MU
.
C LU
.
C
1 Ma trˆa
.
n - D
-
i
.
nh th´u
.
c 3
1.1 Ma trˆa
.
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 D
-
i
.
nh nghı
˜
a va` ca´c kha´i niˆe
.
m . . . . . . . . . . . . . . . 3
1.1.2 Ca´c phe´p toa´n trˆen ma trˆa
.
n . . . . . . . . . . . . . . . 5
1.1.3 Ma trˆa
.
n d¯ˆo
´
i x´u
.
ng va` ma trˆa
.
n pha
’
n x´u
.
ng. . . . . . . . 8
1.1.4 D
-
a th´u
.
c ma trˆa
.
n. . . . . . . . . . . . . . . . . . . . . . 9
1.2 D
-
i
.
nh th´u
.
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Phe´p thˆe
´
- Nghi
.
ch thˆe
´
. . . . . . . . . . . . . . . . . . . 10
1.2.2 D
-
i
.
nh th´u
.
c. . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Ma trˆa
.
n kha
’
nghi
.
ch. . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Ha
.
ng cu
˙’
a ma trˆa
.
n . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Hˆe
.
phu
.
o
.
ng trı`nh tuyˆe
´
n tı´nh 31
2.1 Hˆe
.
phu
.
o
.
ng trı`nh tuyˆe
´
n tı´nh tˆo
’
ng qua´t. . . . . . . . . . . . . 31
2.1.1 D
-
i
.
nh nghı
˜
a. . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.2 Gia
’
i hˆe
.
phu
.
o
.
ng trı`nh tuyˆe
´
n tı´nh. . . . . . . . . . . . . 33
2.2 Hˆe
.
phu
.
o
.
ng trı`nh tuyˆe
´
n tı´nh thuˆa
`
n nhˆa
´
t. . . . . . . . . . . . . 40
2.2.1 D
-
i
.
nh nghı
˜
a va` tı´nh chˆa
´
t. . . . . . . . . . . . . . . . . . 40
2.2.2 Hˆe
.
nghiˆe
.
m co
.
ba
’
n cu
’
a hˆe
.
phu
.
o
.
ng trı`nh tuyˆe
´
n tı´nh thuˆa
`
n
nhˆa
´
t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.3 Cˆa
´
u tru´c nghiˆe
.
m cu
’
a hˆe
.
phu
.
o
.
ng trı`nh tuyˆe
´
n tı´nh tˆo
’
ng
qua´t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3 Khˆong gian vector 47
3.1 Kha´i niˆe
.
m vˆe
`
khˆong gian vector . . . . . . . . . . . . . . . . . 47
3.1.1 D
-
i
.
nh nghı
˜
a khˆong gian vector . . . . . . . . . . . . . . 47
3.1.2 V`ai v´ı du
.
. . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.3 Mˆo
.
t sˆo
´
tı´nh chˆa
´
t d¯o
.
n gia
’
n cu
’
a khˆong gian vector. . . . 49
3.2 Khˆong gian vector con. . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Su
.
.
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh v`a d¯ˆo
.
c lˆa
.
p tuyˆe
´
n t´ınh. . . . . . . . 51
1
2
MU
.
C LU
.
C
3.3.1 Tˆo
’
ho
.
.
p tuyˆe
´
n tı´nh va` biˆe
’
u thi
.
tuyˆe
´
n tı´nh. . . . . . . . 51
3.3.2 D
-
ˆo
.
c lˆa
.
p tuyˆe
´
n t´ınh v`a phu
.
thuˆo
.
c tuyˆe
´
n t´ınh. . . . . . . 52
3.3.3 V`ai t´ınh chˆa
´
t vˆe
`
hˆe
.
phu
.
thuˆo
.
c tuyˆe
´
n t´ınh v`a hˆe
.
d¯ˆo
.
c lˆa
.
p
tuyˆe
´
n t´ınh. . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Ha
.
ng cu
˙’
a mˆo
.
t hˆe
.
vector. . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Hˆe
.
con d¯ˆo
.
c lˆa
.
p tuyˆe
´
n t´ınh tˆo
´
i d¯a
.
i. . . . . . . . . . . . . 55
3.4.2 Ha
.
ng cu
˙’
a mˆo
.
t hˆe
.
vector. . . . . . . . . . . . . . . . . . 56
3.4.3 C´ac hˆe
.
vector trong K
n
. . . . . . . . . . . . . . . . . . 56
3.5 Co
.
so
.
˙’
- Sˆo
´
chiˆe
`
u - To
.
a d¯ˆo
.
cu
˙’
a khˆong gian vector. . . . . . . . 57
3.5.1 Co
.
so
.
˙’
cu
˙’
a khˆong gian vector. . . . . . . . . . . . . . . 57
3.5.2 Hˆe
.
sinh cu
˙’
a mˆo
.
t khˆong gian vector. . . . . . . . . . . . 58
3.5.3 Sˆo
´
chiˆe
`
u. Khˆong gian h˜u
.
u ha
.
n v`a vˆo ha
.
n chiˆe
`
u. . . . . 59
3.5.4 To
.
a d¯ˆo
.
cu
˙’
a mˆo
.
t vector trong khˆong gian n chiˆe
`
u. . . . 60
4 Da
.
ng to`an phu
.
o
.
ng 66
4.1
´
Anh xa
.
song tuyˆe
´
n t´ınh, da
.
ng song tuyˆe
´
n t´ınh. . . . . . . . . 66
4.1.1 D
-
i
.
nh ngh˜ıa. . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Ma trˆa
.
n cu
˙’
a da
.
ng song tuyˆe
´
n t´ınh. . . . . . . . . . . . 67
4.2 Da
.
ng to`an phu
.
o
.
ng. . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 D
-
i
.
nh ngh˜ıa. . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 D
-
u
.
a da
.
ng to`an phu
.
o
.
ng vˆe
`
da
.
ng ch´ınh tˇa
´
c. . . . . . . . 69
4.2.3 Da
.
ng chuˆa
˙’
n tˇa
´
c cu
˙’
a da
.
ng to`an phu
.
o
.
ng. . . . . . . . . 76
4.2.4 Da
.
ng to`an phu
.
o
.
ng x´ac d¯i
.
nh ˆam, x´ac d¯i
.
nh du
.
o
.
ng, luˆa
.
t
qu´an t´ınh. . . . . . . . . . . . . . . . . . . . . . . . . . 76
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
Chu
.
o
.
ng 1
Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
1.1 Ma trˆa
.
n
1.1.1 D
-
i
.
nh nghı
˜
a va` ca´c kha´i niˆe
.
m
Cho K la` mˆo
.
t tru
.
`o
.
ng.
D
-
i
.
nh nghı
˜
a 1.1. Cho m, n la` hai sˆo
´
nguyˆen du
.
o
.
ng. Ta go
.
i mˆo
.
t ma trˆa
.
n A
cˆa
´
p m × n la` mˆo
.
t ba
’
ng gˆo
`
m m.n phˆa
`
n tu
.
’
a
ij
∈ K (i = 1, m; j = 1, n) d¯u
.
o
.
.
c
s˘a
´
p xˆe
´
p tha`nh m do`ng va` n cˆo
.
t nhu
.
sau:
A =
a
11
a
12
. . . a
1n
a
21
a
22
. . . a
2n
··· ··· ··· ···
a
m1
a
m2
. . . a
mn
Kı´ hiˆe
.
u: A = (a
ij
)
m×n
.
Ca´c phˆa
`
n tu
.
’
o
.
’
do`ng th´u
.
i va` cˆo
.
t th´u
.
j d¯u
.
o
.
.
c go
.
i la` phˆa
`
n tu
.
’
a
ij
. Ca´c phˆa
`
n
tu
.
’
a
i1
, a
i2
, . . . , a
in
d¯u
.
o
.
.
c go
.
i la` ca´c phˆa
`
n tu
.
’
thuˆo
.
c do`ng th´u
.
i. Ca´c phˆa
`
n tu
.
’
a
1j
, a
2j
, . . . , a
mj
d¯u
.
o
.
.
c go
.
i la` ca´c phˆa
`
n tu
.
’
thuˆo
.
c cˆo
.
t th´u
.
j.
Vı´ du
.
:
−1 3 6 0
6 −2 1 8
2 2 5 1
la` ma trˆa
.
n cˆa
´
p 3 × 4 (3 ha`ng, 4 cˆo
.
t)
Ca´c kha´i niˆe
.
m kha´c:
1. Ma trˆa
.
n khˆong. Mˆo
.
t ma trˆa
.
n cˆa
´
p m× n d¯u
.
o
.
.
c go
.
i la` ma trˆa
.
n khˆong nˆe
´
u
mo
.
i phˆa
`
n tu
.
’
d¯ˆe
`
u b˘a
`
ng 0.
2. Ma trˆa
.
n vuˆong. Mˆo
.
t ma trˆa
.
n A = (a
ij
)
m×n
d¯u
.
o
.
.
c go
.
i la` ma trˆa
.
n vuˆong
nˆe
´
u m = n. Lu´c d¯o´ ta go
.
i A la` ma trˆa
.
n vuˆong cˆa
´
p n, kı´ hiˆe
.
u A = (a
ij
)
n
.
3
4 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
3. Cho ma trˆa
.
n vuˆong
A = (a
ij
)
n
=
a
11
a
12
. . . a
1n
a
21
a
22
. . . a
2n
··· ··· ··· ···
a
n1
a
n2
. . . a
nn
Ca´c phˆa
`
n tu
.
’
a
11
, a
22
, . . . , a
nn
go
.
i la` ca´c phˆa
`
n tu
.
’
thuˆo
.
c d¯u
.
`o
.
ng che´o chı´nh.
Ca´c phˆa
`
n tu
.
’
a
1n
, a
2n−1
, . . . , a
n1
go
.
i la` ca´c phˆa
`
n tu
.
’
n˘a
`
m trˆen d¯u
.
`o
.
ng che´o
phu
.
.
4. Ma trˆa
.
n d¯o
.
n vi
.
. Cho ma trˆa
.
n vuˆong A = (a
ij
)
n
. A d¯u
.
o
.
.
c go
.
i la` ma trˆa
.
n
d¯o
.
n vi
.
nˆe
´
u mo
.
i phˆa
`
n tu
.
’
n˘a
`
m trˆen d¯u
.
`o
.
ng che´o chı´nh d¯ˆe
`
u b˘a
`
ng 1 co`n ca´c phˆa
`
n
tu
.
’
kha´c d¯ˆe
`
u b˘a
`
ng 0. Lu´c d¯o´ A d¯u
.
o
.
