Tải bản đầy đủ (.pdf) (12 trang)

Giáo trình giải tích 1 part 8 potx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (357.83 KB, 12 trang )


b
2
b
1
|f(x)|dx ≤ (K +1)

b
2
b
1
|g(x)|dx
ϕ 0 ϕ

≤ 0
F (x)=

x
a
f |F (x)| <M,∀x






b
2
b
1
f(x)ϕ(x)dx







= |Fϕ|
b
2
b
1


b
2
b
1
F (x)ϕ

(x)dx|≤M|ϕ(b
2
)|+M|ϕ(b
1
)|+M|ϕ(b
2
)−ϕ(b
1
)
ϕ(x) → 0 x →∞ 
f,g [a, b)


b
a
|f(x)|dx

b
a
f(x)dx
|f(x)|≤|g(x)|, ∀x ∈ [a, b)

b
a
|g(x)|dx

b
a
|f(x)|dx

b
a
|f(x)|dx

b
a
|g(x)|dx
lim
x→b






f(x)
g(x)




= K
K =0

b
a
|g(x)|dx

b
a
|f(x)|dx
K =0

b
a
|g(x)|dx

b
a
|f(x)|dx
sup
a<b

<b







b

a
f(x)dx





< ∞ ϕ lim
x→b

ϕ(x)=0

b
a
f(x)ϕ(x)dx
t =
1
x −b


+∞
−∞

e
−x
2
dx
e
−x
2
≤ e
−|x|

+∞
0
e
−x
dx

+∞
1
sin x
x
p
dx,

+∞
1
cos x
x
p
dx (p>0)


b
1
sin xdx

b
1
cos xdx
1
x
p
0

+∞
−∞
sin x
2
dx,

+∞
−∞
cos x
2
dx t = x
2
p =
1
2

+∞
0

sin x
x
dx
p =1

+∞
0




sin x
x




dx ≥


0
|sin x|
x
dx ≥
n

k=1


(k−1)π

|sin x|
x
dx

n

k=1
1


π
0
|sin x|dx ≥
1

n

k=1
1
k
→ +∞, n →∞

1
0
ln x
x
p
dx (p<1)
p<q<1
ln x

x
p
:
1
x
q
= x
q−p
ln x → 0 x → 0
+

1
0
dx
x
q
Γ(p)=

+∞
0
e
−x
x
p−1
dx p>0
1
x
p−1

1

0
e
−x
x
p−1
dx p −1 > −1
e

x
2

+∞
1
e
−x
x
p−1
dx p
B(p, q)=

1
0
x
p−1
(1 −x)
q−1
dx p, q > 0

1/2
0

x
p−1
(1 −x)
q−1
dx x =0 p −1 > −1

1
1/2
x
p−1
(1 −x)
q−1
dx x =1 q − 1 > −1
Γ(p +1)=pΓ(p) ∀p>0
Γ(n +1)=n!

+∞
0
e
−x
dx = n! n ∈ N

(a
n
)
a
0
+ a
1
+ a

2
+ ···+ a
n
+ ··· =


k=0
a
k
n S
n
=
n

k=0
a
k
= a
0
+ a
1
+ ···+ a
n
n r
n
=


k=n+1
a

k
= a
n+1
+ a
n+2
+ ···
S lim
n→∞
S
n
= S
S


k=0
a
k
= S


k=0
x
k
=1+x + x
2
+ ···
x =1 S
n
=1+x + x
2

+ ···+ x
n
=
1 −x
n+1
1 −x
|x| < 1


k=0
x
k
=
1
1 −x
|x|≥1


k=1
1
k
=1+
1
2
+
1
3
+ ···
y =
1

x
,x∈ [1,n]
S
n
=1+
1
2
+ ···+
1
n


2
1
dx
x
+

3
2
dx
x
+ ···+

n
n−1
dx
x
=lnn



k=1
1
k
2
=1+
1
2
2
+
1
3
2
+ ···
S
n
=1+
1
2
2
+
1
3
2
+ ···+
1
n
2
≤ 1+
1

1.2
+
1
2.3
+ ···+
1
(n −1)n
≤ 1+
1
1

1
2
+
1
2

1
3
+ ···+
1
(n −1)

1
n
< 2 −
1
n



k=0
(−1)
k
=1−1+1− 1+··· 1 0


k=1
1
k(k +1)


k=0
a
k
>0
N N ≤ n<m |S
m
− S
n
| = |
m

k=n+1
a
k
| <
a
k
≥ 0, ∀k



k=0
a
k
M
n

k=0
a
k
<M,∀n


k=0
a
k
lim
k→∞
a
k
=0
2n

k=n+1
1
k
>
2n

k=n+1

1
2n
=
n
2n
=
1
2
a
k
=
1
k
→ 0


k=0
a
k
,


k=0
b
k
c ∈ R


k=0
(a

k
+ b
k
)


