THUẬT TOÁN – ĐỘ PHỨC TẠP CỦA THUẬT TOÁN
Mục lục
THUẬT TOÁN – ĐỘ PHỨC TẠP CỦA THUẬT TOÁN........................................................................1
Mục lục........................................................................................................................................................1
1. THUẬT TOÁN........................................................................................................................................2
2. CÁC PHƯƠNG PHÁP BIỂU DIỄN THUẬT TOÁN...........................................................................7
3. ĐỘ PHỨC TẠP CỦA THUẬT TOÁN................................................................................................12
4. PHÂN LOẠI VẤN ĐỀ - BÀI TOÁN...................................................................................................15
5. THUẬT TOÁN ĐỆ QUY.....................................................................................................................17
6.THUẬT GIẢI.........................................................................................................................................20
7. CÂU HỎI...............................................................................................................................................26
8.Bài viết khác: SỰ PHÂN LỚP VẤN ĐỀ - BÀI TOÁN........................................................................27
1. THUẬT TOÁN
Thuật toán là một khái niệm cơ sở của Toán học và Tin học. Hiểu một cách đơn giản, thuật
toán là một tập các hướng dẫn nhằm thực hiện một công việc nào đó. Ðối với việc giải quyết một vấn
đề - bài toán thì thuật toán có thể hiểu là một tập hữu hạn các hướng dẫn rõ ràng để người giải toán có
thể theo đó mà giải quyết được vấn đề. Như vậy, thuật toán là một phương pháp thể hiện lời giải của
vấn đề - bài toán.
Tại sao lại là "Thuật toán" ?
Từ thuật toán (Algorithm) xuất phát từ tên một nhà toán học người Trung Á là Abu Abd - Allah ibn Musa
al’Khwarizmi, thường gọi là al’Khwarizmi. Ông là tác giả một cuốn sách về số học, trong đó ông đã dùng phương pháp
mô tả rất rõ ràng, mạch lạc cách giải những bài toán. Sau này, phương pháp mô tả cách giải toán của ông đã được xem là
một chuẩn mực và được nhiều nhà toán học khác tuân theo. Từ algorithm ra đời dựa theo cách phiên âm tên của ông.
Việc nghiên cứu về thuật toán có vai trò rất quan trọng trong khoa học máy tính vì máy tính
chỉ giải quyết được vấn đề khi đã có hướng dẫn giải rõ ràng và đúng. Nếu hướng dẫn giải sai hoặc
không rõ ràng thì máy tính không thể giải đúng được bài toán. Trong khoa học máy tính, thuật toán
được định nghĩa là một dãy hữu hạn các bước không mập mờ và có thể thực thi được, quá trình hành động
theo các bước này phải dừng và cho được kết quả như mong muốn.
Số bước hữu hạn của thuật toán và tính chất dừng của nó được gọi chung là tính hữu hạn.
Số bước hữu hạn của thuật toán là một tính chất khá hiển nhiên. Ta có thể tìm ở đâu một lời giải vấn
đề - bài toán có vô số bước giải ? Tính "không mập mờ" và "có thể thực thi được" gọi chung là tính xác
định.
Giả sử khi nhận một lớp học mới, Ban Giám hiệu yêu cầu giáo viên chủ nhiệm chọn lớp
trưởng mới theo các bước sau :
1. Lập danh sách tất các học sinh trong lớp.
2. Sắp thứ tự danh sách học sinh.
3. Chọn học sinh đứng đầu danh sách để làm lớp trưởng.
Khi nhận được thông báo này, giáo viên chắc chắn sẽ rất bối rối vì không hiểu là trong danh
sách học sinh cần có những thông tin gì? Danh sách chỉ cần họ tên, hay cần thêm ngày tháng năm
sinh? Có cần thêm điểm trung bình không? Yêu cầu 2 lại càng gây nhiều thắc mắc. Cần phải sắp xếp
danh sách theo chiều tăng dần hoặc giảm dần ? Sắp theo chỉ tiêu gì ? Theo tên, theo ngày tháng năm
sinh hay theo điểm trung bình chung, ...Giả sử sắp theo điểm trung bình thì nếu có hai học sinh cùng
điểm trung bình thì học sinh nào sẽ sắp trước, học sinh nào sẽ sắp sau ? ...
