Ta có : với mọi i>1, a
i

-1< a
i
(do định nghĩa dãy được sắp xếp tăng dần) nên
điều kiện a
i
>a
max
ở bước 3.1 luôn thỏa, bước 3.1.1 luôn được thực hiện. Như vậy,
ngoài chi phí chung là n-1 phép so sánh, ta cần phải dùng thêm n-1 phép "ghi
nhớ" ở bước 3.1.1. Như vậy, tổng chi phí của trường hợp này là
T = f(n) = 2(n-1)=2n-2
Ðịnh nghĩa
Cho hai hàm f và g có miền xác định trong tập số tự nhiên . Ta viết
f(n) = O(g(n))
và nói f(n) có cấp cao nhất là g(n) khi tồn tại hằng số C và k sao cho
| f(n) | ? C.g(n) với mọi n > k
Tuy chi phí của thuật toán trong trường hợp tốt nhất và xấu nhất có thể nói
lên nhiều điều nhưng vẫn chưa đưa ra được một hình dung tốt nhất về độ phức
tạp của thuật toán. Ðể có thể hình dung chính xác về độ phức tạp của thuật toán,
ta xét đến một yếu tố khác là độ tăng của chi phí khi độ lớn n của dữ liệu đầu
vào tăng.
Theo định nghĩa ở trên, ta nhận thấy chi phí thấp nhất và lớn nhất của thuật
toán tìm số lớn nhất đều bị chặn bởi O(n) (tồn tại hằng số C=10, k=1 để 2n-2 <
10n với mọi n>1).
Một cách tổng quát, nếu hàm chi phí của thuật toán (xét trong một trường
hợp nào đó) bị chặn bởi O(f(n)) thì ta nói rằng thuật toán có độ phức tạp là
O(f(n)) trong trường hợp đó.
Như vậy, thuật toán tìm số lớn nhất có độ phức tạp trong trường hợp tốt
nhất và xấu nhất đều là O(n). Người ta gọi các thuật toán có độ phức tạp O(n) là
các thuật toán có độ phức tạp tuyến tính.

Sau đây là một số "thước đo" độ phức tạp của thuật toán được sử dụng rộng
rãi. Các độ phức tạp được sắp xếp theo thứ tự tăng dần. Nghĩa là một bài toán có
độ phức tạp O(nk) sẽ phức tạp hơn bài toán có độ phức tạp O(n) hoặc O(logan).

×