k=0
ca
k


k=0
(a
k
+ b
k
)=


k=0
a
k
+


k=0
b
k



k=0
ca
k
= c


k=0
a
k
n ∈ N


k=0
a
k


k=n
a
k


k=0
a
k
=
n−1

k=0
a

k
+


k=n
a
k


k=0
a
k
S
b
0
= a
0
+ ···+ a
n
0
,b
1
= a
n
0
+1
+ ···+ a
n
1
, ··· ,b

k
= a
n
k−1
+1
+ ···+ a
n
k
, ···


k=0
b
k
S


k=0
b
k


k=0
a
k

1 −1+1−1+···
(1 −1) + (1 −1) + ···=0 1+(−1+1)+(−1+1)+···=1



k=0
a
k
σ : N → N


k=0
a
σ(k)

k
a
k
S

k
a
σ(k)
S


k=1
(−1)
k+1
k
ln 2
ln 2 = 1 −
1
2
+

1
3

1
4
+
1
5

1
6
+
1
7

1
8
+ ···
1
2
ln 2 =
1
2

1
4
+
1
6


1
8
+
1
10

1
12
+ ···
=0+
1
2
− 0 −
1
4
+0+
1
6
− 0 −
1
8
+ ···
ln 2 +
1
2
ln 2 = (1 + 0) + (−
1
2
+
1

2
)+(
1
3
− 0) + (
1
4

1
4
)+(
1
5
+0)+(−
1
6
+
1
6
)+···
=1+
1
3

1
2
+
1
5
+

1
7

1
4
+
1
9
+
1
11

1
6
+ ···
ln 2


k=0
a
k


k=0
|a
k
|


k=0

a
σ(k)
σ : N → N


k=0
|a
k
| c ∈ R σ : N → N


k=0
a
σ(k)
= c


k=0
p
k


k=0
p
σ(k)
n ∈ N N =max(σ(0), ··· ,σ(n))
n

k=1
p

k

N

k=1
p
k
<


k=0
p
k
a
k
p
k
=max(a
k
, 0) q
k
= −min(a
k
, 0)
p
k
,q
k
≥ 0 a
k

= p
k
− q
k
|a
k
| = p
k
+ q
k


k=0
a
k
S


k=0
|a
k
|


k=0
p
k
,



k=0
q
k


k=0
|a
k
|
S =


k=0
a
k
=


k=0
p
k



k=0
q
k
=



k=0
p
σ(k)



k=0
q
σ(k)
=


k=0
a
σ(k)


k=0
a
k


k=0
|a
k
|


k=0
p

k


k=0
q
k
(= +∞)
lim
k→∞
p
k
= lim
k→∞
q
k
=0
c ∈ R
k
0
c<p
0
+ ···+ p
k
0
k
1
p
0
+ ···+ p
k

0
− q
0
−···−q
k
1
<c
k
2
c<p
0
+ ···+ p
k
0
− q
0
···−q
k
1
+ p
k
0
+1
+ ···+ p
k
2


k=0
a

k
c c 


k=0
|a
k
|


k=0
a
k
N |a
k
|≤|b
k
|, ∀k ≥ N


k=0
|b
k
|


k=0
|a
k
|



k=0
|a
k
|


k=0
|b
k
|
lim
k→∞
|a
k
|
|b
k
|
= K
K =0


k=0
|a
k
|



k=0
|b
k
|
K =0


k=0
|b
k
|


k=0
|a
k
|


k=0
|a
k
|


k=0
|b
k
|
lim

k→∞
|a
k+1
|
|a
k
|
= r
r<1


k=0
|a
k
| r>1


k=0
|a
k
|
lim
k→∞
k

|a
k
| = r
r<1



k=0
|a
k
| r>1


k=0
|a
k
|
f :[0, +∞) → R 0

+∞
0
f(x)dx


k=0
f(k)





m

k=n
a
k







m

k=n
|a
k
|
n

k=0
|a
k
|≤
n

k=0
|b
k
|
lim
k→∞
|a
k
|
|b

k
|
= K >0 N k>N
(K −) |b
k
|≤|a
k
|≤(K + ) |b
k
|
lim
k→∞
|a
k+1
|
|a
k
|
= r
r<1 r<p<1 N |a
n+1
| <p|a
n
|, ∀n ≥ N
|a
N+k
| <p
k
|a
N

|,k =0, 1, 2, ···


k=N
|a
k
|≤|a
N
|


k=0
p
k
=
|a
N
|
1 −p

|a
k
|
r>1 r>q>1 N |a
n+1
| >q|a
n
|, ∀n ≥ N

q

k

|a
k
|
lim
k→∞
n

|a
k
| = r
r<1 r<p<1 N
n

|a
n
| <p,∀n ≥ N
|a
n
| <p
n
, ∀n ≥ N


k=N
|a
k
|≤



k=N
p
k
=
p
N+1
1 −p

|a
k
|
r>1 r>q>1 N |a
n
| >q
n
, ∀n ≥ N

q
k

|a
k
|
f [0, +∞) f(k +1)≤ f(x) ≤ f (k) k ≤ x ≤ k +1
f(k +1)≤

k+1
k
f(x)dx ≤ f (k) 0 <n<m

m+1

k=n+1
f(k) ≤

m
n
f(x)dx ≤
m

k=n
f(k)