Hướng dẫn ở trên vi phạm tính chất "không mập mờ" của thuật toán. Nghĩa là, có quá nhiều
thông tin còn thiếu để làm cho các bước 1,2 được hiểu đúng và hiểu theo một nghĩa duy nhất. Nếu sửa lại
một chút ít thì hướng dẫn trên sẽ trở nên rõ ràng hơn rất nhiều và có thể gọi là một thuật toán chọn lớp
trưởng !
1. Lập danh sách tất các học sinh trong lớp theo hai thông tin: Họ và Tên; Ðiểm trung bình cuối năm.
2. Sắp hạng học sinh theo điểm trung bình theo thứ tự giảm dần (từ điểm cao đến điểm thấp). Hai học sinh
có cùng điểm trung bình sẽ có cùng hạng.
3. Nếu chỉ có một học sinh có hạng nhất thì chọn học sinh đó làm lớp trưởng. Trường hợp có nhiều học
sinh đồng hạng nhất thì chọn học sinh có điểm môn Toán cao nhất làm lớp trưởng.
Nếu vẫn còn nhiều hơn một học sinh đồng hạng nhất và có cùng điểm môn Toán cao nhất thì tiến hành bốc
thăm.
Ở đây chúng ta cần phân biệt mập mờ và sự chọn lựa có quyết định. Mập mờ là thiếu thông
tin hoặc có nhiều chọn lựa nhưng không đủ điều kiện để quyết định. Còn chọn lựa có quyết định là
hoàn toàn xác định duy nhất trong điều kiện cụ thể của vấn đề. Chẳng hạn trong vấn đề chọn lớp
trưởng ở trên, bước 3 thể hiện một sự lựa chọn có quyết định. Tất nhiên, khi chưa lập danh sách, chưa
xếp hạng theo điểm trung bình thì giáo viên không thể biết được sẽ chọn lớp trưởng theo cách nào.
Nhưng khi đã sắp xong danh sách thì chỉ có một phương án chọn duy nhất.
Tính "thực thi được" cũng là một tính chất khá hiển nhiên. Rõ ràng nếu trong "thuật toán" tồn
tại một bước không thể thực thi được thì làm sao ta có được kết quả đúng như ý muốn? Tuy nhiên, cần
phải hiểu là "thực thi được" xét trong điều kiện hiện tại của bài toán. Chẳng hạn, khi nói "lấy căn bậc
hai của một số âm" là không thể thực thi được nếu miền xác định của bài toán là số thực, nhưng trong
miền số phức thì thao tác "lấy căn bậc hai của một số âm" là hoàn toàn thực thi được. Tương tự, nếu ta
chỉ đường cho một người đi xe máy đến một bưu điện nhưng con đường ta chỉ là đường cụt, đường
cấm hoặc đường ngược chiều thì người đi không thể đi đến bưu điện được.
Tính "dừng" là tính chất dễ bị vi phạm nhất, thường là do sai sót khi trình bày thuật toán. Dĩ
nhiên, mọi thuật toán đều nhằm thực hiện một công việc nào đó nên sau một thời gian thi hành hữu
hạn thì thuật toán phải cho chúng ta kết quả mong muốn. Khi không thỏa tính chất này, ta nói rằng
"thuật toán" bị lặp vô tận hoặc bị quẩn. Ðể tính tổng các số nguyên dương lẻ trong khoảng từ 1 đến n
ta có thuật toán sau :
B1. Hỏi giá trị của n.
B2. S = 0
B3. i = 1
B4. Nếu i = n+1 thì sang bước B8, ngược lại sang bước B5
B5. Cộng thêm i vào S
B6. Cộng thêm 2 vào i
B7. Quay lại bước B4.
