Chúc thành công!
ĐỀ THI KHẢO SÁT
MÔN: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I (2 điểm):
1).Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số :
3x 4
y
x 2
−
=
−
. Tìm điểm thuộc (C) cách đều 2
đường tiệm cận .
2).Tìm các giá trị của m để phương trình sau có 2 nghiệm trên đoạn
2
0;
3
π
.
sin
6
x + cos
6
x = m ( sin
4
x + cos
4
x )
Câu II (2 điểm):
1).Tìm các nghiệm trên
( )
0;2
π
của phương trình :
sin3x sin x
sin 2x cos2x
1 cos2x
−
= +
−
2).Giải phương trình:
3 3
x 34 x 3 1
+ − − =
Câu III (1 điểm): Cho chóp S.ABC có đáy ABC là tam giác vuông tại C, AC = 2, BC = 4. Cạnh bên SA
= 5 vuông góc với đáy. Gọi D là trung điểm cạnh AB.
1).Tính góc giữa AC và SD; 2).Tính khoảng cách giữa BC và SD.
Câu IV (2 điểm):
1).Tính tích phân: I =
2
0
sin x cosx 1
dx
sin x 2cosx 3
π
− +
+ +
∫
2). a.Giải phương trình sau trên tập số phức C : | z | - iz = 1 – 2i
b.Hãy xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thoả mãn :
1 < | z – 1 | < 2
PHẦN TỰ CHỌN: Thí sinh chọn câu V.a hoặc câu V.b
Câu V.a.( 2 điểm ) Theo chương trình Chuẩn
1).Viết phương trình các cạnh của tam giác ABC biết B(2; -1), đường cao và đường phân giác trong qua
đỉnh A, C lần lượt là : (d
1
) : 3x – 4y + 27 = 0 và (d
2
) : x + 2y – 5 = 0
2). Trong không gian với hệ tọa độ Oxyz, cho các đường thẳng:
( )
1
x 1
d : y 4 2t
z 3 t
=
= − +
= +
và
( )
2
x 3u
d : y 3 2u
z 2
= −
= +
= −
a. Chứng minh rằng (d
1
) và (d
2
) chéo nhau.
b. Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d
1
) và (d
2
).
3). Một hộp chứa 30 bi trắng, 7 bi đỏ và 15 bi xanh . Một hộp khác chứa 10 bi trắng, 6 bi đỏ và 9 bi xanh
. Lấy ngẫu nhiên từ mỗi hộp bi một viên bi . Tìm xác suất để 2 bi lấy ra cùng màu .
Câu V.b.( 2 điểm ) Theo chương trình Nâng cao
1).Trong mặt phẳng với hệ tọa độ Đềcác vuông góc Oxy , xét tam giác ABC vuông tại A, phương trình
đường thẳng BC là :
3
x – y -
3
= 0, các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội
tiếptam giác ABC bằng 2 . Tìm tọa độ trọng tâm G của tam giác ABC .
2).Cho đường thẳng (d) :
x t
y 1
z t
=
= −
= −
và 2 mp (P) : x + 2y + 2z + 3 = 0 và (Q) : x + 2y + 2z + 7 = 0
a. Viết phương trình hình chiếu của (d) trên (P)
b. Lập ph.trình mặt cầu có tâm I thuộc đường thẳng (d) và tiếp xúc với hai mặt phẳng (P) và (Q)
3). Chọn ngẫu nhiên 5 con bài trong bộ tú lơ khơ . Tính xác suất sao cho trong 5 quân bài đó có đúng
3quân bài thuộc 1 bộ ( ví dụ 3 con K )
Hoàng Anh Chung. GV Toán THPT Mai Sơn. 0988.049.414; 01672.105.819
1
Chúc thành công!
ĐỀ THI KHẢO SÁT
MÔN: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
I.PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu 1 (2,0 điểm)
Cho hàm số
12
2
−
+
=
x
x
y
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho.