.
c kı´ hiˆe
.
u la` I
n
: ma trˆa
.
n d¯o
.
n vi
.
cˆa
´
p n.
Vı´ du
.
.
I
2
=
1 0
0 1
I
3
=
1 0 0
0 1 0
0 0 1
5. Ma trˆa
.
n che´o. Cho A = (a
ij
)
n
. A d¯u
.
o
.
.
c go
.
i la` ma trˆa
.
n che´o nˆe
´
u mo
.
i
phˆa
`
n tu
.
’
khˆong thuˆo
.
c d¯u
.
`o
.
ng che´o chı´nh d¯ˆe
`
u b˘a
`
ng 0.
Vı´ du
.
.
A =
1 0 0
0 −2 0
0 0 5
la` ma trˆa
.
n che´o.
6. Ma trˆa
.
n tam gia´c. Cho A = (a
ij
)
n
. A la` ma trˆa
.
n tam gia´c trˆen nˆe
´
u
mo
.
i phˆa
`
n tu
.
’
n˘a
`
m du
.
´o
.
i d¯u
.
`o
.
ng che´o chı´nh d¯ˆe
`
u b˘a
`
ng 0. A la` ma trˆa
.
n tam gia´c
du
.
´o
.
i nˆe
´
u mo
.
i phˆa
`
n tu
.
’
n˘a
`
m trˆen d¯u
.
`o
.
ng che´o chı´nh d¯ˆe
`
u b˘a
`
ng 0. A la` mˆo
.
t ma
trˆa
.
n tam gia´c nˆe
´
u no´ la` ma trˆa
.
n tam gia´c trˆen ho˘a
.
c du
.
´o
.
i.
A =
a
11
a
12
. . . a
1n−1
a
1n
0 a
22
. . . a
2n−1
a
2n
··· ··· ··· ··· ···
0 0 . . . a
n−1n−1
a
n−1n
0 0 . . . 0 a
nn
la` ma trˆa
.
n tam gia´c trˆen.
B =
a
11
0 . . . 0 0
a
21
a
22
. . . 0 0
··· ··· ··· ··· ···
a
n−11
a
n−11
. . . a
n−1n−1
0
a
n1
a
n2
. . . a
n−1n
a
nn
la` ma trˆa
.
n tam gia´c du
.
´o
.
i.
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.1. Ma trˆa
.
n 5
7. Ma trˆa
.
n A = (a
ij
)
1×n
= [a
11
, a
12
, . . . , a
1n
] d¯u
.
o
.
.
c go
.
i la` ma trˆa
.
n do`ng.
Ma trˆa
.
n B = (b
ij
)
m×1
=
a
11
a
21
···
a
m1
d¯u
.
o
.
.
c go
.
i la` ma trˆa
.
n cˆo
.
t.
8. Ma trˆa
.
n bˆa
.
c thang. Ma trˆa
.
n cˆa
´
p m × n co´ a
ij
= 0 ; ∀i, j , i > j go
.
i la`
ma trˆa
.
n bˆa
.
c thang.
Vı´ du
.
:
A =
3 4 5 6 7 8
0 0 7 6 9 4
0 0 0 0 1 2
0 0 0 0 0 0
la` ma trˆa
.
n bˆa
.
c thang.
9. Hai ma trˆa
.
n A = (a
ij
)
m×n
va` B = (b
ij
)
m×n
d¯u
.
o
.
.
c go
.
i la` b˘a
`
ng nhau nˆe
´
u
a
ij
= b
ij
, ∀i = 1, m, ∀j = 1, n.
1.1.2 Ca´c phe´p toa´n trˆen ma trˆa
.
n
a. Cˆo
.
ng ma trˆa
.
n.
D
-
i
.
nh nghı
˜
a 1.2. Cho hai ma trˆa
.
n cu`ng cˆa
´
p A = (a
ij
)
m×n
va` B = (b
ij
)
m×n
.
Tˆo
’
ng cu
’
a hai ma trˆa
.
n A, B la` mˆo
.
t ma trˆa
.
n C = (c
ij
)
m×n
v´o
.
i c
ij
= a
ij
+
b
ij
, ∀i = 1, m, ∀j = 1, n. Kı´ hiˆe
.
u: A + B = C.
Vı´ du
.
.
1 2 2
4 −2 5
7 −3 4
+
6 3 −8
2 −2 1
0 0 5
=
1 + 6 2 + 3 2 + (−8)
4 + 2 −2 + (−2) 5 + 1
7 + 0 −3 + 0 4 + 5
=
7 5 −6
6 0 6
7 −3 9
Tı´nh chˆa
´
t 1.1. Cho A, B, C, 0 la` ca´c ma trˆa
.
n cu`ng cˆa
´
p, khi d¯o´ ta co´:
(i) (A + B) + C = A + (B + C) (tı´nh kˆe
´
t ho
.
.
p)
(ii) A + B = B + A(tı´nh giao hoa´n)
(iii) A + 0 = 0 + A = A
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
6 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
(iv) A + (−A) = (−A) + A = 0
b. Nhˆan mˆo
.
t phˆa
`
n tu
.
’
cu
’
a tru
.
`o
.
ng K v´o
.
i ma trˆa
.
n.
D
-
i
.
nh nghı
˜
a 1.3. Cho A = (a
ij
)
m×n
, k ∈ K. Phe´p nhˆan mˆo
.
t phˆa
`
n tu
.
’
cu
’
a
tru
.
`o
.
ng K v´o
.
i ma trˆa
.
n A cho ta mˆo
.
t ma trˆa
.
n B = (b
ij
)
m×n
v´o
.
i b
ij
= k.a
ij
, ∀i =
1, m, ∀j = 1, n.
Kı´ hiˆe
.
u: kA.
kA = B = (b
ij
)
m×n
=
ka
11
. . . ka
1n
. . . . . . . . .
ka
m1
. . . ka
mn
D
-
˘a
.
t biˆe
.
t, khi k = −1 ∈ K, thay cho (−1)A, ta se
˜
viˆe
´
t −A va` go
.
i no´ la` ma
trˆa
.
n d¯ˆo
´
i cu
’
a A. Nhu
.
vˆa
.
y: (−a
ij
)
m×n
= −(a
ij
)
m×n
∀i = 1, m, ∀j = 1, n.
Vı´ du
.
.
2.
1 2 2
4 −2 5
7 −3 4
=
2 4 4
8 −4 10
14 −6 8
Tı´nh chˆa
´
t 1.2. Cho A, B la` ca´c ma trˆa
.
n cu`ng cˆa
´
p, α, β ∈ K. Khi d¯o´ ta co´:
(i) α(A + B) = αA + αB
(ii) (α + β)A = αA + βA
(iii) α(βA) = (αβ)A = β(αA)
(iv) 1.A = A
c. Phe´p nhˆan hai ma trˆa
.
n.
D
-
i
.
nh nghı
˜
a 1.4. Cho A = (a
ij
)
m×n
la` ma trˆa
.
n cˆa
´
p m × n trˆen K va` B =
(b
jk
)
n×p
la` ma trˆa
.
n cˆa
´
p n× p trˆen K. Ta go
.
i la` tı´ch cu
’
a A v´o
.
i B, kı´ hiˆe
.
u AB,
mˆo
.
t ma trˆa
.
n C = (c
ik
)
m×p
cˆa
´
p m× p trˆen K ma` ca´c phˆa
`
n tu
.
’
cu
’
a no´ d¯u
.
o
.
.
c xa´c
d¯inh nhu
.
sau:
c
ik
=
n
j=1
a
ij
b
jk
; ∀i = 1, m, ∀k = 1, p.
Minh ho
.
a:
Vı´ du
.
. Cho ca´c ma trˆa
.
n:
A =
1 2 −1
3 1 2
, B =
1 3
2 1
3 −1
, C =
2 −1
1 0
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.1. Ma trˆa
.
n 7
Khi d¯o´:
AB =
1 2 −1
3 1 2
1 3
2 1
3 −1
=
1.1 + 2.2 + (−1).3 1.3 + 2.1 + (−1).(−1)
3.1 + 1.2 + 2.3 3.3 + 1.1 + 2.(−1)
=
2 6
11 8
BA =
1 3
2 1
3 −1
1 2 −1
3 1 2
=
10 5 5
5 5 0
0 0 −5
AC va` CB khˆong xa´c d¯i
.
nh.
Nhˆa
.
n xe´t:
1 D
-
iˆe
`
u kiˆe
.
n d¯ˆe
’
phe´p nhˆan hai ma trˆa
.
n thu
.
.
c hiˆe
.
n d¯u
.
o
.
.
c la` sˆo
´
cˆo
.
t cu
’
a ma
trˆa
.
n 1 b˘a
`
ng sˆo
´
do`ng cu
’
a ma trˆa
.
n 2.
2 AB = BA. Phe´p nhˆan hai ma trˆa
.
n khˆong co´ tı´nh giao hoa´n.
Ta kı´ hiˆe
.
u M
m,n
(K) la` tˆa
.
p tˆa
´
t ca
’
nh˜u
.
ng ma trˆa
.
n cˆa
´
p m × n trˆen tru
.
`o
.
ng K,
M
n
(K) la` tˆa
.
p tˆa
´
t ca
’
nh˜u
.
ng ma trˆa
.
n vuˆong cˆa
´
p n trˆen tru
.
`o
.
ng K.
Tı´nh chˆa
´
t 1.3. V´o
.
i phe´p nhˆan hai ma trˆa
.
n ta co´ ca´c tı´nh chˆa
´
t sau:
(i) (AB)C = A(BC); A ∈ M
m,n
(K), B ∈ M
n,p
(K), C ∈ M
p,q
(K).
(ii) A(B + C) = AB + AC; A ∈ M
m,n
(K), B, C ∈ M
n,p
(K).
(A + B)C = AC + BC; A, B ∈ M
m,n
(K), C ∈ M
n,p
(K).
(iii) α(AB) = (αA)B = A(αB); A ∈ M
m,n
(K), B ∈ M
n,p
(K), α ∈ K.
(iv) AI
n
= A = I
m
A; A ∈ M
m,n
(K), I
m
, I
n
la` ca´c ma trˆa
.
n d¯o
.
n vi
.
cˆa
´
p lˆa
`
n
lu
.
o
.
.
t la` m, n.
d. Chuyˆe
’
n vi
.
ma trˆa
.
n.
D
-
i
.
nh nghı
˜
a 1.5. Cho A = (a
ij
)
m×n
. Chuyˆe
’
n vi
.
cu
’
a ma trˆan A la` ma trˆa
.
n B
co´ cˆa
´
p n × m va` ca´c phˆa
`
n tu
.
’
d¯u
.
o
.