+∞
0
f


k=0
f(k) 


k=0
sin k
2
k





sin k
2
k





1
2
k


k=0
1
2
k
|a
k
|
1
k
p
k →∞


k=1
1
k
p

p>1 p ≤ 1


k=0
k
k
2
+1
k
k
2
+1

1
k
k →∞


k=0
k

k
5
+ k
3
+1
k

k
5

+ k
3
+1

1
k
3/2
k →∞


k=1

e −

1+
1
k

k

p
p>1 ln(1 + x)
e
x
x =
1
k
a
k
=


e −

1+
1
k

k

p
=

e −e
k ln(1+
1
k
)

p
=

e −e
k(
1
k

1
2k
2
+o(

1
k
2
)
)

p
=

e −e
1−
1
2k
+o(
1
k
))

p
=

e −e(1 −
1
2k
+ o(
1
k
))

p

=

1
2k
+ o(
1
k
)

p

1
2
p
k
p


k=1
k!

x
k

k
lim
k→∞
|a
k+1
|

|a
k
|
= lim
k→∞
x

k
k +1

k
= lim
k→∞
x

1 −
1
k +1

k+1

1 −
1
k +1

−1
= |x|e
−1
|x| <e |x| >e
|x| = e k! ∼


2πkk
k
e
−k
|a
k
| = k!
e
k
k
k


2πk


k=1
1
2
k
(1 +
1
k
)
k
2
lim
k→∞
k


|a
k
| = lim
k→∞
1
2
(1 +
1
k
)
k
=
e
2
> 1


k=1
1
k
p
f(x)=
1
x
p
[1, ∞)

+∞
1

dx
x
p
p>1
p>1


k=2
1
k ln
p
k
p>1


2
dx
x ln
p
x


k=0
1
1+a
k
(a>0)


k=0

k
k
3
+1


k=1
sin

k


k=1

k −1
k +1

k(k+1)


k=0
(k!)
2
2
k
2


k=2
1

k ln k ln(lnk)


k=3
1
k ln k ln(ln k) ln(ln ln k))


k=1
ln k
k
p
r =1
lim
k→∞
|a
k+1
|
|a
k
|
= r lim
k→∞
k

|a
k
| = r
a
k

=
3+(−1)
k
2
k+1
>0 N
(r −)|a
k
| < |a
k+1
| < (r + )|a
k
|, ∀k ≥ N
(r −)
k−N
|a
N
| < |a
k
| = |a
N+(k−N)
| < (r + )
k−N
|a
N
|
A(r −)
k
< |a
k

| <B(r + )
k
A = |a
N
|/(r −)
N
B = |a
N
|/(r + )
N
k

A(r −) <
k

|a
k
| <
k

B(r + )
r − ≤ lim inf
k

|a
k
|≤lim sup
k

|a

k
|≤r + 
>0 r ≤ lim inf
k

|a
k
|≤lim sup
k

|a
k
|≤r
lim
k→∞
k

|a
k
| = r

S
n
=
n

k=0
a
k
(b

k
)
0


k=0
a
k
b
k
(a
k
) 0


k=0
(−1)
k
a
k


k=0
a
k
(b
k
)



k=0
a
k
b
k
m

k=n
a
k
b
k
=
m

k=n
(S
k
− S
k−1
)b
k
= S
m
b
m
− S
n−1
b
n


m−1

k=n
S
k
(b
k+1
− b
k
)
|S
n
| M (b
k
)
0





m

k=n
a
k
b
k






≤ M|b
m
| + M|b
n
| + M
m−1

k=n
|b
k+1
− b
k
| = M(|b
m
| + |b
n
| + |b
m
− b
n
|)


k=0
a
k

b
k
S
n
=
n

k=0
(−1)
k


k=0
a
k
(b
k
) b
c
k
= b −b
k
c
k
0


k=0
a
k

c
k


k=0
a
k
b
k
=


k=0
a
k
b −


k=0
a
k
c
k
(b
k
) (−b
k
) 
p



k=1
(−1)
k
k
p
p>0


k=1
sin kx
k


k=1
cos kx
k
2sinkx sin
1
2
x =cos(k −
1
2
)x −cos(k +
1
2
)x
2coskx sin
1
2

x =sin(k +
1
2
)x −sin(k −
1
2
)x
sin
1
2
x =0 x =2kπ (k ∈ Z)
sin x +sin2x + ···+sinnx =
cos
1
2
x −cos(n +
1
2
)x
2sin
1
2
x
cos x +cos2x + ···+cosnx =
sin(n +
1
2
)x −sin
1
2

x
2sin
1
2
x
x =2kπ.

×