B8. Tổng cần tìm chính là S.
Ta chú ý đến bước B4. Ở đây ta muốn kết thúc thuật toán khi giá trị của i vượt quá n. Thay vì
viết là "nếu i lớn hơn n" thì ta thay bằng điều kiện "nếu i bằng n+1" vì theo toán học "i = n+1" thì suy
ra "i lớn hơn n". Nhưng điều kiện "i=n+1" không phải lúc nào cũng đạt được. Vì ban đầu i = 1 là số lẻ,
sau mỗi bước, i được tăng thêm 2 nên i luôn là số lẻ. Nếu n là số chẵn thì n+1 là một số lẻ nên sau một
số bước nhất định, i sẽ bằng n+1. Tuy nhiên, nếu n là một số lẻ thì n+1 là một số chẵn, do i là số lẻ nên
dù có qua bao nhiêu bước đi chăng nữa, i vẫn khác n+1. Trong trường hợp đó, thuật toán trên sẽ bị
quẩn.
Tính "đúng" là một tính chất khá hiển nhiên nhưng là tính chất khó đạt tới nhất. Thực vậy, khi
giải quyết một vấn đề-bài toán, ta luôn luôn mong muốn lời giải của mình sẽ cho kết quả đúng nhưng
không phải lúc nào cũng đạt được. Mọi học sinh khi làm bài kiểm tra đều muốn bài làm của mình có
đáp số đúng nhưng trên thực tế, trong lớp học chỉ có một số học sinh nhất định là có khả năng đưa ra
lời giải đúng!
Thuật toán thì cứng nhắc !
Các tính chất của thuật toán rất chặt chẽ và cứng nhắc. Nhưng điều đó cũng có nghĩa là khả năng giải quyết
vấn đề theo kiểu thuật toán cũng bị giới hạn. Sau này, người ta đã "làm mềm" đi hai tính chất quan trọng của thuật toán là
tính xác định và tính đúng để giải quyết những vấn đề phức tạp hơn mà với các tính chất chặt chẽ của thuật toán thì
không thể giải quyết được. Ðó là các thuật toán đệ quy và thuật giải. Ta sẽ tìm hiểu về điều này ngay trong các mục 4 và
5 của chương này.
Các đặc trưng khác của thuật toán
Bên cạnh 3 đặc trưng chính là xác định, hữu hạn và đúng, thuật toán còn có thêm 3 đặc
trưng phụ khác.
1. Ðầu vào và đầu ra (input/output) : mọi thuật toán, dù có đơn giản đến mấy cũng phải
nhận dữ liệu đầu vào, xử lý nó và cho ra kết quả cuối cùng.
2. Tính hiệu quả (effectiveness) : tính hiệu quả của thuật toán được đánh giá dựa trên một
số tiêu chuẩn như khối lượng tính toán, không gian và thời gian khi thuật toán được thi hành. Tính hiệu
quả của thuật toán là một yếu tố quyết định để đánh giá, chọn lựa cách giải quyết vấn đề-bài toán trên
thực tế. Có rất nhiều phương pháp để đánh giá tính hiệu quả của thuật toán. Trong mục 3 của chương ,
ta sẽ tìm hiểu một tiêu chuẩn được dùng rộng rãi là độ phức tạp của thuật toán.
3. Tính tổng quát (generalliness) : thuật toán có tính tổng quát là thuật toán phải áp dụng
được cho mọi trường hợp của bài toán chứ không phải chỉ áp dụng được cho một số trường hợp riêng
lẻ nào đó. Chẳng hạn giải phương trình bậc hai sau đây bằng Delta đảm bảo được tính chất này vì nó
luôn giải được với mọi giá trị số thực a,b,c bất kỳ. Tuy nhiên, không phải thuật toán nào cũng đảm bảo
được tính tổng quát. Trong thực tế, có lúc người ta chỉ xây dựng thuật toán cho một dạng đặc trưng của
bài toán mà thôi.