.
c xa´c d¯i
.
nh nhu
.
sau:
b
ij
= a
ji
, i = 1, m, j = 1, n.
Ta kı´ hiˆe
.
u ma trˆa
.
n chuyˆe
’
n vi
.
cu
’
a ma trˆan A la` A
t
. No´i mˆo
.
t ca´ch kha´c chuyˆe
’
n
vi
.
cu
’
a ma trˆa
.
n A la` ma trˆa
.
n B d¯u
.
o
.
.
c suy ra b˘a
`
ng ca´ch d¯ˆo
’
i do`ng tha`nh cˆo
.
t va`
cˆo
.
t tha`nh do`ng.
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
8 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
Vı´ du
.
. A =
1 −1 0 2
2 3 −5 0
1 0 3 4
3×4
A
t
=
1 2 1
−1 3 0
0 −5 3
2 0 4
4×3
Tı´nh chˆa
´
t 1.4. Phe´p chuyˆe
’
n vi
.
ma trˆa
.
n co´ nh˜u
.
ng tı´nh chˆa
´
t sau:
1. (A ± B)
t
= A
t
± B
t
, A, B ∈ M
m,n
(K).
2. (αA)
t
= αA
t
, A ∈ M
m,n
(K), α ∈ K.
3. (AB)
t
= B
t
A
t
, A ∈ M
m,n
(K), B ∈ M
n,p
(K).
4. (I
n
)
t
= I
n
, I
n
la` ma trˆa
.
n d¯o
.
n vi
.
cˆa
´
p n.
5. A la` ma trˆa
.
n che´o thı` A
t
= A.
1.1.3 Ma trˆa
.
n d¯ˆo
´
i x´u
.
ng va` ma trˆa
.
n pha
’
n x´u
.
ng.
D
-
i
.
nh nghı
˜
a 1.6. Cho A la` ma trˆa
.
n vuˆong cˆa
´
p n .
+) A go
.
i la` ma trˆa
.
n d¯ˆo
´
i x´u
.
ng nˆe
´
u A
t
= A.
+) A go
.
i la` ma trˆa
.
n pha
’
n x´u
.
ng nˆe
´
u A
t
= −A.
Vı´ du
.
.
Cho A =
1 −2 1
−2 3 1
0 1 −1
. Ta co´ A
t
=
1 −2 1
−2 3 1
0 1 −1
= A. Vˆa
.
y A la` ma
trˆa
.
n d¯ˆo
´
i x´u
.
ng.
Cho B =
0 −2 1
2 0 3
−1 −3 0
. Ta co´ B
t
=
0 2 −1
−2 0 −3
1 3 0
= −B. Vˆa
.
y B la` ma
trˆa
.
n pha
’
n x´u
.
ng.
Nhˆa
.
n xe´t. Nˆe
´
u A la` mˆo
.
t ma trˆa
.
n pha
’
n x´u
.
ng thı` ca´c phˆa
`
n tu
.
’
trˆen d¯u
.
`o
.
ng
che´o chı´nh cu
’
a no´ b˘a
`
ng 0.
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.1. Ma trˆa
.
n 9
1.1.4 D
-
a th´u
.
c ma trˆa
.
n.
D
-
i
.
nh nghı
˜
a 1.7. Cho A la` mˆo
.
t ma trˆa
.
n vuˆong trˆen K va` p(x) = a
0
+ a
1
x +
··· + a
n
x
n
∈ K[x] la` mˆo
.
t d¯a th´u
.
c cu
’
a biˆe
´
n x v´o
.
i hˆe
.
sˆo
´
trˆen K. Khi d¯o´ ma
trˆa
.
n
a
0
I + a
1
A + ··· + a
n
A
n
,
trong d¯o´, I la` ma trˆa
.
n d¯o
.
n vi
.
cu`ng cˆa
´
p v´o
.
i A, d¯u
.
o
.
.
c go
.
i la` gia´ tri
.
cu
’
a d¯a th´u
.
c
p(x) tai x = A, kı´ hiˆe
.
u p(A). No´ cu
˜
ng d¯u
.
o
.
.
c go
.
i la` d¯a th´u
.
c ma trˆa
.
n.
A go
.
i la` mˆo
.
t nghiˆe
.
m ma trˆa
.
n cu
’
a d¯a th´u
.
c p(x) nˆe
´
u d¯a th´u
.
c ma trˆa
.
n
p(A) = 0 (ma trˆa
.
n khˆong cu`ng cˆa
´
p v´o
.
i A).
Ba`i tˆa
.
p.
1.1.1 Cho ca´c ma trˆa
.
n:
A =
1 2
−1 0
2 1
; B =
1 3
2 1
−3 −2
; C =
2 5
0 3
4 2
; D =
1 4
2 5
3 6
.
Tı´nh: a) 5A − 3B + 2C + 4D; b) A + 2B − 3C − 5D.
1.1.2 Cho ma trˆa
.
n:
A =
1 −2 6
4 3 −8
2 −2 5
.
Tı`m ma trˆa
.
n X sao cho: a) 3A + 2X = I
3
; b) 5A − 3X = I
3
.
1.1.3 Kı´ hiˆe
.
u (r × s) la` mˆo
.
t ma trˆa
.
n cˆa
´
p r × s trˆen K. Tı`m m, n ∈ N\{0}
trong ca´c tru
.
`o
.
ng ho
.
.
p sau:
a) (3 × 4) × (4 × 5) = (m × n); b) (2 × 3) × (m × n) = (2 × 6); c)
(2 × m) × (4× 3) = (2 × n).
1.1.4 Tı´nh:
a)
1 2 −3
3 0 4
1 1 0 2
0 1 1 0
1 0 2 1
1 4
2 1
3 2
4 3
; b)
3 2
−4 −2
5
; c)
1 1
0 1
n
;
d)
λ 1
0 λ
n
; e)
cos ϕ − sin ϕ
sin ϕ cos ϕ
n
; (n ∈ N, 0 ≤ ϕ < 2π).
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
10 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
1.1.5 Cho ma trˆa
.
n:
A =
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
.
Tı´nh ca´c ma trˆa
.
n: AA
t
va` A
t
A.
1.1.6 Ch´u
.
ng minh ca´c tı´nh chˆa
´
t 1.1, 1.2, 1.3, 1.4.
1.1.7 Cho d¯a th´u
.
c p(x) = x
2
− 3x + 1. Tı´nh ca´c d¯a th´u
.
c ma trˆa
.
n p(A), p(B)
biˆe
´
t
A =
1 2
0 4
; B =
1 2 −3
3 0 4
0 −1 0
.
1.1.8 Ch´u
.
ng minh r˘a
`
ng:
a) A =
2 0 0
0 2 0
0 0 −1
la` mˆo
.
t nghiˆe
.
m cu
’
a p(x) = x
3
− 3x
2
+ 4;
b) B =
a b
c d
∈ M
2
(K) la` nghiˆe
.
m cu
’
a q(x) = x
2
− (a + d)x +
+(ad − bc) ∈ K[x].
1.1.9* V´o
.
i mˆo
˜
i ma trˆa
.
n vuˆong A = (a
ij
)
n
∈ M
n
(K), ta go
.
i tˆo
’
ng ca´c phˆa
`
n tu
.
’
trˆen d¯u
.
`o
.
ng che´o chı´nh cu
’
a A la` vˆe
´
t cu
’
a no´, kı´ hiˆe
.
u tr(A). T´u
.
c la`:
tr(A) = a
11
+ a
22
+ ··· + a
nn
.
Ch´u
.
ng minh r˘a
`
ng v´o
.
i mo
.
i A, B ∈ M
n
(K) ta d¯ˆe
`
u co´:
tr(AB) = tr(BA).
1.1.10* Ch´u
.
ng minh r˘a
`
ng khˆong tˆo
`
n ta
.
i ca´c ma trˆa
.
n vuˆong A, B ∈ M
n
(K) sao
cho AB − BA = I
n
.
1.2 D
-
i
.
nh th´u
.
c
1.2.1 Phe´p thˆe
´
- Nghi
.
ch thˆe
´
.
D
-
i
.
nh nghı
˜
a 1.8. Cho n la` mˆo
.
t sˆo
´
nguyˆen du
.
o
.
ng va` X la` mˆo
.
t tˆa
.
p ho
.
.
p co´ n
phˆa
`
n tu
.
’
. Mˆo
.
t phe´p thˆe
´
bˆa
.
c n la` mˆo
.
t song a´nh σ t`u
.
X lˆen chı´nh no´. Khˆong
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.2. D
-
i
.
nh th´u
.
c 11
mˆa
´
t tı´nh tˆo
’
ng qua´t, ta thu
.
`o
.
ng lˆa
´
y X = {1, 2, ..., n}. Khi d¯o´ mˆo
˜
i phe´p thˆe
´
bˆa
.
c n thu
.
`o
.
ng d¯u
.
o
.
.
c kı´ hiˆe
.
u:
σ =
1 2 ··· n
σ(1) σ(2) ··· σ(n)
Kı´ hiˆe
.
u S
n
la` tˆa
.
p ho
.
.
p tˆa
´
t ca
’
ca´c phe´p thˆe
´
bˆa
.
c n thı` S
n
la` tˆa
.
p ho
.
.
p gˆo
`
m
n! = 1.2...n phˆa
`
n tu
.
’
.
Khi n > 1, c˘a
.
p sˆo
´
(khˆong th´u
.
tu
.
.
) phˆan biˆe
.
t {i, j} ⊂ {1, 2, ..., n} go
.
i la` mˆo
.
t
nghi
.
ch thˆe
´
nˆe
´
u
i − j
σ(i) − σ(j)
< 0.
Kı´ hiˆe
.
u N(σ) la` sˆo
´
ca´c nghi
.
ch thˆe
´
cu
’
a phe´p thˆe
´
σ.
Vı´ du
.
. Tı`m tˆa
´
t ca
’
ca´c phe´p thˆe
´
bˆa
.
c 3 cu
’
a I = {1, 2, 3}.
Ta thˆa
´
y tˆa
.
p I co´ 3 phˆa
`
n tu
.
’
vˆa
.
y S
3
se
˜
co´ 6 phˆa
`
n tu
.
’
:
σ
0
=
1 2 3
1 2 3
, σ
1
=
1 2 3
1 3 2
, σ
2
=
1 2 3
2 1 3
, σ
3
=
1 2 3
2 3 1
,
σ
4
=
1 2 3
3 1 2
, σ
5
=
1 2 3
3 2 1
.
Tı`m sˆo
´
ca´c nghi
.
ch thˆe
´
cu
’
a mˆo
˜
i phe´p thˆe
´
trˆen.