2. Tìm những điểm trên đồ thị (C) cách đều hai điểm A(2 , 0) và B(0 , 2)
Câu 2 (2,0 điểm)
1.Giải phương trình :
0
10
5cos3
6
3cos5 =
−+
+
ππ
xx
2.Giải bất phương trình :
0
52
232
2
2
≥
−
−−
xx
xx
Câu III (1,0 điểm)
Cho hình phẳng (H) giới hạn bởi các đường :
.2;0; +−=== xyxyx
Tính thể tích khối tròn xoay tạo thành khi cho hình (H) quay quanh trục Oy
Câu IV (1,0 điểm)
Cho lăng trụ tam giác đều ABC.A
1
B
1
C
1
cạnh đáy bằng a, cạnh bên bằng
2a
.
Tính thể tích khối lăng trụ và góc giữa AC
1
và đường cao AH của mp(ABC)
Câu V (1,0 điểm)
Cho :
65
222
=++ cba
. Tìm giá trị lớn nhất và nhỏ nhất của hàm số :
∈++= )
2
,0(2sin.sin.2
π
xxcxbay
II. PHẦN RIÊNG (3,0 điểm)
Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2)
1. Theo chương trình chuẩn
Câu VI.a (2,0 điểm)
1.Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) :
0124
22
=−−−+ yxyx
và đường thẳng d :
01 =++ yx
. Tìm những điểm M thuộc đường thẳng d sao cho từ điểm M kẻ
được
đến (C) hai tiếp tuyến hợp với nhau góc 90
0
2. Trong không gian với hệ tọa độ Oxyz. Cho mặt cầu (S) :
( ) ( )
921
2
2
2
=+++− zyx
.
Lập phương trình mặt phẳng (P) vuông góc với đường thẳng a :
22
1
1 −
=
−
=
zyx
và cắt mặt cầu (S)
theo đường tròn có bán kính bằng 2 .
CâuVII.a (1,0 điểm)
Có bao nhiêu số tự nhiên gồm bốn chữ số khác nhau mà mỗi số đều lớn hơn 2010.
2.Theo chương trình nâng cao
CâuVI.b (2,0 điểm)
1.Trong mặt phẳng với hệ tọa độ Oxy. Cho elip (E) :
044
22
=−+ yx
.Tìm những điểm N trên elip (E)
sao cho :
0
21
60
ˆ
=FNF
( F
1
, F
2
là hai tiêu điểm của elip (E) )
2.Trong Không gian với hệ tọa độ Oxyz.Cho đường thẳng
=
=
=
∆
1
2:
z
ty
tx
và điểm
)1,0,1( −A
Tìm tọa độ các điểm E và F thuộc đường thẳng
∆
để tam giác AEF là tam giác đều.
Câu VII.b (1,0 điểm)
Tìm số phức z thỏa mãn :
=−
+−=−
4)(
22
22
zz
izziz
Hoàng Anh Chung. GV Toán THPT Mai Sơn. 0988.049.414; 01672.105.819
2
Chúc thành công!
ĐỀ THI KHẢO SÁT
MÔN: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu I (2 điểm)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
2 1
1
x
y
x
−
=
−
2. Viết phương trình tiếp tuyến của (C), biết khoảng cách từ điểm I(1;2) đến tiếp tuyến bằng
2
.
Câu II (2 điểm)
1) Giải phương trình
2
17
sin(2 ) 16 2 3.sin cos 20sin ( )
2 2 12
x
x x x
π π
+ + = + +
2) Giải hệ phương trình :
4 3 2 2
3 2
1
1
x x y x y
x y x xy
− + =
− + = −
Câu III (1 điểm): Tính tích phân: I =
4
0
tan .ln(cos )
cos
x x
dx
x
π
∫
Câu IV (1 điểm):
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A với AB = a, các mặt bên là các tam giác cân
tại đỉnh S. Hai mặt phẳng (SAB) và (SAC) cùng tạo với mặt phẳng đáy góc 60
0
. Tính côsin của góc giữa hai
mặt phẳng (SAB) và (SBC) .