Thuật toán giải phương trình bậc hai ax2+bx+c=0 (a?0)
1. Yêu cầu cho biết giá trị của 3 hệ số a, b, c
2. Nếu a=0 thì
2.1. Yêu cầu đầu vào không đảm bảo.
2.2. Kết thúc thuật toán.
3. Trường hợp a khác 0 thì
3.1. Tính giá trị D = b
2
-4ac
3.2. Nếu D > 0 thì
3.2.1. Phương trình có hai nghiệm phân biệt x
1
và x
2
3.2.2. Giá trị của hai nghiệm được tính theo công thức sau
3.2.3. Kết thúc thuật toán.
3.3. Nếu D = 0 thì
3.3.1. Phương trình có nghiệm kép x
0
3.3.2. Giá trị của nghiệm kép là
3.3.3. Kết thúc thuật toán
3.4. Nếu D < 0 thì
3.4.1. Phương trình vô nghiệm.
3.4.2. Kết thúc thuật toán.
Thuật toán tìm hộp có trọng lượng nặng nhất
Vấn đề : Có n hộp có khối lượng khác nhau và một cái cân dĩa. Hãy chỉ ra cách cân để
tìm được hộp có trọng lượng nặng nhất. Vấn đề này là thể hiện của một bài toán tổng quát : Cho một
tập hợp A hữu hạn và một thứ tự toàn phần trên A. Hãy xây dựng thuật toán tìm phần tử lớn nhất của
A. Bài toán trong toán học có vẻ rất phức tạp nhưng một thể hiện trên thực tế lại rất dễ hiểu, và cách
giải quyết cũng đơn giản. Từ đó ta có thể dễ dàng suy ra cách giải bài toán tổng quát.
1. Nếu chỉ có 1 hộp (n=1) thì
1.1. Hộp đó chính là hộp nặng nhất.
1.2. Kết thúc thuật toán.
2. Ngược lại nếu có từ hai hộp trở lên (n>1)
2.1. Chọn hai hộp bất kỳ và đặt lên bàn cân.
2.2. Giữ lại hộp nặng hơn, cất hộp nhẹ hơn sang chỗ khác.
3. Nếu còn hộp chưa được cân thực hiện các bước sau, nếu không còn hộp nào nữa, sang
bước 5.
3.1. Chọn một hộp bất kỳ và để lên dĩa cân còn trống.
3.2. Giữ lại hộp nặng hơn, cất hộp nhẹ hơn sang chỗ khác.
4. Trở lại bước 3.
5. Hộp còn lại trên cân chính là hộp nặng nhất. Kết thúc.
Thuật toán Euclid tìm ước số chung lớn nhất
Bài toán : Cho hai số nguyên dương a và b. Tìm ước số chung lớn nhất của a và b.
1. Yêu cầu cho biết giá trị của a, b.
2. a
0
= a
3. b
0
= b
4. i = 0
5. Nếu a
i
khác b
i
thì thực hiện các thao tác sau, ngược lại qua bước 7.
5.1 Tăng i lên 1.
5.2. Nếu a
i-1
> b
i-1
thì
a
i
= a
i-1
- b
i-1
b
i
= b
i-1
5.3. Ngược lại
b
i
= b
i-1
- a
i-1
a
i
= a
i-1
6. Trở lại bước 5.
7. Ước số chung lớn nhất của a, b là a
i
.
