Baứi taọp haứm bieỏn phửực Trang 1
BI TP CHNG I
1.1. Thc hin cỏc phộp tớnh
1.
(5 6 ) (2 4 )
i i
+ +
2.
(2 3 )(4 )
i i
+
3.
2 3
(1 ) (1 )
i i
+
4.
2 3
5 4
i
i
+
+
5.
(3 2 )(1 2 )
4 3
i i
i
+
6.
(1 )(1 2 )
(2 )(4 3 )
i i
i i
+
+
7.
3
2
4 5
(2 )
i i
i
+ +
8.
3
(1 )
(2 )(1 2 )
i
i i
+
+ +
9.
5
(1 2 )
i
+
10.
25
2
1 2
i
i
+
11.
9
8
(1 )
( 2)
i
i
+
12.
3 2
( 7 3) ( 7 3)
i i
+
13.
3 4
i
+
14.
5 12
i
15.
2
i
16.
1 2 2
i
1.2. Vit s phc di dng lng giỏc v dng m
1.
4
2.
3
i
3.
2
i
4.
2 2
i
+
5.
6 2
i
6.
2 3 2
i
+
7.
2 5
i
+
8.
12 5
i
1.3. Vit di dng m
1.
(2 2 )(3 3 3 )
A i i
= +
2.
(4 4 )( 1 )
B i i
= + +
3.
1
i
C
i
=
+
4.
2 6
1 3
i
D
i
+
=
+
1.4. Tỡm modul ca cỏc s phc
1.
2
3 4
i
i
2.
(1 3)( 3 )
i i
+
3.
2 4
(2 3 ) (3 )
i i
+
4.
3
2
(3 4 )
(1 3)
i
i
+
+
5.
1 2 2
1 1
i i
i i
+
+
6.
1 1 5
1 1 1 2
i i i
+ +
+ +
1.5. Gii cỏc phng trỡnh
1.
2 5 6 0
z z i
+ =
2.
2
4
z z
=
3.
2
2
1 3
i
z z
i
+ =
+
4.
| | 3
z z i
= +
5.
2
| | 1 6 2
z i z
+ + =
1.6. Chng minh vi mi s phc
1 2
, ,
z z z
1.
| | | |
z z
=
2.
| | | |
z z
= 3.
2
| | .
z z z
=
4.
1 2 1 2
| | | | | |
z z z z
+ +
5.
1 2 1 2
| | | | | |
z z z z
1.7. Chng minh rng
1. N
u
| | 1
z
=
thỡ
3
2 | 3 | 4
z
. 2. Nu
| | 2
z
=
thỡ
| 6 8 | 12
z i
+ +
.
1.8. Cho
1
z i
w
iz
+
=
+
. Chng minh rng nu
Im( ) 0
z
thỡ
| | 1
w
.
Baứi taọp haứm bieỏn phửực Trang 2
1.9. Chng minh rng nu
( )
n
u iv x iy
+ = +
thỡ
2 2 2 2
( )
n
u v x y
+ = +
, vi
n
l s nguyờn.
1.10. Chng minh rng
2
0 1 2
( ) 0
n
n
f z a a z a z a z
= + + + + =
, nu
( ) 0
f z
=
, vi
( 0, 1, , )
k
a k n
=
.
1.11. Bng cỏch xột tớch ca
1
1
2
i
+
v
1
1
3
i
+
, chng minh
1 1
arctan arctan
2 3 4
+ =
.
1.12. Biu din qua ly tha ca
cos , sin
x x
1.
cos2 , sin2
x x
2.
cos 3 , sin 3
x x
3.
cos 4 , sin 4
x x
1.13. Tớnh cỏc s phc
1.
3
(1 3)
i
2.
4
1
3.
5
( 3 )
i
4.
4
( 2 6)
i
+
5.
5
(2 2 )
i
6.
7
(1 3)
i
+
7.
1
2
(1 )
i
+
8.
6
( 3 )
i
+
9.
4
1
( 3 )
i
10.
1
3
( )
i
11.
3
i
12.
5
1
i
13.
10
1 1
2 2
i
+
14.
5
1
1
i
i
+
15.
4
1 3
1
i
i
+
16.
3 2
( 1 ) ( 3 )
i i
+ +
17.
4
3
(1 3)
(2 2 )
i
i
+
18.
10
1 3
1 3
i
i
+
1.14. Tớnh v vit di dng m
1.
3
2 2
i
+
2.
4
3
i
+
3.
5
4 3
i
+
1.15. Gii phng trỡnh trong
1.
8
16 0
x
=
2.
3
1 0
x
+ =
3.
4 2
1 0
x x
+ =
1.16. Cho biu thc
1 3
1
i
A
i
+
=
.
1. Vit biu thc trờn di dng
A x iy
= +
.
2. Vit dng m ca
1 3
i
+
v
1
i
. Suy ra dng lng giỏc ca
A
, t ú tớnh
7
cos
12
,
7
sin
12
.
1.17. Tớnh ln lt cn bc 2, 3, 4, 5, 6 ca s phc 1 v biu din cỏc giỏ tr ú trờn ng trũn lng giỏc.
1.18. Cỏc giỏ tr ca
1
n
l
2 2
cos sin , 0, 1, , 1
k
k k
w i k n
n n
= + =
.
