Tải bản đầy đủ (.pdf) (160 trang)

Volume 01 - Properties and Selection Irons, Steels, and High-Performance Alloys Part 14 potx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.51 MB, 160 trang )

24 75 640 92.8 235 33.9 76 82 710 103 . . .
. . .
-78 -108 1150 167 300 43.2 50 76 . . . . . . . . .
. . .
-196 -320 1520 221 280 40.9 45 66 1060 153 . . .
. . .
-253 -423 1860 270 420 60.6 27 54 1120 162 . . .
. . .
-269 -452 1720 250 400 58.2 30 55 . . . . . . . . .
. . .
304L sheet, longitudinal orientation
24 75 660 95.9 295 42.8 56 . . . 730 106 . . .
. . .
-78 -108 980 142 250 36.0 43 . . . 1030 150 . . .
. . .
-196 -320 1460 212 275 39.6 37 . . . 1420 206 . . .
. . .
-253 -423 1750 254 305 44.5 33 . . . 1290 187 . . .
. . .
-269 -452 1590 230 405 58.5 29 . . . 1460 212 . . .
. . .
304L sheet, transverse orientation
-269 -452 1540 223 410 59.5 35 . . . . . . . . . . . .
. . .
304L bar, longitudinal orientation
24 75 660 95.5 405 58.9 78 81 . . . . . . 190
27.6
-78 -108 1060 153 435 62.8 70 74 . . . . . . . . .
. . .
-196 -320 1510 219 460 66.6 43 66 . . . . . . 205
29.7


-253 -423 1880 273 525 75.8 42 41 . . . . . . . . .
. . .
-269 -452 1660 241 545 79.4 34 56 . . . . . . 200
29.2
310 sheet, longitudinal orientation
24 75 570 83.0 240 35.0 50 . . . 645 93.9 . . .
. . .
-196 -320 1080 156 545 79.1 68 . . . 1070 155 . . .
. . .
-253 -423 1300 188 715 104 56 . . . 1250 182 . . .
. . .
-269 -452 1230 178 770 112 58 . . . . . . . . . . . .
. . .
310 sheet, transverse orientation
24 75 600 86.8 240 34.8 46 . . . 630 91.6 . . .
. . .
-269 -452 1280 186 800 116 58 . . . . . . . . . . . .
. . .
310 bar, longitudinal orientation
24 75 585 84.8 340 49.1 50 76 770 112 . . .
. . .
-78 -108 740 107 305 43.9 72 68 . . . . . . . . .
. . .
-196 -320 1090 158 520 75.5 68 50 . . . . . . 205
29.9
-253 -423 1390 202 855 124 44 48 1305 189 . . .
. . .
-269 -452 1300 189 715 104 50 41 . . . . . . 205
29.9
310S forging, transverse orientation

24 75 585 84.8 260 37.9 54 71 800 116 . . .
. . .
-196 -320 1100 159 605 87.6 72 52 1350 196 . . .
. . .
-269 -452 1300 189 815 118 64 45 1600 232 . . .
. . .
316 sheet, longitudinal orientation
24 75 595 86.4 275 39.8 60 . . . . . . . . . . . .
. . .
-253 -423 1580 229 664 96.6 55 . . . . . . . . . . . .
. . .
321 sheet, longitudinal orientation
24 75 620 89.6 225 32.4 55 . . . 625 90.4 180
26.0
-196 -320 1380 200 315 45.6 46 . . . 1520 220 205
29.5
-253 -423 1650 239 375 54.5 36 . . . 1460 212 210
30.7
321 bar, longitudinal orientation
24 75 675 97.6 430 62.2 55 79 . . . . . . . . .
. . .
-78 -108 1060 153 385 55.9 46 73 . . . . . . . . .
. . .
-196 -320 1540 223 450 65.4 38 60 . . . . . . . . .
. . .
-253 -423 1860 270 405 58.5 35 44 . . . . . . . . .
. . .
347 sheet, longitudinal orientation
24 75 650 94 255 37 52 . . . . . . . . . . . .
. . .

-196 -320 1365 198 420 61 47 . . . . . . . . . . . .
. . .
-253 -423 1610 234 435 63 35 . . . . . . . . . . . .
. . .
347 bar
24 75 670 97.4 340 49.3 57 76 . . . . . . . . .
. . .
-78 -108 995 144 475 68.8 51 71 . . . . . . . . .
. . .
-196 -320 1470 214 430 62.2 43 60 . . . . . . . . .
. . .
-253 -423 1850 268 525 76.4 38 45 . . . . . . . . . . . .
Source: Ref 6, 7, 8, 9, 10, 11, 12
(a)

Stress concentration factor, K
t
, is 5.2 for 304 and 304L sheet, 14 for 304 bar, 6.3 for 310 sheet, 6.4 for 310 bar; K
t
is 10 for 310S forging; K
t
is
3.5 for 321 sheet.

Table 15 Typical tensile properties of cold-worked type 300 austenitic stainless steel sheet
Temperature

Tensile strength

Yield strength


Elongation,

%
Notch tensile

strength
(a)

Young's modulus

°C °F MPa ksi MPa ksi

MPa ksi GPa
10
6
psi
301, hard, cold rolled (42-60% reduction), longitudinal orientation
24 75 1310 190 1200 174 18 1390 201 . . .
. . .
-78 -108 1560 226 1130 164 23 1460 212 . . .
. . .
-196 -320 2020 293 1380 200 19 1660 241 . . .
. . .
-253 -423 2110 306 1610 233 14 1830 265 . . .
. . .
301, hard, cold rolled (42-60% reduction), transverse orientation
24 75 1310 190 1060 153 10 1430 207 . . .
. . .
-78 -108 1560 226 1070 155 28 1430 208 . . .