2. CÁC PHƯƠNG PHÁP BIỂU DIỄN THUẬT TOÁN
Khi chứng minh hoặc giải một bài toán trong toán học, ta thường dùng những ngôn từ
toán học như : "ta có", "điều phải chứng minh", "giả thuyết", ... và sử dụng những phép suy luận toán
học như phép suy ra, tương đương, ...Thuật toán là một phương pháp thể hiện lời giải bài toán nên
cũng phải tuân theo một số quy tắc nhất định. Ðể có thể truyền đạt thuật toán cho người khác hay
chuyển thuật toán thành chương trình máy tính, ta phải có phương pháp biểu diễn thuật toán. Có 3
phương pháp biểu diễn thuật toán :
1. Dùng ngôn ngữ tự nhiên.
2. Dùng lưu đồ-sơ đồ khối (flowchart).
3. Dùng mã giả (pseudocode).
2.1. Ngôn ngữ tự nhiên
Trong cách biểu diễn thuật toán theo ngôn ngữ tự nhiên, người ta sử dụng ngôn ngữ thường
ngày để liệt kê các bước của thuật toán (Các ví dụ về thuật toán trong mục 1 của chương sử dụng ngôn
ngữ tự nhiên). Phương pháp biểu diễn này không yêu cầu người viết thuật toán cũng như người đọc
thuật toán phải nắm các quy tắc. Tuy vậy, cách biểu diễn này thường dài dòng, không thể hiện rõ cấu
trúc của thuật toán, đôi lúc gây hiểu lầm hoặc khó hiểu cho người đọc. Gần như không có một quy tắc
cố định nào trong việc thể hiện thuật toán bằng ngôn ngữ tự nhiên. Tuy vậy, để dễ đọc, ta nên viết các
bước con lùi vào bên phải và đánh số bước theo quy tắc phân cấp như 1, 1.1, 1.1.1, ... Bạn có thể tham
khảo lại ba ví dụ trong mục 1 của chương để hiểu cách biểu diễn thuật toán theo ngôn ngữ tự nhiên.
2.2. Lưu đồ - sơ đồ khối
Lưu đồ hay sơ đồ khối là một công cụ trực quan để diễn đạt các thuật toán. Biểu diễn thuật
toán bằng lưu đồ sẽ giúp người đọc theo dõi được sự phân cấp các trường hợp và quá trình xử lý của
thuật toán. Phương pháp lưu đồ thường được dùng trong những thuật toán có tính rắc rối, khó theo dõi
được quá trình xử lý.
Ðể biểu diễn thuật toán theo sơ đồ khối, ta phải phân biệt hai loại thao tác. Một thao tác là
thao tác chọn lựa dựa theo một điều kiện nào đó. Chẳng hạn : thao tác "nếu a = b thì thực hiện thao
tác B2, ngược lại thực hiện B4" là thao tác chọn lựa. Các thao tác còn lại không thuộc loại chọn lựa
được xếp vào loại hành động. Chẳng hạn, "Chọn một hộp bất kỳ và để lên dĩa cân còn trống." là một
thao tác thuộc loại hành động.
2.2.1. Thao tác chọn lựa (decision)
Thao tác chọn lựa được biểu diễn bằng một hình thoi, bên trong chứa biểu thức điều kiện.
2.2.2. Thao tác xử lý (process)
Thao tác xử lý được biểu diễn bằng một hình chữ nhật, bên trong chứa nội dung xử lý.
2.2.3.Ðường đi (route)
Khi dùng ngôn ngữ tự nhiên, ta mặc định hiểu rằng quá trình thực hiện sẽ lần lượt đi từ bước
trước đến bước sau (trừ khi có yêu cầu nhảy sang bước khác). Trong ngôn ngữ lưu đồ, do thể hiện các
bước bằng hình vẽ và có thể đặt các hình vẽ này ở vị trí bất kỳ nên ta phải có phương pháp để thể hiện
trình tự thực hiện các thao tác.
Hai bước kế tiếp nhau được nối bằng một cung, trên cung có mũi tên để chỉ hướng thực hiện.
Chẳng hạn trong hình dưới, trình tự thực hiện sẽ là B1, B2, B3.
Từ thao tác chọn lựa có thể có đến hai hướng đi, một hướng ứng với điều kiện thỏa và một
hướng ứng với điều kiện không thỏa. Do vậy, ta dùng hai cung xuất phát từ các đỉnh hình thoi, trên
mỗi cung có ký hiệu Ð/Ðúng/Y/Yes để chỉ hướng đi ứng với điều kiện thỏa và ký hiệu S/Sai/N/No để
chỉ hướng đi ứng với điều kiện không thỏa.