1. Tớnh t
ng
0 1 1
n
w w w
+ + +
.
2. Chng minh rng
k
w
v
n k
w
(
1, , 1
k n
=
) l cp s phc liờn hp v nghch o ca nhau.
Baứi taọp haứm bieỏn phửực Trang 3
3. Tớnh
1 1
k n k
w w
+ ,
1, , 1
k n
=
.
4. Tớnh
1 1
1 1
k n k
w w
+
,
1, , 1
k n
=
.
1.19. Xỏc nh cỏc im trong mt phng
Oxy
biu din s phc
z
1.
Re( ) Im( )
z z
=
2.
| | 3
z
<
3.
| 1 | 1
z i
+
4.
Re( ) 2
z i
=
5.
Re( ) Im( ) 1
z z
+ <
6.
| 2 | 4
z i
=
7.
0 Re( ) 1
iz
< <
8.
Im( ) 3
z i
9.
| | | 1 |
z i z
=
10.
| |
z z
=
11.
2
Im( ) 2
z
=
12.
| | Re( )
z z
=
13.
arg
z z
=
14.
| 1 | | 1 | 4
z z
+ + =
15.
arg
3
z
=
16.
arg( 1)
4
z
=
17.
| | | | 6
z i z i
+ + <
18.
arg
6 4
z
< <
1.20. Xỏc nh ng cong
C
cho bi phng trỡnh
1.
2
2 , 0z t it t
= + < < +
2.
3 2 , 1 2
z t it t
= <
3.
, 0
i
z t t
t
= < <
4.
2 4
,z t it t
= + < <
5.
1
,
1
z t
it
= < <
+
6.
3
3(cos sin ),
2 2
z t i t t
= + < <
7.
cos 2 sin , 0
z t i t t
= + < <
8.
2
2 sin i sin ,
2 2 2
t
z t t
= + < <
9.
2
1 , 1 0
z t i t t
= +
10.
2( ),
it
z t i ie t
= + < <
BI TP CHNG II
2.1. Tớnh giỏ tr ca hm ti im
0
z
1.
( ) 3 Im( )
f z z z
=
a)
0
1
z
=
b)
0
2
z i
=
c)
0
1 2
z i
=
2.
2
( ) 2
f z z z i
=
.
a)
0
2
z i
=
b)
0
1
z i
= +
c)
0
3 2
z i
=
3.
2
( ) | | 2Re( )
f z z iz z
= +
a)
0
3 4
z i
=
b)
0
1 2
z i
= +
2.2. Tỡm ph
n thc v phn o ca cỏc hm
1.
( ) 5 3 4
f z z i
= +
2.
( ) 2 3
f z z z i
= +
3.
2
( ) (1 )
f z z i z
=
4.
( ) | | 2 Im( )
f z z iz
= 5. ( )
1
z
f z
z
=
+
6.
1
( )f z z
z
=
Baứi taọp haứm bieỏn phửực Trang 4
2.3. Bit
i
z re
=
, tỡm phn thc v phn o ca cỏc hm theo
,
r
1.
( )
f z z
=
2.
( ) | |
f z z
=
3.
4
( )
f z z
=
4.
2 2
( )
f z x y iy
= +
5.
1
( )f z z
z
= +
6.
2
( ) Re( )
f z z
=
2.4. Tỡm min giỏ tr ca cỏc hm
1.
( )
f z z
=
xỏc nh trong na mt phng trờn
Im( ) 0
z
>
.
2.
( ) Im( )
f z z
=
xỏc nh trong hỡnh trũn úng
| | 2
z
.
3.
( ) | |
f z z
=
xỏc nh trong hỡnh vuụng
0 Re( ) 1
z
,
0 Im( ) 1
z
.
2.5. Tỡm min xỏc nh v min giỏ tr ca cỏc hm
1.
( )
z
f z
z
=
2. ( )
z z
f z
z z
+
=
2.6. Tỡm nh
B
ca tp
A
qua phộp bin hỡnh
( )
w f z
=
1.
( )
f z z
=
;
a)
A
l ng thng
3
y
=
b)
A
l ng thng
y x
=
2.
( ) (1 )
f z i z
= +
a)
A
l ng thng
2
x
=
b)
A
l ng thng
2 1
y x
= +
3.
( ) 2
f z z
=
a)
A
l na mt phng trờn
Im( ) 1
z
>
b)
{ : 0 Re( ) 1}
A z z
= < <
4.
( )
f z iz
=
a)
A
l ng trũn
| 1 | 2
z
=
b)
{ : 1 Im( ) 0}
A z z
= < <
2.7. Tỡm nh qua phộp bin hỡnh
2
w z
=
1. ng thng
1
x
=
2. ng thng
2
y
=
3. tp
: 0 arg
4
A z z
=
2.8. Tỡm nh qua phộp bin hỡnh
1
w
z
=
1. ng thng
y x
=
2. ng thng
1
x
=
3. on thng t im
1
i
n im
2 2
i
4. ng trũn
| | 2
z
=
5. ng trũn
| 1 | 1
z
=
6. tp
{
}
: 1 Re( ) 2
A z z
= < <
2.9. Tỡm gii hn ca cỏc hm s
1.