N(σ
0
) = 0,
N(σ
1
) = 1 (nghi
.
ch thˆe
´
(2,3)),
N(σ
2
) = 1 (nghi
.
ch thˆe
´
(1,2)),
N(σ
3
) = 2 ( nghi
.
ch thˆe
´
(1,3) va` (2,3)),
N(σ
4
) = 3 (nghi
.
ch thˆe
´
(1,2), (2,3) va` (1,3)),
N(σ
5
) = 2 (nghi
.
ch thˆe
´
(1,2) va` (1,3)).
1.2.2 D
-
i
.
nh th´u
.
c.
a. D
-
i
.
nh nghı
˜
a.
D
-
i
.
nh nghı
˜
a 1.9. Cho A = (a
ij
)
n
la` mˆo
.
t ma trˆa
.
n vuˆong cˆa
´
p n trˆen tru
.
`o
.
ng
K (n ∈ N, n > 0). D
-
i
.
nh th´u
.
c cu
’
a ma trˆa
.
n A la` mˆo
.
t sˆo
´
thuˆo
.
c K, kı´ hiˆe
.
u detA,
d¯u
.
o
.
.
c cho bo
.
’
i biˆe
’
u th´u
.
c:
detA =
σ∈S
n
(−1)
N(σ)
a
1σ(1)
a
2σ(2)
...a
nσ(n)
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
12 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
D
-
i
.
nh th´u
.
c cu
’
a ma trˆa
.
n A co`n d¯u
.
o
.
.
c kı´ hiˆe
.
u la`:
|A| ho˘a
.
c A =
a
11
a
12
. . . a
1n
a
21
a
22
. . . a
2n
··· ··· ··· ···
a
m1
a
m2
. . . a
mn
Vı´ du
.
1. A =
a
11
a
12
a
21
a
22
, n = 2, I = {1, 2},
σ
0
=
1 2
1 2
, σ
1
=
1 2
2 1
, N(σ
0
) = 0, N(σ
1
) = 1,
detA = (−1)
0
a
11
a
22
+ (−1)
1
a
12
a
21
= a
11
a
22
− a
12
a
21
.
Vı´ du
.
2. B =
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
, su
.
’
du
.
ng nh˜u
.
ng kˆe
´
t qua
’
cu
’
a vı´ du
.
o
.
’
mu
.
c
1.2.1 ta tı´nh d¯u
.
o
.
.
c:
detB = a
11
a
22
a
33
+ a
12
a
23
a
31
+ a
13
a
21
a
32
− a
11
a
23
a
32
− a
12
a
21
a
33
− a
13
a
22
a
31
.
Quy t˘a
´
c Sarrus d¯ˆe
’
tı´nh d¯i
.
nh th´u
.
c cˆa
´
p 3.
+ Viˆe
´
t theo th´u
.
tu
.
.
cˆo
.
t mˆo
.
t va` cˆo
.
t va` cˆo
.
t hai sau cˆo
.
t th´u
.
ba.
+ Ba sˆo
´
ha
.
ng mang dˆa
´
u cˆo
.
ng trong d¯i
.
nh th´u
.
c la` tı´ch cu
’
a ca´c phˆa
`
n tu
.
’
n˘a
`
m
trˆen 3 d¯u
.
`o
.
ng song song v´o
.
i d¯u
.
`o
.
ng che´o chı´nh.
+ Ba sˆo
´
ha
.
ng mang dˆa
´
u tr`u
.
trong d¯i
.
nh th´u
.
c la` tı´ch cu
’
a ca´c phˆa
`
n tu
.
’
n˘a
`
m
trˆen 3 d¯u
.
`o
.
ng song song v´o
.
i d¯u
.
`o
.
ng che´o phu
.
.
T`u
.
d¯o´ ta tı´nh d¯u
.
o
.
.
c d¯i
.
nh th´u
.
c cˆa
´
p 3 nhu
.
vı´ du
.
2. Minh hoa
.
:
Vı´ du
.
. Tı´nh:
1 2 1
2 3 4
3 5 2
= 1.3.2 + 2.3.4 + 1.2.5 − 1.3.3 − 2.2.2 − 1.4.5 = 3
b. Tı´nh chˆa
´
t cu
’
a d¯i
.
nh th´u
.
c.
D
-
i
.
nh ly´ 1.1. Cho A = (a
ij
)
n
∈ M
n
(K) va` A
t
la` ma trˆa
.
n chuyˆe
’
n vi
.
cu
’
a A.
Khi d¯o´ det(A
t
) = det(A). No´i ca´ch kha´c d¯i
.
nh th´u
.
c cu
’
a ma trˆa
.
n khˆong thay
d¯ˆo
’
i qua phe´p chuyˆe
’
n vi
.
.
Ch´u
.
ng minh. Gia
’
su
.
’
A
t
= (a
ij
)
n
. Khi d¯o´ a
ij
= a
ji
(i = 1, n, j = 1, n).
Ta co´: detA =
σ∈S
n
(−1)
N(σ)
a
1σ(1)
a
2σ(2)
...a
nσ(n)
detA
t
=
σ
−1
∈S
n
(−1)
N(σ
−1
)
a
1σ
−1
(1)
a
2σ
−1
(2)
...a
nσ
−1
(n)
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.2. D
-
i
.
nh th´u
.
c 13
=
σ
−1
∈S
n
(−1)
N(σ)
a
σ
−1
(1)1
a
σ
−1
(2)2
...a
σ
−1
(n)n
vı` N(σ
−1
) = N(σ) va` a
ij
= a
ji
, i, j = 1, n.
D
-
ˆe
’
y´ r˘a
`
ng: σ =
1 2 ··· n
σ(1) σ(2) ··· σ(n)
=
σ
−1
(1) σ
−1
(2) ··· σ
−1
(n)
1 2 ··· n
Do do´ v´o
.
i mo
.
i σ ∈ S
n
ta d¯ˆe
`
u co´:
(−1)
N(σ)
a
1σ(1)
a
2σ(2)
...a
nσ(n)
= (−1)
N(σ)
a
σ
−1
(1)1
a
σ
−1
(2)2
...a
σ
−1
(n)n
.
Vˆa
.
y detA
t
=detA.
T`u
.
tı´nh chˆa
´
t trˆen ta suy ra r˘a
`
ng vai tro` cu
’
a ca´c do`ng va` ca´c cˆo
.
t trong ma
trˆa
.
n la` bı`nh d¯˘a
’
ng. Mˆo
˜
i mˆe
.
nh d¯ˆe
`
vˆe
`
d¯i
.
nh th´u
.
c nˆe
´
u d¯a
˜
d¯u´ng cho do`ng thı` cu
˜
ng
d¯u´ng v´o
.
i cˆo
.
t va` ngu
.
o
.
.
c la
.
i.
D
-
i
.
nh ly´ 1.2. Nˆe
´
u d¯ˆo
’
i chˆo
˜
hai do`ng bˆa
´
t kı` cu
’
a mˆo
.
t ma trˆa
.
n thı` d¯i
.
nh th´u
.
c
cu
’
a no´ d¯ˆo
’
i dˆa
´
u.
Ch´u
.
ng minh. Gia
’
su
.
’
A = (a
ij
)
n
(n ≥ 2) va` B = (b
ij
)
n
la` ma trˆa
.
n nhˆa
.
n d¯u
.
o
.
.
c
t`u
.
A b˘a
`
ng ca´ch d¯ˆo
’
i chˆo
˜
hai do`ng th´u
.
k va` th´u
.
l na`o d¯o´ (1 ≤ k < l ≤ n) cho
nhau, nghı
˜
a la`:
b
ij
=
a
ij
, khi i ∈ {1, 2, ..., n}\{k, l},
a
lj
, khi i = k, (j = 1, n)
a
kj
, khi i = l,
Ta cˆa
`
n ch´u
.
ng to
’
detB=-detA.
Ta co´: detB =
f∈S
n
(−1)
N(f)
b
1f(1)
b
2f(2)
...b
nf(n)
.
Xe´t phe´p thˆe
´
bˆa
.
c n:
f :
1 2 ... k ... l ... n
f(1) f(2) ... f(k) ... f(l) ... f(n)
D
-
˘a
.
t g :
1 2 ... k ... l ... n
f(1) f(2) ... f(l) ... f(k) ... f(n)
Ta co´ g(i) = f(i), i = 1, n, i = k, i = l, g(k) = f(l), g(l) = f(k). Theo
d¯i
.
nh nghı
˜
a nghi
.
ch thˆe
´
, ta suy ra N(g) va` N(f) sai ke´m nhau mˆo
.
t d¯o
.
n vi
.
.
Do d¯o´ (−1)
N
(f) = −(−1)
N
(g), khi f cha
.
y kh˘a
´
p S
n
thı` g cu
˜
ng cha
.
y kh˘a
´
p S
n
.
Vˆa
.
y:
detB =
f∈S
n
(−1)
N(f)
b
1f(1)
b
2f(2)
...b
kf(k)
...b
lf(l)
...b
nf(n)
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
14 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
=
f∈S
n
(−1)
N(f)
a
1f(1)
a
2f(2)
...a
kf(l)
...a
lf(k)
...a
nf(n)
=
g∈S
n
−(−1)
N(g)
a
1g(1)
a
2g(2)
...a
kg(k)
...a
lg(l)
...a
ng(n)
= −det(A)
D
-
i
.
nh ly´ 1.3. Cho A la` mˆo
.
t ma trˆa
.
n vuˆong cˆa
´
p n trˆen K va` gia
’
su
.
’
do`ng th´u
.
i
na`o d¯o´ (1 ≤ i ≤ n) cu
’
a A co´ tı´nh chˆa
´
t a
ij
= λa
ij
+ µa
ij
;
j = 1, n. Khi d¯o´ ta co´:
detA =
··· ··· ··· ···
λa
i1
+ µa
i1
λa
i2
+ µa
i2
··· λa
in
+ µa
in
··· ··· ··· ···
= λ
··· ··· ··· ···
a
i1
a
i2
··· a
in
··· ··· ··· ···
+ µ
··· ··· ··· ···
a
i1
a
i2
··· a
in
··· ··· ··· ···
Trong d¯o´, ca´c do`ng co`n la
.
i cu
’
a ba d¯i
.
nh th´u
.
c o
.
’
hai vˆe
´
la` hoa`n toa`n nhu
.
nhau
va` chı´nh la` n − 1 do`ng co`n la
.
i cu
’
a A.
Ch´u
.
ng minh. Kı´ hiˆe
.
u ba d¯i
.
nh th´u
.
c trˆen t`u
.
tra´i sang pha
’
i lˆa
`
n lu
.
o
.