2.2.4. Ðiểm cuối (terminator)
Ðiểm cuối là điểm khởi đầu và kết thúc của thuật toán, được biểu diễn bằng hình ovan, bên
trong có ghi chữ bắt đầu/start/begin hoặc kết thúc/end. Ðiểm cuối chỉ có cung đi ra (điểm khởi đầu)
hoặc cung đi vào (điểm kết thúc). Xem lưu đồ thuật toán giải phương trình bậc hai ở trên để thấy cách
sử dụng của điểm cuối.
2.2.5. Ðiểm nối (connector)
Ðiểm nối được dùng để nối các phần khác nhau của một lưu đồ lại với nhau. Bên trong điểm
nối, ta đặt một ký hiệu để biết sự liên hệ giữa các điểm nối.
2.2.6. Ðiểm nối sang trang (off-page connector)
Tương tự như điểm nối, nhưng điểm nối sang trang được dùng khi lưu đồ quá lớn, phải vẽ
trên nhiều trang. Bên trong điểm nối sang trang ta cũng đặt một ký hiệu để biết được sự liên hệ giữa
điểm nối của các trang.
Ở trên chỉ là các ký hiệu cơ bản và thường được dùng nhất. Trong thực tế, lưu đồ còn có
nhiều ký hiệu khác nhưng thường chỉ dùng trong những lưu đồ lớn và phức tạp. Ðối với các thuật toán
trong cuốn sách này, ta chỉ cần sử dụng các ký hiệu trên là đủ.
2.3. Mã giả
Tuy sơ đồ khối thể hiện rõ quá trình xử lý và sự phân cấp các trường hợp của thuật toán
nhưng lại cồng kềnh. Ðể mô tả một thuật toán nhỏ ta phải dùng một không gian rất lớn. Hơn nữa, lưu
đồ chỉ phân biệt hai thao tác là rẽ nhánh (chọn lựa có điều kiện) và xử lý mà trong thực tế, các thuật
toán còn có thêm các thao tác lặp (Chúng ta sẽ tìm hiểu về thao tác lặp trong các bài sau).
Khi thể hiện thuật toán bằng mã giả, ta sẽ vay mượn các cú pháp của một ngôn ngữ lập trình
nào đó để thể hiện thuật toán. Tất nhiên, mọi ngôn ngữ lập trình đều có những thao tác cơ bản là xử lý,
rẽ nhánh và lặp. Dùng mã giả vừa tận dụng được các khái niệm trong ngôn ngữ lập trình, vừa giúp
người cài đặt dễ dàng nắm bắt nội dung thuật toán. Tất nhiên là trong mã giả ta vẫn dùng một phần
ngôn ngữ tự nhiên. Một khi đã vay mượn cú pháp và khái niệm của ngôn ngữ lập trình thì chắc chắn
mã giả sẽ bị phụ thuộc vào ngôn ngữ lập trình đó. Chính vì lý do này, chúng ta chưa vội tìm hiểu về
mã giả trong bài này (vì chúng ta chưa biết gì về ngôn ngữ lập trình!). Sau khi tìm hiểu xong bài về thủ
tục - hàm bạn sẽ hiểu mã giả là gì !
Một đoạn mã giả của thuật toán giải phương trình bậc hai
if Delta > 0 then begin
x
1
=(-b-sqrt(delta))/(2*a)
x
2
=(-b+sqrt(delta))/(2*a)
xuất kết quả : phương trình có hai nghiệm là x
1
và x
2
end
else
if delta = 0 then
xuất kết quả : phương trình có nghiệm kép là -b/(2*a)
else {trường hợp delta < 0 }
xuất kết quả : phương trình vô nghiệm
* Các từ in đậm là các từ khóa của ngôn ngữ Pascal