2
2
lim ( )
z i
z z
2.
2
1
lim (| | )
z i
z iz
+
3.
1
lim
z i
z z
z z
+
+
4.
2
Im( )
lim
Re( )
z i
z
z z
+
2.10. Ch
ng minh
1.
0
lim
z z
c c
=
(
c
) 2.
0
0
lim
z z
z z
=
3.
0
1
lim
z
z
=
4.
1
lim 0
z
z
=
Baứi taọp haứm bieỏn phửực Trang 5
2.11. S dng kt qu bi 2.10, tỡm cỏc gii hn
1.
2
2
lim ( )
z i
z z
+
2.
5
lim( 2 1)
z i
z z
+
3.
4
1
lim
z i
z
z i
+
4.
2
2
1
1
lim
1
z i
z
z
+
5.
2
2
2
lim
(1 2 )
z
z iz
i z
+
+
6.
1
lim
2
z
iz
z i
+
2.12. Xột xem cỏc hm s sau cú gii hn khi
0
z
hay khụng?
1.
Re( )
( )
Im( )
z
f z
z
=
2.
( )
z
f z
z
=
2.13. Chng t rng cỏc hm s sau liờn tc ti
0
z
1.
2
( ) 3 2
f z z iz i
= +
;
0
2
z i
=
2.
( ) 3 Re( )
f z z z i
= +
;
0
3 2
z i
=
3.
3
1
, | | 1
( )
1
3, | | 1
z
z
f z
z
z
=
=
;
0
1
z
=
2.14. Xột tớnh liờn tc ca cỏc hm s
1.
( )
f z z
=
2.
2
( ) Im( )
f z z
=
2.15. Xột tớnh kh vi ca hm
( )
f z
v tớnh o hm (nu cú)
1.
( )
f z z
=
2.
2
( ) ( )
f z z
=
3.
( ) .Im( )
f z z z
=
4.
( ) .
f z z z
=
5.
2
( ) Re( )
f z z
=
6.
2
| 1|
( )
z
f z e
=
7.
5
( )
f z z z
= +
8.
( ) | | .
f z z z
=
2.16. Chng t cỏc hm s sau khụng gii tớch ti bt k im no trong mt phng phc
1.
( ) Re( )
f z z
=
2.
( )
f z y ix
= +
3.
2 2
( ) 2 ( )
f z x y i y x
= + +
4.
( ) 4 6 3
f z z z
= +
2.17. Cỏc hm s sau gii tớch trong min no ca mt phng phc
1.
2
( )
f z z
=
2.
( ) .Re( )
f z z z
=
3.
2
( ) Im( )
f z z
=
4.
2
( )
f z z zz
= +
2.18. Chng minh rng
1. Nu
f
gii tớch trong min
D
v
| ( ) |
f z
l hng s trong
D
thỡ
f
cng l hng s trong
D
.
2. Nu
f
gii tớch trong min
D
v
( ) 0
f z
=
thỡ
f
l hng s trong
D
.
2.19. Cho
i
z x iy re
= + =
v
( ) ( , ) ( , )
f z u x y iv x y
= +
.
Chng minh iu kin C - R tng ng vi
1
u v
r r
=
,
1
v u
r r
=
.
2.20. Tỡm hm gi
i tớch
( ) ,
f z u iv
= +
bit
1.
u x y
= +
2.
2
v x y
=
3.
2 3
u xy x
= +
4.
y
x
v e
=
5.
3 2
3
v x xy
=
6.
arctan
y
u
x
= 7.
2 2
ln( ) 2
u x y x y
= + +
8.
cos 2
x
v e y x y
= +
Baứi taọp haứm bieỏn phửực Trang 6
2.21. Tỡm cỏc hng s
, ,
a b c
v
d
cỏc hm sau gii tớch
1.
( ) ( )
f z x ay i bx cy
= + + +
2.
( ) 3 ( 3)
f z x y i ax by
= + +
3.
2 2 2 2
( ) ( )
f z x axy by i cx dxy y
= + + + + +
2.22. Tỡm phn thc v phn o ca cỏc hm s
1.
3 4
( )
i
f z e
+
=
2.
( ) cos(2 )
f z i
= +
3.
( ) sin 2
f z i
=
4.
( ) sh(1 4 )
f z i
=
2.23. Tớnh
sin
z
, nu
ln(3 2 2)
2
z i
= +
.
2.24. Chng minh
1.
sin( ) sin ch cos sh
x iy x y i x y
+ = +
2.
cos( ) cos ch sin sh
x iy x y i x y
+ = +
2.25. Gii phng trỡnh
1.
sin 2
z
=
2.
cos 3
z
=
3.
1
z
e
=
4.
1
z
e
=
.
BI TP CHNG III
3.1. Tớnh cỏc tớch phõn
1.
( 3 )
C
I z i dz
= +
,
C
cú phng trỡnh
2 , 4 1, 1 3
x t y t t
= =
.
2.
(2 )
C
I z z dz
=
,
C
cú phng trỡnh
2
, 2, 0 2
x t y t t
= = +
.
3.
2
| |
C
I z dz
=
,
C
cú phng trỡnh
2
1
, , 1 2
x t y t
t
= = <
.