.
t la` D, D
, D
.
Ta cˆa
`
n ch´u
.
ng minh D = λD
+ µD
. Ta co´
D =
σ∈S
n
(−1)
N
(σ)a
1σ(1)
a
2σ(2)
...a
nσ(n)
=
σ∈S
n
(−1)
N
(σ)a
1σ(1)
a
2σ(2)
...(λa
iσ(i)
+ µa
iσ(i)
)...a
nσ(n)
= λ
σ∈S
n
(−1)
N
(σ)a
1σ(1)
a
2σ(2)
...a
iσ(i)
...a
nσ(n)
+
+ µ
σ∈S
n
(−1)
N
(σ)a
1σ(1)
a
2σ(2)
...a
iσ(i)
...a
nσ(n)
= λD
+ µD
T`u
.
ca´c d¯i
.
nh ly´ 1.2 va` 1.3 ta dˆe
˜
da`ng suy ra hˆe
.
qua
’
sau
Hˆe
.
qua
’
1.1. Cho A la` mˆo
.
t ma trˆa
.
n vuˆong cˆa
´
p n trˆen K.
(1) Nˆe
´
u nhˆan mˆo
.
t do`ng na`o d¯o´ cu
’
a A v´o
.
i mˆo
.
t sˆo
´
λ ∈ K thı` d¯i
.
nh th´u
.
c cu
’
a
no´ cu
˜
ng d¯u
.
o
.
.
c nhˆan v´o
.
i λ.
(2) det(λA) = λ
n
detA, λ ∈ K.
(3) Nˆe
´
u A co´ mˆo
.
t do`ng khˆong thı` d¯i
.
nh th´u
.
c cu
’
a no´ b˘a
`
ng khˆong.
(4) Nˆe
´
u A co´ hai do`ng b˘a
`
ng nhau hay tı
’
lˆe
.
v´o
.
i nhau thı` d¯i
.
nh th´u
.
c cu
’
a no´
b˘a
`
ng khˆong.
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.2. D
-
i
.
nh th´u
.
c 15
(5) Nˆe
´
u ta cˆo
.
ng va`o mˆo
.
t do`ng na`o d¯o´ cu
’
a ma trˆa
.
n A mˆo
.
t do`ng kha´c d¯a
˜
nhˆan
v´o
.
i mˆo
.
t sˆo
´
bˆa
´
t ky` thuˆo
.
c tru
.
`o
.
ng K thı` ta d¯u
.
o
.
.
c mˆo
.
t ma trˆa
.
n B co´ cu`ng
d¯i
.
nh th´u
.
c v´o
.
i ma trˆa
.
n A.
D
-
i
.
nh ly´ 1.4. D
-
i
.
nh th´u
.
c cu
’
a ma trˆa
.
n che´o A b˘a
`
ng tı´ch ca´c phˆa
`
n tu
.
’
n˘a
`
m trˆen
d¯u
.
`o
.
ng che´o chı´nh.
Viˆe
.
c ch´u
.
ng minh d¯i
.
nh ly´ na`y tu
.
o
.
ng d¯ˆo
´
i dˆe
˜
, ngu
.
`o
.
i d¯o
.
c tu
.
.
ch´u
.
ng minh.
Hˆe
.
qua
’
1.2. D
-
i
.
nh th´u
.
c cu
’
a ma trˆa
.
n tam gia´c A b˘a
`
ng tı´ch ca´c phˆa
`
n tu
.
’
n˘a
`
m
trˆen d¯u
.
`o
.
ng che´o chı´nh.
Vı´ du
.
. Du`ng ca´c tı´nh chˆa
´
t cu
’
a d¯i
.
nh th´u
.
c tı´nh ca´c d¯i
.
nh th´u
.
c sau:
1)
5 1 2 7
3 0 0 2
1 3 4 5
2 0 0 3
2)
a + x x x
x b + x x
x x c + x
3)
2 −3 4 1
4 −2 3 2
a b c d
3 −1 4 3
c. D
-
i
.
nh ly´ Laplace.
D
-
i
.
nh th´u
.
c con va` phˆa
`
n bu` d¯a
.
i sˆo
´
.
D
-
i
.
nh nghı
˜
a 1.10. Cho A = (a
ij
)
n
la` mˆo
.
t ma trˆa
.
n vuˆong cˆa
´
p n trˆen K
(n ≤ 2), D = detA va` k la` mˆo
.
t sˆo
´
nguyˆen du
.
o
.
ng nho
’
ho
.
n n. Xe´t k do`ng th´u
.
i
1
, i
2
, ..., i
k
(1 ≤ i
1
< i
2
< ... < i
k
≤ n) va` k cˆo
.
t th´u
.
j
1
, j
2
, ..., j
k
(1 ≤ j
1
< j
2
<
... < j
k
≤ n) na`o d¯o´ cu
’
a A. Ca´c phˆa
`
n tu
.
’
cu
’
a A n˘a
`
m o
.
’
giao cu
’
a ca´c do`ng va`
ca´c cˆo
.
t trˆen ta
.
o nˆen mˆo
.
t ma trˆa
.
n vuˆong S
i
1
i
2
...i
k
j
1
j
2
...j
k
cˆa
´
p k sau d¯ˆay:
S
i
1
i
2
...i
k
j
1
j
2
...j
k
=
a
i
1
j
1
a
i
1
j
2
... a
i
1
j
k
a
i
2
j
1
a
i
2
j
2
... a
i
2
j
k
... ... ... ...
a
i
k
j
1
a
i
k
j
2
... a
i
k
j
k
S
i
1
i
2
...i
k
j
1
j
2
...j
k
go
.
i la` mˆo
.
t ma trˆa
.
n vuˆong con cˆa
´
p k cu
’
a ma trˆa
.
n A. D
-
i
.
nh th´u
.
c
detS
i
1
i
2
...i
k
j
1
j
2
...j
k
go
.
i la` mˆo
.
t d¯i
.
nh th´u
.
c con cˆa
´
p k cu
’
a D, kı´ hiˆe
.
u D
i
1
i
2
...i
k
j
1
j
2
...j
k
.
Ma trˆa
.
n con cˆa
´
p n − k cu
’
a A co´ d¯u
.
o
.
.
c b˘a
`
ng ca´ch xo´a d¯i k do`ng, k cˆo
.
t
ch´u
.
a S
i
1
i
2
...i
k
j
1
j
2
...j
k
go
.
i la` ma trˆa
.
n con bu` cu
’
a S
i
1
i
2
...i
k
j
1
j
2
...j
k
(trong A) va` d¯i
.
nh
th´u
.
c con cˆa
´
p n − k cu
’
a no´ d¯u
.
o
.
.
c go
.
i la` d¯i
.
nh th´u
.
c con bu` cu
’
a d¯i
.
nh th´u
.
c con
D
i
1
i
2
...i
k
j
1
j
2
...j
k
(trong D), kı´ hiˆe
.
u M
i
1
i
2
...i
k
j
1
j
2
...j
k
D
-
i
.
nh nghı
˜
a 1.11. Phˆa
`
n phu
.
d¯a
.
i sˆo
´
cu
’
a d¯i
.
nh th´u
.
c con D
i
1
i
2
...i
k
j
1
j
2
...j
k
kı´ hiˆe
.
u
A
i
1
i
2
...i
k
j
1
j
2
...j
k
, d¯u
.
o
.
.
c d¯i
.
nh nghı
˜
a bo
.
’
i
A
i
1
i
2
...i
k
j
1
j
2
...j
k
= (−1)
s
M
i
1
i
2
...i
k
j
1
j
2
...j
k
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
16 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
trong d¯o´ s = i
1
+ i
2
+ ··· + i
k
+ j
1
+ j
2
+ ··· + j
k
la` tˆo
’
ng ca´c chı
’
sˆo
´
do`ng va`
chı
’
sˆo
´
cˆo
.
t ta
.
o nˆen D
i
1
i
2
...i
k
j
1
j
2
...j
k
.
D
-
˘a
.
c biˆe
.
t, khi k = 1, i = i
1
, j = j
1
(1 ≤ i, j ≤ n) thı` S
ij
= [a
ij
] ≡ a
ij
=
det[a
ij
] = D
ij
, d¯i
.
nh th´u
.
c con bu` cu
’
a D
ij
la` d¯i
.
nh th´u
.
c con M
ij
cˆa
´
p n− 1 nhˆa
.
n
d¯u
.
o
.
.
c t`u
.
D b˘a
`
ng ca´ch xo´a d¯i do`ng i va` cˆo
.
t j; co`n phˆa
`
n bu` d¯a
.
i sˆo
´
cu
’
a D
ij
chı´nh la` A
ij
= (−1)
i+j
M
ij
.
Vı´ du
.
. Xe´t d¯i
.
nh th´u
.
c cˆa
´
p n = 4 sau:
D =
5 1 2 7
3 0 −3 2
1 3 4 5
2 1 0 3
Lu´c d¯o´:
D
1314
=
5 7
1 5
la` d¯i
.
nh th´u
.
c con cˆa
´
p 2 cu
’
a D v´o
.
i phˆa
`
n bu` d¯a
.
i sˆo
´
la`:
A
1314
= (−1)
1+3+1+4
0 −3
1 0
= −
0 −3
1 0
.
D
234123
=
3 0 −3
1 3 4
2 1 0
la` d¯i
.
nh th´u
.
c con cˆa
´
p 3 cu
’
a D v´o
.
i phˆa
`
n bu` d¯a
.
i sˆo
´
la`:
A
234123
= (−1)
2+3+4+1+2+3
a
14
= −7.
D
13
= a
13
= 2 la` d¯i
.
nh th´u
.
c con cˆa
´
p 1 cu
’
a D v´o
.
i phˆa
`
n bu` d¯a
.
i sˆo
´
la`:
A
13
= (−1)
1+3
3 0 2
1 3 5
2 1 3
.
D
-
i
.
nh ly´ 1.5. Cho A = (a
ij
)
n
la` mˆo
.
t ma trˆa
.
n vuˆong cˆa
´
p n trˆen K (n ≥ 2),
A
ij
la` phˆa
`
n bu` d¯a
.
i sˆo
´
cu
’
a a
ij
, i, j = 1, n. Khi d¯o´ ta co´:
(1) detA =
n
j=1
a
ij
A
ij
= a
i1
A
i1
+ a
i2
A
i2
+ ··· + a
in
A
in
, i = 1, n;
(2) detA =
n
i=1
a
ij
A
ij
= a
1j
A
1j
+ a
2j
A
2j
+ ··· + a
nj
A
nj
, j = 1, n;
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.2. D
-
i
.
nh th´u
.
c 17
Cˆong th´u
.
c (1) (tu
.
o
.
ng ´u
.
ng (2)) d¯u
.
o
.
