Bài tập hệ phương trình
Giải các hệ phương trình sau :
1, 2,
++=−
⎧
−
⎨
+=−
⎩
22
1
(
6
xxyy
MTCN
xy yx
99)
8)
3)
⎧
+=
⎪
−
⎨
−+=
⎪
⎩
22
4224
5
(9
13
xy
NT
xxyy
3, 4,
⎧
+=
⎪
−
⎨
+=
⎪
⎩
22
33
30
(9
35
xy yx
BK
xy
⎧
+=
⎪
−
⎨
+=+
⎪
⎩
33
55 22
1
( 97)
xy
AN
xyxy
5, 6,
⎧
++=
⎪
−
⎨
++ =
⎪
⎩
22
4422
7
( 1 2000)
21
xyxy
SP
xyxy
++ =
⎧
−
⎨
++ +=
⎩
22
11
( 2000)
3( ) 28
xyxy
QG
xy xy
7,
⎧
+= +
⎪
−
⎨
⎪
+=
⎩
7
1
(9
78
xy
yx
xy
HH
xxy yxy
9)
8,
⎧
++=
⎪
⎪
−
⎨
⎪
++ =
⎪
⎩
22
22
1
()(1)5
(9
1
()(1)49
xy
xy
NT
xy
xy
9)
9,
⎧
++ + =
⎪
⎪
−
⎨
⎪
++ + =
⎪
⎩
22
22
11
4
(9
11
4
xy
xy
AN
xy
xy
9)
10,
++=
⎧
−
⎨
++=
⎩
2
(2)(2 )9
( 2001)
46
xx x y
AN
xxy
11,
⎧
+++++ ++++=
⎪
−
⎨
+++−+ +++−=
⎪
⎩
22
22
1118
(9
112
xxy x yxy y
AN
xxy x yxy y
9)
8)
12, 13,
++=
⎧
−
⎨
++−=
⎩
2
(3 2 )( 1) 12
( 97)
2480
xx yx
BCVT
xyx
⎧
+=
⎪
−
⎨
+=
⎪
⎩
22
22 2
6
( 1 2000)
15
yxy x
SP
xy x
14, 15,
+=
⎧
−
⎨
++=
⎩
2233
4
( 2001)
( )( ) 280
xy
HVQHQT
xyxy
⎧
−=−
⎪
−
⎨
−=−
⎪
⎩
22
22
23 2
( 2000)
23 2
xxy
QG
yyx
16, 17,
⎧
=−
⎪
−
⎨
=−
⎪
⎩
2
2
3
(9
3
xxy
MTCN
yyx
⎧
+=
⎪
⎪
−
⎨
⎪
+=
⎪
⎩
13
2
(9
13
2
x
yx
QG
y
xy
9)
8)
18, 19,
⎧
=+
⎪
−
⎨
=+
⎪
⎩
3
3
38
(9
38
xxy
QG
yyx
⎧
+=
⎪
⎪
−
⎨
⎪
+=
⎪
⎩
2
2
3
2
( 2001)
3
2
xy
x
TL
yx
y
20,
⎧
++ −=
⎪
−
⎨
++ −=
⎪
⎩
527
( 1 2000)
527
xy
NN
yx
21,
2
2
2
2
2
3
2
3
y
y
x
x
x
y
⎧
+
=
⎪
⎪
⎨
+
⎪
=
⎪
⎩
22,
⎧
−=
⎪
−
⎨
−−=
⎪
⎩
2
22
3216
(
32 8
xxy
)
H
HTPHCM
xxyx
23,
⎧
+=
⎪
−
⎨
+=−
⎪
⎩
33 3
22
119
( 2001)
6
xy x
TM
yxy x
24,
⎧
−+=
⎪
−
⎨
−+=
⎪
⎩
22
22
239
()
21315 0
xxyy
H
VNH TPHCM
xxyy
25,
⎧
−=
⎪
−
⎨
+=
⎪
⎩
22
22
2( ) 3
(§ 97)
()10
yx y x
MC
xx y y
Bài tập phương trình -bất phương trình vô tỉ
Giải các phương trình sau:
1,
36xx++ − =3
2,
95 2 4xx
+
=− +
3,
41 12
x
x+− −= −x
4,
22
(3)10 1xxxx2
−
−=−−
5,
33
43xx+− −=1
6,
333
21 1 31
x
xx
−