4.
Re( )
C
I z dz
=
,
C
l ng trũn
| | 1
z
=
.
5.
C
I z dz
=
,
C
l ng trũn
| | 1
z
=
.
6.
2
1 2
3
( )
C
I dz
z i
z i
= +
+
+
,
C
l ng trũn
| | 1
z i
+ =
.
3.2. Tớnh cỏc tớch phõn
1.
2 3
( )
C
I x iy dz
= +
,
C
l on thng
a) ni t
1
z
=
n
z i
=
.
b) ni t
1
z i
= +
n
z i
=
.
2.
1
C
z
I dz
z
+
=
,
C
l
a) n
a phi ng trũn n v t
z i
=
n
z i
=
.
b) na trỏi ng trũn n v t
z i
=
n
z i
=
.
3.
2 2
( )
C
I x iy dz
=
,
C
cú im u
1
z
=
v im cui
1
z
=
, trong hai trng hp sau
Baứi taọp haứm bieỏn phửực Trang 7
a)
C
l na di ng trũn n v.
b)
C
l na trờn ng trũn n v.
4.
z
C
I e dz
=
, vi
C
l ng gp khỳc ni
0, 2, 1
i
+
.
5.
C
I zdz
=
theo ellip
2
2
1
4
x
y
+ =
t im
2
z
=
n im
z i
=
, chiu ngc kim ng h.
6.
1
C
I dz
z
=
theo ng trũn
| | 1
z
=
t im
1
z
=
n im
1
z
=
, trong hai trng hp
a) na mt phng trờn.
b) na mt phng di.
7.
Im( )
C
I z i dz
=
, vi biờn
C
gm ng trũn
| | 1
z
=
t
1
z
=
n
z i
=
v on thng t
z i
=
n
1
z
=
.
8.
z
C
I ze dz
=
, vi
C
l biờn ca hỡnh vuụng cú cỏc nh l
0
z
=
,
1, 1
z z i
= = +
v
z i
=
.
3.3. Tớnh tớch phõn
( )
C
I f z dz
=
, vi
C
l biờn ca tam giỏc cú cỏc nh l
0, 1
z z
= =
v
1
z i
= +
:
1.
( ) Re( )
f z z
=
2.
2
( )
f z z
=
3.
( ) 2 1
f z z
=
4.
2
( )
f z z
=
3.4. Tớnh tớch phõn
2
( 2)
C
I z z dz
= +
, vi
C
cú im u
z i
=
, im cui
1
z
=
, trong cỏc trng hp:
1.
C
l ng thng
1
x y
+ =
2.
C
l ng gp khỳc ni
, 1 , 1
i i
+
3.
C
l parabol
2
1
y x
=
4.
C
l ng trũn
| | 1
z
=
(chiu cựng kim ng h)
3.5. Tớnh tớch phõn
2
( )
C
I z dz
=
vi
C
l ng ni t im
0
z
=
n im
1
z i
= +
trong trng hp
1.
C
l on thng. 2.
C
l ng gp khỳc ni
0, 1, 1
i
+
.
3.6. Tớnh tớch phõn
| |
C
I z dz
=
, nu
C
l
1. on thng ni t im
z i
=
n im
z i
=
.
2. na trỏi ng trũn
| | 1
z
=
ni t im
z i
=
n im
z i
=
.
3. na phi ng trũn
| | 1
z
=
ni t im
z i
=
n im
z i
=
.
3.7. Tớnh tớch phõn
C
I zdz
=
t
1
z
=
n
z i
=
, theo mi ng sau
1. dc theo trc
Ox
n
O
, ri dc theo trc
Oy
n
i
.
2. dc theo ng thng
1
y x
=
.
3. d
c theo ng thng ng n
(1 )
i
+
ri dc theo ng ngang n
i
.
3.8. Tớnh tớch phõn
| |
C
I z dz
=
, vi
C
l ng trũn
| | 1
z i
=
.
Baứi taọp haứm bieỏn phửực Trang 8
3.9. Tớnh cỏc tớch phõn
1.
3
2
0
i
z dz
+
2.
/2
i
z
i
e dz
3.
2
sin
2
i
z
dz
+
4.
0
i
z
ze dz
5.
1
0
sin
i
z zdz
+
6.
1
2
1
( 1)
i
dz
z +
3.10. Tớnh cỏc tớch phõn
1.
cos
C
I zdz
=
, trong ú
2
{( , ) : , 0 1}
C x y x y y
= =
2.
2
1
C
I dz
z
=
,
C
l elip
2 2
1
( 1) ( 2) 1
4
x y
+ + =
.
3.
2
3
2 2
C
z
I dz
z z
=
+ +
,
: | | 1
C z
=
4.
2 1
(1 )
C
I z dz
= +
,
C
l elip
2 2
4 1
x y
+ =
.
3.11. Tớnh cỏc tớch phõn
1.
2
2
C
z
I dz
z i
=
a)
: | | 3
C z
=
b)
: | | 1
C z
=
2.
2
1
9
C
I dz
z
=
+
a)
: | 2 | 2
C z i
=
b)
1
: | 2 |
2
C z i
+ =
3.