.
c go
.
i la` phe´p khai triˆe
’
n detA theo do`ng
th´u
.
i (tu
.
o
.
ng ´u
.
ng theo cˆo
.
t th´u
.
j); no´ quy viˆe
.
c tı´nh d¯i
.
nh th´u
.
c cˆa
´
p n vˆe
`
viˆe
.
c
tı´nh d¯i
.
nh th´u
.
c cˆa
´
p n − 1.
Vı´ du
.
. Tı´nh d¯i
.
nh th´u
.
c cˆa
´
p 3 sau d¯ˆay:
D =
1 1 −1
−1 1 1
1 −1 1
.
Ca´ch 1. Du`ng d¯i
.
nh nghı
˜
a.
D = 1.1.1 + 1.1.1 + (−1).(−1).(−1) − 1.1.(−1) − (−1).1.1 − 1.(−1).1 = 4.
Ca´ch 2. Khai triˆe
’
n D theo do`ng 1.
D = 1.(−1)
1+1
1 1
−1 1
+ 1.(−1)
1+2
−1 1
1 1
+ (−1).(−1)
1+3
−1 1
1 −1
= 2 + 2 + 0 = 4
Ca´ch 2. Khai triˆe
’
n D theo cˆo
.
t 3.
D = (−1).(−1)
1+3
−1 1
1 −1
+ 1.(−1)
2+3
1 1
1 −1
+ 1.(−1)
3+3
1 1
−1 1
= 0 + 2 + 2 = 4
D
-
i
.
nh ly´ 1.6 (Laplace). Cho A la` ma trˆa
.
n vuˆong cˆa
´
p n trˆen tru
.
`o
.
ng K. T`u
.
A ta cho
.
n k ha`ng (ho˘a
.
c k cˆo
.
t) tu`y y´ (1 ≤ k ≤ n). Khi d¯o´ d¯i
.
nh th´u
.
c cu
’
a ma
trˆa
.
n A b˘a
`
ng tˆo
’
ng cu
’
a ca´c tı´ch cu
’
a tˆa
´
t ca
’
ca´c d¯i
.
nh th´u
.
c con cˆa
´
p k lˆa
.
p d¯u
.
o
.
.
c
trˆen k ha`ng (cˆo
.
t) d¯o´ v´o
.
i phˆa
`
n bu` d¯a
.
i sˆo
´
cu
’
a chu´ng.
D
-
i
.
nh ly´ trˆen co`n d¯u
.
o
.
.
c go
.
i la` d¯i
.
nh ly´ khai triˆe
’
n d¯i
.
nh th´u
.
c cu
’
a ma trˆa
.
n A
theo k do`ng (tu
.
o
.
ng ´u
.
ng theo k cˆo
.
t).
Vı´ du
.
. Tı´nh d¯i
.
nh th´u
.
c sau d¯ˆay:
D =
1 2 0 −1
3 0 −3 2
0 0 2 1
2 1 0 3
Ta se
˜
khai triˆe
’
n D theo 2 do`ng 2 va` 3. Ta co´ 6 d¯i
.
nh th´u
.
c con d¯u
.
o
.
.
c lˆa
.
p t`u
.
2
do`ng na`y:
D
2312
=
3 0
0 0
= 0, D
2313
=
3 −3
0 2
= 6, D
2314
=
3 2
0 1
= 3,
D
2323
=
0 −3
0 2
= 0, D
2324
=
0 2
0 1
= 0, D
2334
=
−3 2
2 1
= −7,
Ta chı
’
cˆa
`
n tı´nh:
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
18 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
A
2313
= (−1)
2+3+1+3
2 −1
1 3
= −7, A
2314
= (−1)
2+3+1+4
2 0
1 0
= 0,
A
2334
= (−1)
2+3+3+4
1 2
2 1
= −3,
Vˆa
.
y D = 6.(−7) + 3.0 + (−7).(−3) = −21.
Chu´ y´. Sˆo
´
ca´c d¯i
.
nh th´u
.
c con lˆa
.
p d¯u
.
o
.
.
c trˆen k do`ng (tu
.
o
.
ng ´u
.
ng k cˆo
.
t) cu
’
a
mˆo
.
t ma trˆa
.
n vuˆong cˆa
´
p n la` C
k
n
.
Nhˆa
.
n xe´t. D
-
ˆo
´
i v´o
.
i ba`i toa´n tı´nh d¯i
.
nh th´u
.
c:
(1) Khi thˆa
´
y mˆo
.
t do`ng (hay cˆo
.
t) cu
’
a d¯i
.
nh th´u
.
c co´ nhiˆe
`
u sˆo
´
khˆong thı` nˆen
khai triˆe
’
n d¯i
.
nh th´u
.
c theo do`ng (hay cˆo
.
t) d¯o´.
(2) Du`ng ca´c phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p ta co´ thˆe
’
la`m cho d¯i
.
nh th´u
.
c tro
.
’
nˆen d¯o
.
n
gia
’
n, dˆe
˜
tı´nh ho
.
n. D
-
˘a
.
c biˆe
.
t, mo
.
i d¯i
.
nh th´u
.
c d¯ˆe
`
u d¯u
.
a d¯u
.
o
.
.
c vˆe
`
da
.
ng tam
gia´c sau mˆo
.
t sˆo
´
h˜u
.
u ha
.
n phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p.
T`u
.
d¯i
.
nh ly´ Laplace va` ca´c tı´nh chˆa
´
t cu
’
a d¯i
.
nh th´u
.
c ta co´ d¯i
.
nh ly´ sau:
D
-
i
.
nh ly´ 1.7 (D
-
i
.
nh ly´ nhˆan d¯i
.
nh th´u
.
c). Gia
’
su
.
’
A = (a
ij
)
n
va` B = (b
ij
)
n
la` hai ma trˆa
.
n vuˆong cu`ng cˆa
´
p n, khi d¯o´ ta co´ : det(AB) =detA.detB.
Nhˆa
.
n xe´t. Du`ng d¯i
.
nh ly´ 1.7 ta co´ thˆe
’
tı´nh d¯u
.
o
.
.
c mˆo
.
t sˆo
´
d¯i
.
nh th´u
.
c b˘a
`
ng
ca´ch ta´ch tha`nh tı´ch cu
’
a hai d¯i
.
nh th´u
.
c d¯o
.
n gia
’
n ho
.
n.
Vı´ du
.
. Tı´nh d¯i
.
nh th´u
.
c D = detA cu
’
a ma trˆa
.
n vuˆong A cˆa
´
p n sau:
A =
1 + x
1
y
1
1 + x
1
y
2
··· 1 + x
1
y
n
1 + x
2
y
1
1 + x
2
y
2
··· 1 + x
2
y
n
··· ··· ··· ···
1 + x
n
y
1
1 + x
n
y
2
··· 1 + x
n
y
n
Nhˆa
.
n thˆa
´
y r˘a
`
ng:
A =
1 x
1
0 ··· 0
1 x
2
0 ··· 0
··· ··· ··· ··· ···
1 x
n
0 ··· 0
1 1 ··· 1
y
1
y
2
··· y
n
0 0 ··· 0
··· ··· ··· ···
0 0 ··· 0
Do d¯o´
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.2. D
-
i
.
nh th´u
.
c 19
D = detA =
1 x
1
0 ··· 0
1 x
2
0 ··· 0
··· ··· ··· ··· ···
1 x
n
0 ··· 0
1 1 ··· 1
y
1
y
2
··· y
n
0 0 ··· 0
··· ··· ··· ···
0 0 ··· 0
=
0 , khi n > 2,
(x
2
− x
1
)(y
2
− y
1
) , khi n = 2.
Ba`i tˆa
.
p.
1.2.1 Tı`m sˆo
´
nghi
.
ch thˆe
´
cu
’
a ca´c phe´p thˆe
´
sau:
a)
1 2 3 4
2 4 1 3
b)
1 2 3 4 5
3 5 4 1 2
c)
1 2 3 4 5 6 7
6 4 5 3 7 1 2
1.2.2 Ch´u
.
ng minh v´o
.
i a, b, c ∈ R phu
.
o
.
ng trı`nh
a − x b
b c− x
= 0 luˆon co´
nghiˆe
.
m thu
.
.
c.
1.2.3 Khˆong khai triˆe
’
n d¯i
.
nh th´u
.
c ch´u
.
ng minh r˘a
`
ng:
a)
1 a bc
1 b ca
1 c ab
=
1 a a
2
1 b b
2
1 c c
2
b)
1 a a
3
1 b b
3
1 c c
3
= (a + b + c)
1 a a
2
1 b b
2
1 c c
2
c)
1 a a
2
1 b b
2
1 c c
2
= (b − a)(c − a)(c− b)
1.2.5 Tı´nh ca´c d¯i
.
nh th´u
.
c sau:
a)
2 −3 4 1
4 −2 3 2
a b c d
3 −1 4 3
b)
a 3 0 5
0 b 0 2
1 2 c 3
0 0 0 d
c)
x 1 1 1
1 x 1 1
1 1 x 1
1 1 1 x
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
20 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
d)
1 2 3 ··· n
1 x + 1 3 ··· n
1 2 x + 1 ··· n
··· ··· ··· ··· ···
1 2 3 ··· x + 1
e)
1 2 3 ··· n − 1 n
1 3 3 ··· n − 1 n
1 2 5 ··· n − 1 n
··· ··· ··· ··· ··· ···
1 2 3 ··· 2n − 3 n
1 2 3 ··· n − 1 2n − 1
g)
1 1 1 1 . . . 1 1
1 0 1 1 . . . 1 1
1 1 0 1 . . . 1 1
··· ··· ··· ··· ··· · ···
1 1 1 1 . . . 0 1
1 1 1 1 . . . 1 0
h)
0 1 1 1 . . . 1 1
1 0 1 1 . . . 1 1
1 1 0 1 . . . 1 1
··· ··· ··· ··· ··· · ···
1 1 1 1 . . . 0 1
1 1 1 1 . . . 1 0
i)
a
0
−1 0 0 . . . . . . 0 0
a
1
x −1 0 . . . . . . 0 0
a
2
0 x −1 . . . . . . 0 0
··· ··· ··· ··· ··· ··· ··· ···
a
n−1
0 0 0 . . . . . . x −1
a
n
0 0 0 . . . . . . 0 x
1.2.4 Gia
’
i ca´c phu
.
o
.
ng trı`nh sau d¯ˆay theo ˆa
’
n x trˆen R:
a)
x
2
x
3
x
4
0 x
2
− 1 0
0 x
3
+ 1 x
3
− 1
= 0;
1 x x
2
x
3
1 2 4 8
1 3 9 27
1 4 16 64
= 0;
c)
1 1 1 ··· 1
1 1 − x 1 ··· 1
1 1 2 − x ··· 1
··· ··· ··· ··· ···
1 1 1 ··· (n− 1)− x
= 0
1.3 Ma trˆa
.
n kha
’
nghi
.
ch.