Câu V: (1 điểm) Cho a,b,c là các số dương thỏa mãn a + b + c = 1. Chứng minh rằng:
3
a b b c c a
ab c bc a ca b
+ + +
+ + ≥
+ + +
PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (1 điểm)
Trong mặt phẳng tọa độ Oxy cho điểm A(1;1) và đường thẳng
∆
: 2x + 3y + 4 = 0.
Tìm tọa độ điểm B thuộc đường thẳng
∆
sao cho đường thẳng AB và
∆
hợp với nhau góc 45
0
.
Câu VII.a (1 điểm): Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;-1;1)
và hai đường thẳng
1
( ) :
1 2 3
x y z
d
+
= =
− −
và
1 4
( '):
1 2 5
x y z
d
− −
= =
Chứng minh: điểm M, (d), (d’) cùng nằm trên một mặt phẳng. Viết phương trình mặt phẳng đó.
Câu VIII.a (1 điểm)
Giải phương trình:
2 2
2
(24 1)
(24 1) (24 1)
log log
x
x x x x
Log x x x
+
+ +
+ =
Theo chương trình Nâng cao
Câu VI.b (1 điểm)
Trong mặt phẳng tọa độ Oxy cho đường tròn
2 2
( ) : 1C x y+ =
, đường thẳng
( ) : 0d x y m+ + =
. Tìm
m
để
( )C
cắt
( )d
tại A và B sao cho diện tích tam giác ABO lớn nhất.
Câu VII.b (1 điểm)
Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng:
(P): 2x – y + z + 1 = 0, (Q): x – y + 2z + 3 = 0, (R): x + 2y – 3z + 1 = 0
và đường thẳng
1
∆
:
2
2
−
−x
=
1
1+y
=
3
z
. Gọi
2
∆
là giao tuyến của (P) và (Q).
Viết phương trình đường thẳng (d) vuông góc với (R) và cắt cả hai đường thẳng
1
∆
,
2
∆
.
Câu VIII.b (1 điểm) Giải bất phương trình: log
x
( log
3
( 9
x
– 72 ))
≤
1
Hoàng Anh Chung. GV Toán THPT Mai Sơn. 0988.049.414; 01672.105.819
3
Chúc thành công!
ĐỀ THI KHẢO SÁT - MÔN: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 ĐIỂM )
Câu I: (2 điểm) Cho hàm số
2
32
−
−
=
x
x
y
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Cho M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C) tại A và B.
Gọi I là giao điểm của các đường tiệm cận. Tìm toạ độ điểm M sao cho đường tròn ngoại tiếp tam
giác IAB có diện tích nhỏ nhất.
Câu II (2 điểm) 1. Giải phương trình
−=−+
24
cos2sin
2
cossin
2
sin1
22
x
x
x
x
x
π
2. Giải bất phương trình
−+−>−+− xxxxx
2
1
log)2(22)144(log
2
1
2
2
Câu III (1 điểm) Tính tích phân
∫
+
+
=
e
dxxx
xx
x
I
1
2
ln3
ln1
ln
Câu IV (1 điểm) Cho hình chóp S.ABC có AB = AC = a. BC =
2
a
.
3aSA =
,
= =
0
30SAB SAC
. Tính thể
tích khối chóp S.ABC.
Câu V (1 điểm) Cho a, b, c là ba số dương thoả mãn : a + b + c =
3
4
. Tìm giá trị nhỏ nhất của biểu thức
333
3
1
3
1
3
1
accbba
P
+
+
+
+
+
=
PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm một trong hai phần: Phần 1 hoặc phần 2
Phần 1:(Theo chương trình Chuẩn)
Câu VIa (2 điểm)
1. Trong mặt phẳng với hệ trục toạ độ Oxy cho cho hai đường thẳng
052:
1
=+− yxd
. d
2
: 3x +6y – 7 =
0. Lập phương trình đường thẳng đi qua điểm P( 2; -1) sao cho đường thẳng đó cắt hai đường thẳng d
1
và d
2
tạo ra một tam giác cân có đỉnh là giao điểm của hai đường thẳng d
1
, d
2
.