2
2
3 4
C
z z i
I dz
z z
+
=
+
a)
: | | 2
C z
=
b)
3
: | 5 |
2
C z
+ =
4.
2
2
( 1 )
C
z
I dz
z z i
+
=
a)
: | | 1
C z
=
b)
: | 1 | 1
C z i
=
5.
3
1
( 4)
C
I dz
z z
=
a)
: | | 1
C z
=
b)
: | 2 | 1
C z
=
6.
3
( 1)
z
C
e
I dz
z z
=
a)
: | 2 | 1
C z
+ =
b)
1
: | |
2
C z
=
c)
1
: | 1 |
2
C z
=
d)
: | | 2
C z
=
3.12. Tớnh cỏc tớch phõn
1.
2 2
cos( )
C
iz
I dz
z
=
+
,
: | | 4
C z i
=
2.
2
sin( / 2)
1
C
z
I dz
z
=
,
: | | 3
C z i+ =
3.
2 2
, C : | | 2
( 1)
z
C
e
I dz z i
z z
= =
+
4.
2 2
, C : | | 2
( 1)( 3)
C
z
I dz z
z z
= =
+ +
5.
3 2
1
, C : | 2 | 4
( 1)
C
I dz z
z z
= =
6.
5
cos2
, C : | | 1
C
z
I dz z
z
= =
Baứi taọp haứm bieỏn phửực Trang 9
3.13. Tớnh cỏc tớch phõn
1.
2 2
2
sin
4
, : 2
1
C
z
I dz C x y x
z
= + =
.
2.
2
cos
1
C
z
I dz
z
=
,
C
l biờn ca tam giỏc cú cỏc nh
0
z
=
,
2 2
z i
=
v
2 2
z i
= +
.
3.
2
2
4
C
z
I dz
z
=
+
,
C
l biờn ca hỡnh vuụng cú cỏc nh l
2
z
=
,
2
z
=
,
2 4
z i
= +
v
2 4
z i
= +
.
4.
2 2
4
iz
C
e
I dz
z
=
,
C
cú phng trỡnh
2 , 0 2
it
z i e t
= +
.
3.14. Cho
0
t
>
v
C
l ng cong trn, kớn, bao quanh im
1
z
=
.
Chng minh rng:
2
3
1
2 2
( 1)
zt
t
C
ze t
dz t e
i
z
=
+
.
3.15. Cho
C
l na trờn ng trũn
| |
z R
=
t
z R
=
n
z R
=
.
Chng minh rng:
2 2 2 2
( 0, 0)
imz
C
e R
dz m R a
z a R a
> > >
+
.
BI TP CHNG IV
4.1. Xỏc nh xem cỏc dóy sau, dóy no hi t, dóy no phõn k
1.
2
1
in
in
+
2.
(1 )
1
n
n i
n
+
+
3.
n
n i
n
+
4.
1
2 arctan
n
e i n
+
4.2. Chng t cỏc dóy sau hi t bng cỏch s dng nh lý 4.1
1.
4 3
2
n i n
n i
+
+
2.
1
4
n
i
+
4.3. Tỡm tng ca cỏc chui sau (nu chui hi t)
1.
1
( 1)
k
i
k k
=
+
2.
1
(1 )
k
k
i
=
3.
1
3
2
1 3
k
k
i
=
+
4.
1
1
1
4
2
k
k
i
=
5.
1
1
(1 )
k
k
k
i
i
=
+
6.
1
1 1
2 1 2
k
k i k i
=
+ + +
4.4. Tỡm bỏn kớnh v hỡnh trũn hi t ca cỏc chui
1.
2
1
( )
n
n
z i
n
=
2.
1
0
( 2 )
(1 )
n
n
n
z i
i
+
=
3.
1
( 1)
( 1 )
2
n
n
n
n
z i
n
=
+
4.
2
1
(2 )!
( 1)
( !)
n
n
n
z
n
=
5.
1
n
n
n
z
n
=
6.
1
1 2
( 1) ( 2 )
2
n
n n
n
i
z i
=
+
+
Baứi taọp haứm bieỏn phửực Trang 10
4.5. Khai trin Taylor cỏc hm s sau trong lõn cn im
a
v cho bit min khai trin c
1.
1
( )
1
f z
z
=
,
3
a i
=
2.
( )
z
f z e
=
,
a i
=
3.
1
( )f z
z
=
,
1
a
=
4.
( ) cos
f z z
=
,
/ 4
a
=
5.
1
( )
2
f z
z
=
+
,
1
a
=
,
a i
=
6.
1
( )
1
z
f z
z
=
+
,
0
a
=
,
1
a
=
4.6. Khai trin Taylor cỏc hm s sau trong lõn cn im
a
v tỡm bỏn kớnh hi t
1.
( )
( )( 2 )
i
f z
z i z i
=
,
0
a
=
2.
2
( )
2 3
z
f z
z z
=
,
0
a
=
,
2
a
=
4.7. Khai trin Laurent cỏc hm s trong min cho trc
1.
cos
( ) , | | 0
z
f z z
z
= >
2.
5
sin
( ) , | | 0
z z
f z z
z
= >
3.
2
1
( ) , | | 0
z
f z e z
= >
4.
2
2
( ) , | 1 | 0
( 1)
z
e
f z z
z
= >
5.