D
-
i
.
nh nghı
˜
a 1.12. Cho A la` ma trˆa
.
n vuˆong cˆa
´
p n trˆen K. Ta ba
’
o A la` ma
trˆa
.
n kha
’
nghi
.
ch nˆe
´
u tˆo
`
n ta
.
i mˆo
.
t ma trˆa
.
n B vuˆong cˆa
´
p n trˆen K sao cho:
AB = BA = I
n
.
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.3. Ma trˆa
.
n kha
’
nghi
.
ch. 21
Ma trˆa
.
n B nhu
.
thˆe
´
la` duy nhˆa
´
t, vı` nˆe
´
u tˆo
`
n ta
.
i B
1
cu
˜
ng co´ tı´nh chˆa
´
t nhu
.
B, t´u
.
c la` AB
1
= B
1
A = I
n
, thı`
B = BI
n
= B(AB
1
) = (BA)B
1
= I
n
B
1
= B
1
.
Do d¯o´ B d¯u
.
o
.
.
c go
.
i la` ma trˆa
.
n nghich d¯a
’
o cu
’
a ma trˆa
.
n A, kı´ hiˆe
.
u la` A
−1
.
Nhu
.
vˆa
.
y:
AA
−1
= A
−1
A = I
n
.
D
-
u
.
o
.
ng nhiˆen A = (A
−1
)
−1
, no´i ca´ch kha´c A la
.
i la` nghi
.
ch d¯a
’
o cu
’
a A
−1
.
Nhˆa
.
n xe´t.
(1) Ma trˆa
.
n d¯o
.
n vi
.
I
n
kha
’
nghi
.
ch va` I
−1
n
= I
n
, v´o
.
i mo
.
i n ∈ N
∗
.
(2) Ma trˆa
.
n 0
n
khˆong kha
’
nghi
.
ch vı`
0
n
A = A0
n
= 0
n
, ∀A ∈ M
n
(K), ∀n ∈ N
∗
.
(3) Mo
.
i ma trˆa
.
n A ∈ M
n
(K) ma` co´ ı´t nhˆa
´
t mˆo
.
t do`ng (hay mˆo
.
t cˆo
.
t) khˆong
d¯ˆe
`
u khˆong kha
’
nghi
.
ch.
(4) Ta nhˆa
´
n ma
.
nh r˘a
`
ng tı´nh kha
’
nghi
.
ch chı
’
co´ nghı
˜
a d¯ˆo
´
i v´o
.
i ma trˆa
.
n vuˆong.
Tuy nhiˆen khˆong pha
’
i ma trˆa
.
n vuˆong na`o cu
˜
gn kha
’
nghi
.
ch. Tˆa
.
p ho
.
.
p ca´c
ma trˆa
.
n vuˆong cˆa
´
p n trˆen K kha
’
nghi
.
ch d¯u
.
o
.
.
c kı´ hiˆe
.
u la` GL
n
(K)
Tı´nh chˆa
´
t 1.5. Tı´ch cu
’
a ca´c ma trˆa
.
n kha
’
nghi
.
ch la` ma trˆa
.
n kha
’
nghi
.
ch.
T´u
.
c la` nˆe
´
u A, B ∈ GL
n
(K) thı` AB ∈ GL
n
(K), ho
.
n n˜u
.
a
(AB)
−1
= B
−1
.A
−1
.
Ch´u
.
ng minh. Thˆa
.
t vˆa
.
y,
(AB)(B
−1
A
−1
) = A(BB
−1
)A
−1
= AI
n
A
−1
= AA
−1
= I
n
;
(B
−1
A
−1
)(AB) = B
−1
(A
−1
A)B = B
−1
I
n
B = B
−1
B = I
n
.
D
-
i
.
nh nghı
˜
a 1.13 (Ma trˆa
.
n phu
.
ho
.
.
p). Cho A = (a
ij
)
n
la` ma trˆa
.
n vuˆong
cˆa
´
p n trˆen tru
.
`o
.
ng K. Ma trˆa
.
n phu
.
ho
.
.
p cu
’
a A, kı´ hiˆe
.
u P
A
d¯u
.
o
.
.
c d¯i
.
nh nghı
˜
a
nhu
.
sau:
P
A
=
A
11
A
21
··· A
n1
A
12
A
22
··· A
n2
··· ··· ··· ···
A
1n
A
2n
··· A
nn
,
trong d¯o´ A
ij
la` phˆa
`
n bu` d¯a
.
i sˆo
´
cu
’
a phˆa
`
n tu
.
’
a
ij
, (i, j = 1, n) cu
’
a ma trˆa
.
n A.
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
22 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
Bˆo
’
d¯ˆe
`
1.1. V´o
.
i mˆo
˜
i ma trˆa
.
n vuˆong A = (a
ij
)
n
trˆen K (n ≥ 2) ta d¯ˆe
`
u co´:
(1)
n
j=1
a
ij
A
kj
=
detA , khi i = k
0 , khi i = k,
(i, k = 1, n);
(2)
n
i=1
a
ij
A
ik
=
detA , khi j = k
0 , khi j = k,
(j, k = 1, n);
Ch´u
.
ng minh. Tru
.
´o
.
c hˆe
´
t ta ch´u
.
ng minh (1). Lˆa
´
y hai sˆo
´
i, k bˆa
´
t ky` trong tˆa
.
p
ho
.
.
p {1, 2, 3, ..., n}. Co´ hai kha
’
n˘ang sau:
+) i = k. Khi d¯o´ (1) chı´nh la` cˆong th´u
.
c khai triˆe
’
n theo ha`ng.
+) i = k. Xe´t ma trˆa
.
n B = (b
lj
)
n
nhˆa
.
n d¯u
.
o
.
.
c b˘a
`
ng ca´ch thay do`ng th´u
.
k
b˘a
`
ng mˆo
.
t do`ng m´o
.
i hoa`n toa`n giˆo
´
ng do`ng i, t´u
.
c la`
b
lj
=
a
lj
, khi l = k,
a
ij
, khi l = k,
(l, j = 1, n)
Nhu
.
vˆa
.
y, B co´ hai do`ng th´u
.
i va` th´u
.
k b˘a
`
ng nhau, do d¯o´ detB = 0. Khai
triˆe
’
n detB theo do`ng th´u
.
k, ta d¯u
.
o
.
.
c:
0 = detB =
n
j=1
b
kj
B
kj
=
n
j=1
a
ij
A
kj
(vı` A
kj
= B
kj
, j = 1, 2, ..., n).
Vˆa
.
y (1) d¯u
.
o
.
.
c ch´u
.
ng minh. D
-
˘a
’
ng th´u
.
c (2) Ch´u
.
ng minh hoa`n toa`n tu
.
o
.
ng
tu
.
.
.
D
-
i
.
nh ly´ 1.8. Nˆe
´
u A la` ma trˆa
.
n vuˆong cˆa
´
p n thı` :
A.P
A
= P
A
.A = detA.I
n
trong d¯o´ P
A
la` ma trˆa
.
n phu
.
ho
.
.
p cu
’
a A va` I
n
la` ma trˆa
.
n d¯o
.
n vi
.
cˆa
´
p n.
Ch´u
.
ng minh.
´
Ap du
.
ng bˆo
’
d¯ˆe
`
trˆen ta co´ d¯iˆe
`
u pha
’
i ch´u
.
ng minh.
D
-
i
.
nh ly´ 1.9. Mˆo
.
t ma trˆa
.
n vuˆong trˆen K la` kha
’
nghi
.
ch khi va` chı
’
khi d¯i
.
nh
th´u
.
c cu
’
a no´ kha´c khˆong.
Ch´u
.
ng minh. Xe´t ma trˆa
.
n A = (a
ij
)
n
vuˆong cˆa
´
p n trˆen K.
(⇒) Gia
’
su
.
’
A kha
’
nghi
.
ch va` A
−1
la` nghi
.
ch d¯a
’
o cu
’
a A. Khi d¯o´
AA
−1
= I
n
⇒ detA.detA
−1
= det(AA
−1
) = detI
n
= 1 ⇒ detA = 0.
(⇐) Nˆe
´
u detA = 0 thı` theo D
-
i
.
nh ly´ 1.8 ta co´
A
1
detA
P
A
=
1
detA
P
A
A = I
n
.
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.3. Ma trˆa
.
n kha
’
nghi
.
ch. 23
Do d¯o´ A kha
’
nghi
.
ch va`
A
−1
=
1
detA
P
A
.
Thuˆa
.
t toa´n tı`m ma trˆa
.
n nghi
.
ch d¯a
’
o nh`o
.
d¯i
.
nh th´u
.
c.
Bu
.
´o
.
c 1. Tı´nh d¯i
.
nh th´u
.
c D = detA.
* Nˆe
´
u D = 0 thı` A khˆong kha
’
nghi
.
ch. Thuˆa
.
t toa´n kˆe
´
t thu´c.
* Nˆe
´
u D = 0 thı` A kha
’
nghi
.
ch. La`m tiˆe
´
p bu
.
´o
.
c 2.
Bu
.
´o
.
c 2. Lˆa
.
p ma trˆa
.
n phu
.
ho
.
.
p P
A
. Tı´nh
A
−1
=
1
D
P
A
.
Vı´ du
.
. Xe´t tı´nh kha
’
nghi
.
ch va` tı`m ma trˆa
.
n nghi
.
ch d¯a
’
o (nˆe
´
u co´) cu
’
a ca´c ma
trˆa
.
n sau:
A =
1 2 1
1 1 2
3 5 4
; B =
1 0 0
3 −1 0
1 2 3
.
Gia
’
i. detA
d
2
→d
2
−d
1
====
1 2 1
0 −1 1
3 5 4
d
3
→d
3
−3d
1
=====
1 2 1
0 −1 1
0 −1 1
= 0
(vı` co´ 2 do`ng cuˆo
´
i giˆo
´
ng nhau).
Do d¯o´ A khˆong kha
’
nghi
.
ch.
detB = −3 = 0. Suy ra B kha
’
nghi
.
ch.
+)Tı`m ma trˆa
.
n phu
.
ho
.