2. Trong không gian với hệ trục toạ độ Oxyz cho 4 điểm A( 1; -1; 2), B( 1; 3; 2), C( 4; 3; 2), D( 4; -1; 2) và
mặt phẳng (P) có phương trình:
02 =−++ zyx
. Gọi A’là hình chiêú của A lên mặt phẳng Oxy. ( S) là mặt
cầu đi qua 4 điểm A’, B, C, D. Xác định toạ độ tâm và bán kính của đường tròn (C) là giao của (P) và (S).
Câu VIIa (1 điểm) Tìm số nguyên dương n biết:
2 3 2 2 1 2 1
2 1 2 1 2 1 2 1
2 3.2.2 ( 1) ( 1)2 2 (2 1)2 40200
− − +
+ + + +
− + + − − + − + = −
k k k n n
n n n n
C C k k C n n C
Phần 2: (Theo chương trình Nâng cao)
Câu VIb (2 điểm)
1.Trong mặt phẳng với hệ trục toạ độ Oxy cho Hypebol (H) có phương trình:
1
916
22
=−
yx
. Viết phương trình
chính tắc của elip (E) có tiêu điểm trùng với tiêu điểm của (H) và ngoại tiếp hình chữ nhật cơ sở của (H).
2. Trong không gian với hệ trục toạ độ Oxyz cho
( )
052: =+−+ zyxP
và đường thẳng
31
2
3
:)( −=+=
+
zy
x
d
, điểm A( -2; 3; 4). Gọi
∆
là đường thẳng nằm trên (P) đi qua giao điểm của ( d) và
(P) đồng thời vuông góc với d. Tìm trên
∆
điểm M sao cho khoảng cách AM ngắn nhất.
Câu VIIb (1 điểm): Giải hệ phương trình
+=++
=+
+−+
113
2.322
2
3213
xxyx
xyyx
Hoàng Anh Chung. GV Toán THPT Mai Sơn. 0988.049.414; 01672.105.819
4
Chúc thành công!
ĐỀ THI KHẢO SÁT
MÔN: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
PHẦN CHUNG CHO TẤT CẢ THÍ SINH(7,0 điểm)
Câu I ( 2,0 điểm): Cho hàm số
2 4
1
x
y
x
−
=
+
.
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Tìm trên đồ thị (C) hai điểm đối xứng nhau qua đường thẳng MN biết M(-3; 0) và N(-1; -1).
Câu II (2,0 điểm):
1. Giải phương trình:
2
2
1 3 2
1 3
x x
x x
= + + −
+ + −
2. Giải phương trình:
2 3 4 2 3 4
sin sin sin sin cos cos cos cosx x x x x x x x+ + + = + + +
Câu III (1,0 điểm): Tính tích phân:
2
1
ln
ln
1 ln
e
x
I x dx
x x
= +
÷
+
∫
Câu IV (1,0 điểm):Cho hai hình chóp S.ABCD và S’.ABCD có chung đáy là hình vuông ABCD cạnh a.
Hai đỉnh S và S’ nằm về cùng một phía đối với mặt phẳng (ABCD), có hình chiếu vuông góc lên đáy lần
lượt là trung điểm H của AD và trung điểm K của BC. Tính thể tích phần chung của hai hình chóp, biết rằng
SH = S’K =h.
Câu V(1,0 điểm): Cho x, y, z là những số dương thoả mãn xyz = 1. Tìm giá trị nhỏ nhất của biểu thức:
9 9 9 9 9 9
6 3 3 6 6 3 3 6 6 3 3 6
x y y z z x
P
x x y y y y z z z z x x
+ + +
= + +
+ + + + + +
PHẦN RIÊNG(3,0 điểm)
Thí sinh chỉ được làm một trong hai phần(phần A hoặc phần B)
A. Theo chương trình chuẩn.
Câu VI.a (2,0 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) có phương trình:
2 2
4 3 4 0x y x+ + − =
.