2
( ) sin , | | 0
f z z z
z
= >
6.
1
2
( ) , | | 0
z
f z z e z
= >
7.
2
1
( ) , 0 | 1 | 1
( 1)
f z z
z z
= < + <
+
8.
2 2
1
( ) , 0 | | 2
( 1)
f z z i
z
= < + <
+
4.8. Khai trin Laurent hm s
2
1
( )
( 1)
f z
z z
=
trong cỏc min
1.
0 | | 1
z
< <
2.
| | 1
z
>
4.9. Khai trin Laurent hm s
1
( )
( 3)
f z
z z
=
trong cỏc min
1.
0 | | 3
z
< <
2.
| | 3
z
>
3.
0 | 3 | 3
z
< <
4.
| 3 | 3
z
>
5.
1 | 4 | 4
z
< <
6.
1 | 1 | 4
z
< + <
4.10. Khai trin Laurent hm s ( )
( 1)( 2)
z
f z
z z
=
+
trong cỏc min
1.
1 | | 2
z
< <
2.
| 1 | 2
z
+ >
3.
0 | 1 | 3
z
< + <
4.
0 | 2 | 3
z
< <
4.11. Tỡm v phõn loi cỏc im bt thng cụ lp ca cỏc hm s
1.
3
2
( )
( 1) ( 1)
z
f z
z z z
+
=
+
2.
3
1 cos
( )
z
f z
z
= 3.
2 2
2
( )
( 1)
f z
z
=
+
4.
1
( )
z
f z ze
=
5.
5
2
( )
( 1)
z
f z
z
=
6.
1
( ) cosf z
z i
=
+
7.
2
3 1
( )
2 5
z
f z
z z
=
+ +
8.
3
1
( )
( 1)( 1)
z
f z
z z
=
+ +
9.
2 3
sin
( )
z
f z
z z
=
10.
6
cos cos2
( )
z z
f z
z
=
Baứi taọp haứm bieỏn phửực Trang 11
4.12. Tớnh thng d ca cỏc hm sau ti cỏc im bt thng cụ lp
1.
4 8
( )
2 1
z
f z
z
+
=
2.
2
( )
16
z
f z
z
=
+
3.
2
1
( )
1
f z
z
=
4.
2
1
( )
z
f z e
=
5.
3
cos
( )
z
f z
z
=
6.
4
3
( )
( 1)
z
f z
z
=
+
7.
2
1
( )
( )
f z
z z i
=
8.
2
( )
( 1)
z
e
f z
z
=
9.
3 4
1
( )f z
z z
=
10.
1
2
( )
z
f z z e
=
11.
3
sin
( )
z z
f z
z
= 12.
2
2 4 1
( )
( 1)( 2)( 3)
z z
f z
z z z
+
=
+ +
13.
2 2
( )
( 1)
z
f z
z
=
+
14.
2 3
cos
( )
( )
z
f z
z z
=
15.
1
( )
sin
f z
z z
= 16.
2
2
( ) ( 3) sin
3
f z z
z
= +
+
4.13. S dng thng d tớnh cỏc tớch phõn
1.
2
1
( 1)( 2)
C
I dz
z z
=
+
a)
1
: | |
2
C z
=
b)
3
: | |
2
C z
=
c)
: | | 3
C z
=
2.
2
1
( 2 )
C
z
I dz
z z i
+
=
a)
: | | 1
C z
=
b)
: | 2 | 1
C z i
=
c)
: | 2 | 3
C z i
=
3.
2
3 1/z
C
I z e dz
=
a)
: | | 5
C z
=
b)
: | | 2
C z i
+ =
c)
: | 3 | 1
C z
=
4.
1
sin
C
I dz
z z
=
a)
: | | 3
C z
=
b)
: | 2 | 1
C z i
=
c)
: | 2 | 4
C z i
=
5.
2 2
4
iz
C
e
I dz
z
=
,
: | | 2
C z i
=
.
6.
3 4
1
( 1)
C
I dz
z z
=
,
3
: | 2 |
2
C z
=
.
7.
2
( 1)( 1)
C
z
I dz
z z
=
+ +
,
2 2
: 16 4
C x y
+ =
.
8.
2 3
2 1
( 1)
C
z
I dz
z z
=
+
,
C
l biờn ca hỡnh ch nht xỏc nh bi
2, 1,
x x
= =
1
2
y
= v
1
y
=
.
9.
4/( 2)z
C
I e dz
=
,
: | 1 | 3
C z
=
.
10.
2 2
1
( 1) ( 3)
C
I dz
z z
=
,
2/3 2/3 2/3
: 2
C x y
+ =
.
11.
3 10
1
( 2)
C
I dz
z z
=
,
: | | 2
C z
=
.
12.
6
1
C
z
I dz
z
=
+
,
C
l na ng trũn xỏc nh bi
0
y
=
v
2
4
y x
=
.
4.14. a) S
dng khai trin c bn chng t
0
z
=
l khụng im cp 2 ca
1 cos
z
.
b) T kt qu cõu a) suy ra
0
z
=
l cc im cp 2 ca hm
( )
1 cos
z
e
f z
z
=
v t õy
f
cú khai trin
Laurent
2 1
0
2
( )
1 cos
z
c c
e
f z c
z z
z
= = + + +
, vi
0 | | 2
z
< <
.