+−= +
7,
22 1 1xxx++ +− +=4
8,
2 1 2 1 2( 2000 )xx xx BCVT+−−−−= −
9,
3(2 2) 2 6( 01 )xxxHVKTQS+−=++ −
10,
22
2 8 6 1 2 2( 2000)xx x xBK+++ −=+ −
11,
22 22
55
1 1 1( 2001)
44
x x x x x PCCC−+− + −−− =+ −
12,
2
( 1) ( 2) 2 ( 2 2000 )xx xx x SP A−+ + = −
13,
22
286 122( 99x x x x HVKTQS+++ −=+ −)
Tìm m để phương trình :
14,
2
22 1
x
mx x++=+ có 2 nghiệm phân biệt
15,
2
23(xmx xSPKTTPHCM+=− − ) có nghiệm
16,
2
23(xmx xmGT+−=− −98) có nghiệm
Giải các phương trình sau :
17,
22
11 31xx++= 18,
2
(5)(2)3 3xxxx
+
−= +
19,
22
33 363( 98xx xx TM−++ −+= −) 20,
23
2517xx x1
+
−= −
21,
2
243 4
3
x
xx++= +x 22,
22
321(xx xx NT−+ − +− = −99)
23,
1 4 ( 1)(4 )( 20001)xxxxNN++ − + + − −
24,
22
4234
x
xx+−=+ −x
25,
2
24 61xxxx−+ −= − +1
26,
2
2 3 5 2 4 6 0( 01)xxxxGTVTTPHCM−+ − + − −= − −
27,
2
3 2 1 4 9 2 3 5 2( 97)xxx xxHVKTQS−+ −= −+ − + −
28,
2
74
4
2
xx
x
x
++
=
+
29,
33
211
2( 95)
122
x
GT
xx
++= −
+
30,
2
22
1
x
x
x
+=
−
31,
22
11 (121 )
x
x+−= + −x
32,
22
(4 1) 1 2 2 1
x
xxx−+=++
33,
22
31(3) 1( 01xx x x GT++=+ + −) 34,
22
2(1) 21 21xx x x x
−
+−=−−
35,
2
11( 98)xx XD++= −
36,
3
2 1 1( 2000)xxTCKT−=− − −
37,
3
7xx+− =1 38,
33
33
75
6
75
xx
x
xx
−− −
=
−
−+ −
39,
3
3
122 1
x
x+= −
Giải các bất phương trình sau :
1,
(1)(4) 2
x
xx−−>− 2,
13 4( 99)xxBK+>− + −
3,
3 2 8 7 ( 97)xx xAN+≥ −+ − −
4,
2 3 5 2 ( 2000)xxxTL+− −< − −
5,
22
(3) 4xx x−−≤9− 6,
2
114
3( 98)
x
NN
x
−−
<−
7,
2
2
4( 01)
(1 1)
x
xSPVinh
x
>− −
++
8,
22
12 12
11 2 9
x
xx
xx
x
+
−+
≥
−−
−
9,
22 2
3 2 6 5 2 9 7( 2000)xx xx xxBK+++ ++≤ ++ −
10,
22
43 2 31 1( 2001xx xx xKT−+− −+≥− − )
11,
22
51017 2
x
xx++≥−−x 12,
2
4(4 )(2 ) 2 12xxxx
−
−+≤−−
13,
32
( 1) ( 1) 3 1 0( 99)xx xxXD++ ++ +> −
14,
31
32
2
2
xx
x
x
+<+−
7
15,
22
(4) 4(2)2( 99xx x x x HVNH−−++−< −)