Tia Oy cắt (C) tại A. Lập phương trình đường tròn (C’), bán kính R’ = 2 và tiếp xúc ngoài với (C) tại A.
2. Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2; -1), B(7; -2; 3) và đường thẳng d có phương
trình
2 3
2 (t R)
4 2
x t
y t
z t
= +
= − ∈
= +
. Tìm trên d những điểm M sao cho tổng khoảng cách từ M đến A và B là nhỏ nhất.
Câu VII.a (1,0 điểm): Giải phương trình trong tập số phức:
2
0z z+ =
B. Theo chương trình nâng cao.
Câu VI.b (2,0 điểm):
1. Trong mặt phẳng với hệ toạ độ Oxy, cho hình chữ nhật ABCD có cạnh AB: x -2y -1 =0, đường chéo BD:
x- 7y +14 = 0 và đường chéo AC đi qua điểm M(2;1). Tìm toạ độ các đỉnh của hình chữ nhật.
2. Trong không gian với hệ toạ độ vuông góc Oxyz, cho hai đường thẳng:
2 1 0 3 3 0
( ) ; ( ')
1 0 2 1 0
x y x y z
x y z x y
+ + = + − + =
∆ ∆
− + − = − + =
.Chứng minh rằng hai đường thẳng (
∆
) và (
'∆
) cắt nhau.
Viết phương trình chính tắc của cặp đường thẳng phân giác của các góc tạo bởi (
∆
) và (
'∆
).
Câu VII.b (1,0 điểm): Giải hệ phương trình:
2 2 2
3 3 3
log 3 log log
log 12 log log
x y y x
x x y y
+ = +
+ = +
.
Hoàng Anh Chung. GV Toán THPT Mai Sơn. 0988.049.414; 01672.105.819
5
Chúc thành công!
ĐỀ THI KHẢO SÁT
MÔN: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm).
Câu I: (2,0 điểm). Cho hàm số y = x
3
– 3mx
2
+ (m-1)x + 2.
1. Chứng minh rằng hàm số có cực trị với mọi giá trị của m.
2. Xác định m để hàm số có cực tiểu tại x = 2. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
trong trường hợp đó.
Câu II: (2,0 điểm). 1. Giải phương trình sau: (1 – tanx) (1+ sin2x) = 1 + tanx.
2. Giải bất phương trình:
2
51 2x x
1
1 x
− −
<
−
.
Câu III: (1,0 điểm). Tính:
2
2
2
2
0
x
A dx
1 x
=
−
∫
.
Câu IV: (1,0 điểm). Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA
vuông góc với mp (ABCD) và SA = a; M là trung điểm cạnh SD.
a) Mặt phẳng (α) đi qua OM và vuông góc với mặt phẳng (ABCD) cắt hình chóp SABCD theo thiết
diện là hình gì? Tính diện tích thiết diện theo a.
b) Gọi H là trung điểm của CM; I là điểm thay đổi trên SD. Chứng minh OH ⊥ (SCD); và hình chiếu
của O trên CI thuộc đường tròn cố định.
Câu V: (1,0 điểm). Trong mp (Oxy) cho đường thẳng (∆) có phương trình: x – 2y – 2 = 0 và hai
điểm A (-1;2); B (3;4). Tìm điểm M
∈
(∆) sao cho 2MA
2
+ MB
2
có giá trị nhỏ nhất.
PHẦN RIÊNG (3,0 điểm): Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B).
A. Theo chương trình chuẩn.
Câu VIa: (2,0 điểm). Cho đường tròn (C): x
2
+ y
2
– 2x – 6y + 6 = 0 và điểm M (2;4)
a) Viết phương trình đường thẳng đi qua M cắt đường tròn tại 2 điểm A và B, sao cho M là trung điểm
của AB.
b) Viết phương trình các tiếp tuyến của đường tròn, biết tiếp tuyến có hệ số góc k = -1.