Baứi taọp haứm bieỏn phửực Trang 12
S dng khai trin ca
z
e
v
1 cos
z
v ng nht cỏc h s t
2 1
0
2
(1 cos )
z
c c
e z c
z
z
= + + +
xỏc nh
2 1
,
c c
v
0
c
.
c) Tớnh tớch phõn
1 cos
z
C
e
I dz
z
=
,
: | | 2
C z i = .
4.15. S dng thng d tớnh cỏc tớch phõn
1.
2
0
1
5 4 sin
I dt
t
=
+
2.
0
5 3 cos
dt
I
t
=
3.
2
0
cos
2 sin
t
I dt
t
=
+
4.
2
0
sin
5 3 cos
t
I dt
t
=
5.
2
0
1
1 sin
I dt
t
=
+
6.
2
2
0
cos
3 sin
t
I dt
t
=
7.
2
0
1
cos 2 sin 3
I dt
t t
=
+ +
8.
2
0
cos2
5 4 cos
t
I dt
t
=
4.16. Chng minh rng
1.
2
2 3
0
1
, 1
( cos )
( 1)
a
I dt a
a t
a
= = >
+
2.
2
2
2 2
2
0
sin 2
( ), 0
cos
t
I dt a a b a b
a b t
b
= = > >
+
4.17. S dng thng d tớnh cỏc tớch phõn
1.
2
1
16
I dx
x
+
=
+
2.
2
1
2 2
I dx
x x
+
=
+
3.
2
1
6 25
I dx
x x
+
=
+ +
4.
2 2
1
( 1)( 4)
I dx
x x
+
=
+ +
5.
2 2
0
1
( 9)
I dx
x
+
=
+
6.
2
2 2
0
( 1)
x
I dx
x
+
=
+
7.
2 3
1
( 1)
I dx
x
+
=
+
8.
2
4
0
1
1
x
I dx
x
+
+
=
+
9.
6
0
1
1
I dx
x
+
=
+
10.
2
2 2
( 2 2)( 1)
x
I dx
x x x
+
=
+ + +
11.
2
cos
1
x
I dx
x
+
=
+
12.
2
sin 2
1
x x
I dx
x
+
=
+
13.
2
sin
2 2
x
I dx
x x
+
=
+ +
14.
2 2
0
cos
( 4)
x
I dx
x
+
=
+
15.
4
0
cos2
1
x
I dx
x
+
=
+
16.
4
0
sin
1
x x
I dx
x
+
=
+
17.
2 2
cos 4
( 1)( 9)
x
I dx
x x
+
=
+ +
18.
2 2
0
sin 3
( 1)( 4)
x x
I dx
x x
+
=
+ +
Baứi taọp haứm bieỏn phửực Trang 13
BI TP CHNG V
5.1. Cỏc hm sau cú phi l hm gc khụng? Nu khụng thỡ ti sao?
1.
1
0, 0
( )
( 3) , 0
t
f t
t t
<
=
2.
5
0, 0
( )
, 0
t
t
f t
e t
<
=
3.
2
0, 0
( )
, 0
t
t
f t
e t
<
=
4.
3 2
0, 0
( )
, 0
t
t
f t
t e t
<
=
5.2. Chng minh hm
1
( )f t
t
=
khụng cú bin i Laplace.
5.3. Tỡm bin i Laplace
1.
2 3
( ) 3
t t
f t e e t
= + +
2.
t
( ) sin 2 cos
2
f t t= 3.
( ) ( 2)
t
f t t t e
=
4.
3
( ) sin 2
t
f t e t
=
5.
( ) 3 cos 4
f t t t
=
6.
( ) sin2 2 cos 2t
f t t t
=
7.
2
( ) cos
f t t
=
8.
3
( ) 2 5
t t
f t t e te
= +
9.
( ) 2 sin 5 cos2 3
t
f t t t e t
= +
10.
3 2
( ) ( 3 5)
t
f t e t t
= +
5.4. Tỡm bin i Laplace
1.
2
sin
( )
t
f t
t
=
2.
2
1
( )
t
e
f t
t
=
3.
0
( ) s in2xdx
t
f t x=
4.
2
0
( ) cos xdx
t
f t =
5.
2 3
( ) ( 3).( 3)
t
f t u t t e
=
6.
2( 1)
( ) ( 1). cos 3( 1)
t
f t u t e t
=
5.5. Tỡm bin i Laplace
1.
, 0 4
( )
1, 4
t t
f t
t
<
=
2.
(2 ), 0 2
( )
0, 2
t t t
f t
t
<
=
3.
0, 0 1
2, 1
( )
1, 2
, 2
t
t
f t
t
t t
<
<
=
<
4.
cos ,
3 3
( )
0,
3
t t
f t
t
=
<
5.
2
1, 0 1
( ) 3, 1 3
, 3
t
f t t
t t
<
= <
6.
1, 0 2
( ) 1, 2 3
0, 3
t
f t t
t
<
= <
5.6. Tỡm bin i Laplace ngc
1.
6
1
( )F s
s
=
2.