.
p cu
’
a B:
B
11
= (−1)
1+1
−1 0
2 3
= −3, B
12
= (−1)
1+2
3 0
1 3
= −9,
B
13
= (−1)
1+3
3 −1
1 2
= 7, B
21
= (−1)
2+1
0 0
2 3
= 0,
B
22
= (−1)
2+2
1 0
1 3
= 3, B
23
= (−1)
2+3
1 0
1 2
= −2,
B
31
= (−1)
3+1
0 0
−1 0
= 0, B
32
= (−1)
3+2
1 0
3 0
= 0,
B
33
= (−1)
3+3
1 0
3 −1
= −1,
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
24 1. Ma trˆa
.
n - D
-
i
.
nh th´u
.
c
P
B
=
B
11
B
21
B
31
B
12
B
22
B
32
B
13
B
23
B
33
=
−3 0 0
−9 3 0
7 −2 −1
.
+) Tı`m ma trˆa
.
n nghi
.
ch d¯a
’
o cu
’
a B:
B
−1
= −
1
3
P
B
=
1 0 0
3 −1 0
−7
3
2
3
1
3
.
D
-
i
.
nh nghı
˜
a 1.14 (Ma trˆa
.
n so
.
cˆa
´
p.). Ma trˆa
.
n E vuˆong cˆa
´
p n trˆen K
(n ≥ 2) d¯u
.
o
.
.
c go
.
i la` ma trˆa
.
n so
.
cˆa
´
p do`ng (tu
.
o
.
ng ´u
.
ng, cˆo
.
t) nˆe
´
u E thu d¯u
.
o
.
.
c
t`u
.
ma trˆa
.
n d¯o
.
n vi
.
I
n
bo
.
’
i d¯u´ng mˆo
.
t phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p do`ng (tu
.
o
.
ng ´u
.
ng,
cˆo
.
t).
Vı´ du
.
.
I
3
=
1 0 0
0 1 0
0 0 1
d
2
→d
2
+3d
1
−−−−−−→
1 0 0
3 1 0
0 0 1
= E
1
.
I
3
=
1 0 0
0 1 0
0 0 1
c
2
↔c
3
−−−→
1 0 0
0 0 1
0 1 0
= E
2
.
E
1
la` ma trˆa
.
n so
.
cˆa
´
p do`ng cˆa
´
p 3 co`n E
2
la` ma trˆa
.
n so
.
cˆa
´
p cˆo
.
t cˆa
´
p 3.
Tı´nh chˆa
´
t 1.6. Cho E la` mˆo
.
t ma trˆa
.
n so
.
cˆa
´
p do`ng cˆa
´
p m (tu
.
o
.
ng ´u
.
ng, cˆo
.
t
cˆa
´
p n) nhˆa
.
n d¯u
.
o
.
.
c t`u
.
I
m
(tu
.
o
.
ng ´u
.
ng, I
n
) bo
.
’
i phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p do`ng
(tu
.
o
.
ng ´u
.
ng, cˆo
.
t) e va` A la` mˆo
.
t ma trˆa
.
n m× n trˆen K tuy` y´. Khi d¯o´ ma trˆa
.
n
nhˆa
.
n d¯u
.
o
.
.
c t`u
.
A bo
.
’
i phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p e chı´nh la` EA (tu
.
o
.
ng ´u
.
ng, AE).
T´u
.
c la` :
E = e(I
m
) (tu
.
o
.
ng ´u
.
ng, E = e(I
n
)) ⇒ e(A) = EA (tu
.
o
.
ng ´u
.
ng, e(A) = AE)
D
-
i
.
nh ly´ 1.10. Mo
.
i ma trˆa
.
n so
.
cˆa
´
p do`ng (hay cˆo
.
t) d¯ˆe
`
u kha
’
nghi
.
ch va` nghi
.
ch
d¯a
’
o cu
’
a no´ la
.
i la` mˆo
.
t ma trˆa
.
n so
.
cˆa
´
p do`ng (hay cˆo
.
t).
Ch´u
.
ng minh. Gia
’
su
.
’
E = e(I
n
) la` mˆo
.
t ma trˆa
.
n so
.
cˆa
´
p do`ng (hay cˆo
.
t) nhˆa
.
n
d¯u
.
o
.
.
c t`u
.
I
n
bo
.
’
i phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p do`ng (hay cˆo
.
t) e. D
-
˘a
.
t E
= e
(I
n
) la`
ma trˆa
.
n so
.
cˆa
´
p do`ng (hay cˆo
.
t) nhˆa
.
n d¯u
.
o
.
.
c t`u
.
I
n
bo
.
’
i phe´p biˆe
´
n d¯ˆo
’
i do`ng (hay
cˆo
.
t) e
ngu
.
o
.
.
c cu
’
a e. Theo Tı´nh chˆa
´
t 1.6, ta co´:
EE
= e(E
) = e(e
(I
n
)) = (ee
)(I
n
) = I
n
;
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh
1.3. Ma trˆa
.
n kha
’
nghi
.
ch. 25
E
E = e
(E) = e
(e(I
n
)) = (e
e)(I
n
) = I
n
.
Do d¯o´ E kha
’
nghi
.
ch va` E
−1
= E
.
D
-
i
.
nh ly´ 1.11. Cho A la` mˆo
.
t ma trˆa
.
n vuˆong cˆa
´
p n trˆen K (n ≥ 2). Khi d¯o´
ca´c kh˘a
’
ng d¯i
.
nh sau tu
.
o
.
ng d¯u
.
o
.
ng:
(1) A kha
’
nghi
.
ch;
(2) I
n
nhˆa
.
n d¯u
.
o
.
.
c t`u
.
A bo
.
’
i h˜u
.
u ha
.
n ca´c phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p do`ng (hay
cˆo
.
t);
(3) A la` tı´ch cu
’
a mˆo
.
t sˆo
´
h˜u
.
u ha
.
n ca´c ma trˆa
.
n so
.
cˆa
´
p do`ng (hay cˆo
.
t).
Ch´u
.
ng minh. (1)⇒(2): Gia
’
su
.
’
A kha
’
nghi
.
ch. Ta d¯a
˜
biˆe
´
t mo
.
i ma trˆa
.
n vuˆong
cˆa
´
p n d¯ˆe
`
u co´ thˆe
’
d¯u
.
a vˆe
`
mˆo
.
t ma trˆa
.
n bˆa
.
c thang do`ng (t.u
.
cˆo
.
t) ru´t go
.
n sau
mˆo
.
t sˆo
´
h˜u
.
u ha
.
n phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p do`ng (t.u
.
cˆo
.
t). Go
.
i B la` ma trˆa
.
n bˆa
.
c
thang do`ng ru´t go
.
n co´ d¯u
.
o
.
.
c t`u
.
A sau mˆo
.
t sˆo
´
h˜u
.
u ha
.
n ca´c phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p do`ng e
1
, e
2
, ..., e
k
na`o d¯o´. D
-
˘a
.
t E
i
= e
i
(I
n
) la` ma trˆa
.
n so
.
cˆa
´
p do`ng nhˆa
.
n
d¯u
.
o
.
.
c t`u
.
I
n
nh`o
.
e
i
, i = 1, k. Lu´c d¯o´, B = E
k
...E
2
E
1
A. Suy ra B kha
’
nghi
.
ch
(vı` A, E
1
, ..., E
k
kha
’
nghi
.
ch). Suy ra B khˆong co´ do`ng 0. Ma` B la
.
i la` ma trˆa
.
n
bˆa
.
c thang do`ng ru´t go
.
n. Vˆa
.
y B = I
n
. T´u
.
c la` I
n
nhˆa
.
n d¯u
.
o
.
.
c t`u
.
A sau mˆo
.
t sˆo
´
h˜u
.
u ha
.
n phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p do`ng. (Ch´u
.
ng minh tu
.
o
.
ng tu
.
.
v´o
.
i phe´p biˆe
´
n
d¯ˆo
’
i so
.
cˆa
´
p cˆo
.
t)
(2)⇒(3): Gia
’
su
.
’
co´ (2), khi d¯o´ tˆo
`
n ta
.
i ca´c ma trˆa
.
n so
.
cˆa
´
p do`ng (hay cˆo
.
t)
E
1
, E
2
, ..., E
k
sinh ra t`u
.
mˆo
˜
i phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p do`ng (hay cˆo
.
t) d¯u
.
a A vˆe
`
I
n
sao cho:
E
k
...E
2
E
1
A = I
n
(hayAE
1
E
2
...E
k
= I
n
).
Do d¯o´: A = E
−1
1
E
−1
2
...E
−1
k
(hay A = E
−1
k
...E
−1
2
E
−1
k
), t´u
.
c (3) d¯u´ng.
(3)⇒(1): Gia
’
su
.
’
co´ (3), khi d¯o´ hiˆe
’
n nhiˆen A kha
’
nghi
.
ch vı` mˆo
˜
i ma trˆa
.
n so
.
cˆa
´
p la` kha
’
nghi
.
ch.
Hˆe
.
qua
’
1.3. Cho A la` mˆo
.
t ma trˆa
.
n vuˆong cˆa
´
p n trˆen K (n ≥ 2). Khi d¯o´,
nˆe
´
u A kha
’
nghi
.
ch thı` I
n
nhˆa
.
n d¯u
.
o
.
.
c t`u
.
A bo
.
’
i mˆo
.
t da
˜
y ca´c phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p do`ng (hay cˆo
.
t); d¯ˆo
`
ng th`o
.
i chı´nh da
˜
y ca´c phe´p bie´n d¯ˆo
’
i so
.
cˆa
´
p do`ng (hay
cˆo
.
t) d¯o´ se
˜
biˆe
´
n I
n
tha`nh nghi
.
ch d¯a
’
o A
−1
cu
’
a A.
T`u
.
hˆe
.
qua
’
1.3 ta co´ mˆo
.
t thuˆa
.
t toa´n kha´ hiˆe
.
u qua
’
kha´c d¯ˆe
’
tı`m ma trˆa
.
n
nghi
.
ch d¯a
’
o (nˆe
´
u co´) cu
’
a mˆo
.
t ma trˆa
.
n vuˆong cho tru
.
´o
.
c.
* Thuˆa
.
t toa´n tı`m ma trˆa
.
n nghi
.
ch d¯a
’
o nh`o
.
ca´c phe´p biˆe
´
n d¯ˆo
’
i so
.
cˆa
´
p.
Cho A la` mˆo
.
t ma trˆa
.
n vuˆong cˆa
´
p n (n ≥ 2) trˆen K. D
-
ˆe
’
tı`m ma trˆa
.
n nghi
.
ch
Ba`i gia
’
ng D
-
a
.
i sˆo
´
tuyˆe
´
n tı´nh