Câu VIIa: (1,0 điểm). Tìm phần thực và phần ảo của số phức sau:
1 + (1 + i) + (1 + i)
2
+ (1 + i)
3
+ … + (1 + i)
20
B. Theo chương trình nâng cao.
Câu VIb: (2,0 điểm). Trong không gian cho điểm A(-4;-2;4) và đường thẳng (d) có phương trình: x =
-3 + 2t; y = 1 - t; z = -1 + 4t; t ∈ R. Viết phương trình đường thẳng (∆) đi qua A; cắt và vuông góc với (d).
Câu VIIb: (1,0 điểm). Tính thể tích khối tròn xoay tạo thành khi quay quanh trục hoành hình phẳng được
giới hạn bởi các đường: y = lnx; y = 0; x = 2.
Hoàng Anh Chung. GV Toán THPT Mai Sơn. 0988.049.414; 01672.105.819
6
Chúc thành công!
ĐỀ THI KHẢO SÁT
MÔN: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2 điểm) Cho hàm số :
2
1
x
y
x
−
=
−
(C)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C).
b) Chứng minh rằng: với mọi giá trị của m, đường thẳng
d
:
y x m= − +
luôn cắt đồ thị (C) tại hai
điểm A,B phân biệt. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB.
Câu II: (2 điểm)
a) Giải bất phương trình: 9
2 2 2
2 1 2 2 1
34.15 25 0
x x x x x x− + − − +
− + >
b) Tìm
a
để hệ phương trình sau có nghiệm :
x+1 1
2 1
y a
x y a
+ − =
+ = +
Câu III: (2 điểm)
a) Giải phương trình:
2 2
1 8 1
2cos cos ( ) sin 2 3cos( ) sin
3 3 2 3
x x x x x
π
π
+ + = + + + +
b) Tính :
1
3 1
0
x
e dx
+
∫
Câu IV: (1 điểm)
Trong không gian với hệ toạ độ Oxyz ,cho điểm I(1;5;0) và hai đường thẳng
1
: 4
1 2
x t
y t
z t
=
∆ = −
= − +
;
2
2
:
1 3 3
x y z−
∆ = =
− −
Viết phương trình tham số của đường thẳng d đi qua điểm I và cắt cả hai đường thẳng
1
∆
và
2
∆
Viết phương trình mặt phẳng(
α
) qua điểm I , song song với
1
∆
và
2
∆
PHẦN RIÊNG: Thí sinh chỉ được làm 1 trong 2 câu V.a hoặc V.b
Câu V.a DÀNH CHO HỌC SINH HỌC THEO CHƯƠNG TRÌNH CHUẨN (3 điểm)
1)Trong không gian , cho hệ trục toạ độ Đề Các vuông góc Oxyz
Tìm số các điểm có 3 toạ độ khác nhau từng đôi một,biết rằng các toạ độ đó đều là các số
tự nhiên nhỏ hơn 10. Trên mỗi mặt phẳng toạ độ có bao nhiêu điểm như vậy ?
2) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng đường cao, bằng a.
Tính khoảng cách giữa hai đường thẳng SC và AB
3) Giải phương trình:
2
log
2
3 1
x
x= −
Câu V.b: DÀNH CHO HỌC SINH HỌC THEO CHƯƠNG TRÌNH NÂNG CAO (3 điểm)
1) Chứng minh rằng phương trình :
5
5 5 0x x− − =
có nghiệm duy nhất
2)Viết phương trình các tiếp tuyến của e líp (E):
2 2
1
16 9
x y
+ =
, biết tiếp tuyến đi qua điểmA(4;3)
3) Có bao nhiêu số tự nhiên có 7 chữ số khác nhau từng đôi một , trong đó chữ số 2 đứng liền giữa hai chữ
số 1 và 3.