3
1
( )
( 5)
F s
s
=
3.
2
1
( )
4
F s
s
=
+
4.
2
1
( )
3
F s
s
=
5.
2 2
1
( )
( )
F s
s a b
=
+
6.
3
2
( )
5 6
s
e
F s
s s
=
+
Baứi taọp haứm bieỏn phửực Trang 14
7.
4
2
( )
( 4)
s
e
F s
s
=
8.
4
1
( )
1
F s
s
=
9.
2
4
( )
6 11
s
F s
s s
+
=
+ +
10.
3 2
6
( )F s
s s
=
+
11.
2
1
( )
2 5
F s
s s
=
+ +
12.
2 2
( )
( 1)
s
F s
s
=
+
13.
1
( )
( 1)( 3)
F s
s s
=
+ +
14.
2
( )
4 13
s
F s
s s
=
+ +
15.
2
1
( )
( 9)
F s
s s
=
+
16.
2
2 1
( )
( 4)
s
F s
s s
=
+
6.
2 2
1
( )
( 4)( 9)
F s
s s
=
+ +
18.
2
1
( )
( 2) ( 1)
s
F s
s s
+
=
+
19.
( /4)
2
( )
1
s
e
F s
s
=
+
20.
2
3
( )
( 1)
s
e
F s
s
=
+
5.7. Dựng thng d, tỡm bin i Laplace ngc
1.
2
( )
4 3
s
F s
s s
=
+
2.
2
( )
( 1)( 2)
s
F s
s s
=
+
3.
3
1
( )
( 1)
F s
s s
=
4.
3 1
( )
( 1)( 2)( 4)
s
F s
s s s
=
5.
2 2
1
( )
( 1)
F s
s
=
+
6.
3
( )
1
s
F s
s
=
+
5.8. Dựng bin i Laplace gii phng trỡnh vi phõn
1.
3
2 2 ; (0) 1
t
y y e y
+ = =
2.
; (0) 2
y y t y
= =
3.
2
2 ; (0) 3
t
y y e y
= =
4.
3 4 4 3; (0) 0, (0) 1
y y y t y y
+ = = =
5.
4 1 sin ; (0) 0, (0) 1
y y t y y
+ = = =
6.
3 2 3 ; (0) 1, (0) 1
t
y y y e y y
+ = = =
7.
4 5 ; (0) 1, (0) 0
t
y y y te y y
+ = = =
8.
2 5 8 ; ( ) 2, ( ) 12
t
y y y e y y
+ = = =
9.
2 3
6 9 ; (0) 2, (0) 17
t
y y y t e y y
+ = = =
10.
4 6 1 ; (0) 0, (0) 0
t
y y y e y y
+ + = + = =
11.
16 cos 4 ; (0) 0, (0) 1
y y t y y
+ = = =
12.
2
4 4 3 ; (0) 0, (0) 0
t
y y y e y y
+ + = = =
13.
4 sin 5 cos 2 ; (0) 1, (0) 2
y y t t y y
= + = =
14.
2
0; (0) , (0) , \ {0}
y y y A y B
+ = = =
15.
2
2 0; (0) 2, (0) 2
y ky k y y y k
+ = = =
16.
4 1; (0) (0) (0) 0
y y y y y
+ = = = =
17.
2
2 2 ; (0) 0, (0) 0, (0) 2
t
y y y x e y y y
+ = = = =
18.
(4)
0; (0) 1, (0) (0) (0) 0
y y y y y y
= = = = =
Baứi taọp haứm bieỏn phửực Trang 15
5.9. Dựng bin i Laplace gii phng trỡnh vi phõn
1.
1, 0 1
4 ; (0) (0) 0
0, 1
t
x x x x
t
<
= = =
2.
cos , 0
; (0) (0) 0
0,
t t
x x x x
t
<
+ = = =
3.
, 0 1
2 ; (0) (0) 0
0, 1
t t
x x x x
t
<
+ = = =
4.
2 ( ); (0) 0
x x f t y
+ = =
, vi
0, 0 1
( ) , 1 2
0, 2
t
t
f t e t
t
<
= <
5.
8 sin , 0
9 ; (0) 0, (0) 4
0,
t t
y y y y
t
<
+ = = =
6.
3 sin cos , 0 2
4 ; (0) 1, (0) 0
3 sin 2 cos2 , 2
t t t
y y y y
t t t
<
+ = = =
5.10. Dựng bin i Laplace gii h phng trỡnh vi phõn
1.
' 2 3
; (0) 8, (0) 3
' 2
x x y
x y
y y x
=
= =
=
2.
' 4 4 0
; (0) 3, (0) 15
' 2 6 0
x x y
x y
y x y
+ + =
= =
+ + =
3.
2
2
' 3 4 9
; (0) 2, (0) 0
' 2 3 3
t
t
x x y e
x y
y x y e
+ =
= =
+ =
4.
' 2 4 cos
; (0) (0) 0
' 2 sin
x x y t
x y
y x y t
=
= =
+ + =
5.
'
; (0) 1, (0) 0
'
x x y
x y
y x y
=
= =
= +
6.
4
' 2 4
; (0) 1, (0) 0
' 2
t
x x y e
x y
y x y
= + +
= =
= +
Ht.