Hoàng Anh Chung. GV Toán THPT Mai Sơn. 0988.049.414; 01672.105.819
7
Chúc thành công!
ĐỀ THI KHẢO SÁT
MÔN: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm):
Câu I: (2 điểm) Cho hàm số
2 2
1
x
y
x
−
=
+
(C)
1. Khảo sát hàm số.
2. Tìm m để đường thẳng d: y = 2x + m cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB =
5
.
Câu II: (2 điểm)
1. Giải phương trình:
2cos5 .cos3 sin cos8 x x x x+ =
, (x ∈ R)
2. Giải hệ phương trình:
2
5 3
x y x y y
x y
+ + − =
+ =
(x, y∈ R)
Câu III: (1 điểm) Tính diện tích hình phẳng giới hạn bởi các đường
1
x
y e= +
,trục hoành, x =
ln3 và x = ln8.
Câu IV: (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi ; hai đường chéo AC =
2 3a
,
BD = 2a và cắt nhau tại O; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD).
Biết khoảng cách từ điểm O đến mặt phẳng (SAB) bằng
3
4
a
, tính thể tích khối chóp S.ABCD theo
a.
Câu V: (1 điểm) Cho x,y ∈ R và x, y > 1. Tìm giá trị nhỏ nhất của
( ) ( )
3 3 2 2
( 1)( 1)
x y x y
P
x y
+ − +
=
− −
PHẦN RIÊNG (3 điểm) : Thí sinh chỉ được làm một trong hai phần ( phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (2 điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x
2
+ y
2
- 2x - 2my + m
2
- 24 = 0 có tâm
I và đường thẳng ∆: mx + 4y = 0. Tìm m biết đường thẳng ∆ cắt đường tròn (C) tại hai điểm
phân biệt A,B thỏa mãn diện tích tam giác IAB bằng 12.
2. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d
1
:
1 1 1
2 1 1
x y z+ − −
= =
−
;
d
2
:
1 2 1
1 1 2
x y z− − +
= =
và mặt phẳng (P): x - y - 2z + 3 = 0. Viết phương trình chính tắc của
đường thẳng ∆, biết ∆ nằm trên mặt phẳng (P) và ∆ cắt hai đường thẳng d
1
, d
2
.
Câu VII.a (1 điểm) Giải bất phương trình
2
2
log
2log
2 20 0
x
x
x+ − ≤
2
B. Theo chương trình Nâng cao
Câu VI.b (2 điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x - y - 2 = 0,
phương trình cạnh AC: x + 2y - 5 = 0. Biết trọng tâm của tam giác G(3; 2). Viết phương trình
cạnh BC.
3. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ :
1 3
1 1 4
x y z− −
= =
và điểm
M(0 ; - 2 ; 0). Viết phương trình mặt phẳng (P) đi qua điểm M song song với đường thẳng ∆
đồng thời khoảng cách giữa đường thẳng ∆ và mặt phẳng (P) bằng 4.
Câu VII.b (1 điểm) Giải phương trình nghiệm phức :
25
8 6z i
z
+ = −
Hoàng Anh Chung. GV Toán THPT Mai Sơn. 0988.049.414; 01672.105.819
8
Chúc thành công!
ĐỀ THI KHẢO SÁT
MÔN: TOÁN
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
Câu I: (2,0 điểm)
Cho hàm số
2 4
( )
1
x
y C
x
−
=
+
.
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Gọi M là một điểm bất kì trên đồ thị (C), tiếp tuyến tại M cắt các tiệm cận của (C) tại A, B.
CMR diện tích tam giác ABI (I là giao của hai tiệm cận) không phụ thuộc vào vị trí của M.
Câu II: (3,0 điểm)
1. Giải hệ phương trình:
2 2
2
2
1
xy
x y
x y
x y x y
+ + =
+
+ = −
2. Giải phương trình:
2 2
2sin 2sin tanx
4
x x
π
− = −
÷
.
3. Giải bất phương trình:
( ) ( )
2 2
1 5 3 1
3 5
log log 1 log log 1x x x x+ + > + −
Câu III: (2,0 điểm)
1. Tính tích phân:
2
3
1
ln 2 ln
e
x x
I dx
x
+
=
∫
.
2. Cho tập
{ }
0;1;2;3;4;5A
=
, từ A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác
nhau, trong đó nhất thiết phải có chữ số 0 và 3.
Câu IV: (2,0 điểm)
1. Viết phương trình đường tròn đi qua hai điểm A(2; 5), B(4;1) và tiếp xúc với đường thẳng có
phương trình 3x – y + 9 = 0.
2. Cho hình lăng trụ tam giác ABC.A’B’C’ với A’.ABC là hình chóp tam giác đều cạnh đáy AB
= a; cạnh bên AA’ = b. Gọi
α
là góc giữa hai mp(ABC) và mp(A’BC). Tính
tan
α
và thể
tích chóp A’.BCC’B’.
Câu V: (1,0 điểm)
Cho
0, 0, 1x y x y
> > + =
. Tìm giá trị nhỏ nhất của biểu thức
1 1
x y
T
x y
= +
− −
Hoàng Anh Chung. GV Toán THPT Mai Sơn. 0988.049.414; 01672.105.819
9
Chỳc thnh cụng!
THI KHO ST
MễN: TON
Thi gian lm bi: 180 phỳt (khụng k thi gian giao )
PHN CHUNG CHO TT C TH SINH (7,0 im)
Cõu I:(2 im)
Cho hm s :
1x2
1x
y
+
+
=
(C)
1. Kho sỏt v v th hm s.
2. Vit phng trỡnh tip tuyn vi (C), bit tip tuyn ú i qua giao im ca ng tim cn v trc Ox.
Cõu II:(2 im)
1. Gii phng trỡnh:
sin 2 cos 2
cot
cos sin
x x
tgx x
x x
+ =
2. Gii phng trỡnh:
( )
1
xlog1
4
3logxlog2
3
x93
=
Cõu III: (2 im)
1.Tính nguyên hàm:
sin 2
( )
3 4sin 2
xdx
F x
x cos x
=
+
2.Giải bất phơng trình:
1 2 3x x x
Cõu IV: (1 im)
Trong mt phng Oxy cho tam giỏc ABC cú trng tõm G(2, 0) bit phng trỡnh cỏc cnh AB, AC theo
th t l 4x + y + 14 = 0;
02y5x2 =+
. Tỡm ta cỏc nh A, B, C.
PHN RIấNG (3 im)
Chú ý:Thí sinh chỉ đợc chọn bài làm ở một phần nếu làm cả hai sẽ không đợc chấm
A. Theo chng trỡnh chun
Cõu Va :
1. Tỡm h s ca x
8
trong khai trin (x
2
+ 2)
n
, bit:
49CC8A
1
n
2
n
3
n
=+
.
2. Cho ng trũn (C): x
2
+ y
2
2x + 4y + 2 = 0.
Vit phng trỡnh ng trũn (C') tõm M(5, 1) bit (C') ct (C) ti cỏc im A, B sao cho
3AB =
.
B. Theo chng trỡnh Nõng cao
Cõu Vb:
1. Gii phng trỡnh :
( ) ( )
21x2log1xlog
3
2
3
=+
2. Cho hỡnh chúp SABCD cú ỏy ABCD l hỡnh vuụng tõm O, SA vuụng gúc vi đáy hỡnh chúp.
Cho AB = a, SA = a
2
. Gi H v K ln lt l hỡnh chiu vuông góc ca A lờn SB, SD.
Chng minh SC (AHK) v tớnh th tớch khối chúp OAHK.
Hong Anh Chung. GV Toỏn THPT Mai Sn. 0988.049.414; 01672.105.819
10