. . .
-196 -320 2060 299 1310 190 28 1670 243 . . .
. . .
-253 -423 1900 275 1570 227 8 1360 197 . . .
. . .
301, extra hard, cold rolled (>60% reduction), longitudinal orientation
24 75 1500 217 1370 198 9 1600 232 175
25.6
-78 -108 1710 248 1400 203 22 1680 244 180
26.3
-196 -320 2220 322 1610 234 22 1940 282 180
26.2
-253 -423 2220 322 1810 262 13 1890 274 190
27.6
-269 -452 2140 310 1930 280 2 . . . . . . . . .
. . .
301, extra hard, cold rolled (>60% reduction), transverse orientation
24 75 1590 230 1280 186 8 1520 220 . . .
. . .
-78 -108 1770 257 1250 181 18 1590 230 . . .
. . .
-196 -320 2190 318 1560 226 18 1680 244 . . .
. . .
-253 -423 2180 316 1830 266 5 1340 194 . . .
. . .
304, hard, cold rolled, longitudinal orientation
24 75 1320 191 1190 173 3 1460 212 180
25.9
-78 -108 1470 213 1300 188 10 1590 231 185
26.9

-196 -320 1900 276 1430 208 29 1910 277 200
29.1
-253 -423 2010 292 1560 226 2 2160 313 210
30.5
304, hard, cold rolled, transverse orientation
24 75 1440 209 1180 171 5 1200 174 195
28.0
-78 -108 1600 232 1330 193 7 1400 203 200
28.9
-196 -320 1870 271 1480 214 23 1690 245 205
30.0
-253 -423 2160 313 1560 226 1 1900 276 215
31.1
304L, 70% cold reduced, longitudinal orientation
24 75 1320 192 1080 156 3 . . . . . . . . .
. . .
-196 -320 1770 256 1530 222 14 . . . . . . . . .
. . .
-253 -423 1990 288 1770 256 2 . . . . . . . . .
. . .
304L, 70% cold reduced, transverse orientation
24 75 1440 209 1220 177 4 . . . . . . . . .
. . .
-196 -320 1890 274 1630 236 12 . . . . . . . . .
. . .
-253 -423 2230 324 1940 282 1 . . . . . . . . .
. . .
310, 75% cold reduced, longitudinal orientation
24 75 1180 171 1100 160 3 1360 197 175
25.4

-78 -108 1410 204 1290 187 4 1530 222 175
25.5
-196 -320 1720 249 1540 223 10 1900 276 180
26.4
-253 -423 2000 290 1790 259 10 2230 324 195
28.3
310, 75% cold reduced, transverse orientation
24 75 1370 199 1110 161 4 1370 199 195
28.1
-78 -108 1540 224 1290 187 8 1640 238 190
27.6
-196 -320 1880 272 1520 221 10 2050 297 195
28.2
-253 -423 2140 311 1790 260 9 2190 318 200 29.1
Source: Ref 6, 10, 13
(a)

K
t
= 6.3.

Table 16 Typical tensile properties of stainless steels other than type 300 series steels
Temperature

Tensile strength

Yield strength

Notch tensile


strength
(a)

Young's modulus

°C °F MPa ksi MPa ksi
Elongation,

%
Reduction,

in area, %

MPa ksi GPa
10
6
psi
202 sheet, annealed, longitudinal orientation
24 75 705 102 325 47.1 57 . . . . . . . . . . . .
. . .
-73 -100 1080 156 485 70.2 41 . . . . . . . . . . . .
. . .
-196 -320 1590 231 610 88.3 52 . . . . . . . . . . . .
. . .
-268 -450 1420 206 765 111 25 . . . . . . . . . . . .
. . .
202 sheet, cold reduced 50%, longitudinal orientation
24 75 1080 156 965 140 21 . . . . . . . . . . . .
. . .
-196 -320 1970 286 1070 155 28 . . . . . . . . . . . .

. . .
-268 -450 1950 283 1240 180 20 . . . . . . . . . . . .
. . .
21-6-9 plate, longitudinal orientation
(b)

24 75 705 102 385 55.9 54 80 . . . . . . . . .
. . .
-78 -108 895 130 590 85.4 60 75 . . . . . . . . .
. . .
-196 -320 1510 219 970 141 41 33 . . . . . . . . .
. . .
-253 -423 1660 241 1220 177 16 26 . . . . . . . . .
. . .
-269 -452 1700 247 1350 196 22 30 . . . . . . . . .
. . .
Pyromet 538 plate, longitudinal orientation
(c)

24 75 675 97.9 340 49.0 75 81 . . . . . . . . .
. . .
-196 -320 1370 199 800 116 76 73 . . . . . . . . .
. . .
-269 -452 1490 216 1010 147 52 59 . . . . . . . . .
. . .
Nitronic 40 plate, electroslag remelted; as-rolled
24 75 1010 146 840 122 35 72 . . . . . . . . .
. . .
-73 -100 1170 169 945 137 36 71 . . . . . . . . .
. . .

-196 -320 1830 266 1540 223 31 64 . . . . . . . . .
. . .
Nitronic 60 bar, annealed, longitudinal orientation
24 75 750 109 400 58.1 66 79 1080 157 165
24.0
-73 -100 1020 148 535 77.9 70 81 1480 215 165
24.2
-196 -320 1500 218 695 101 60 66 1900 275 170
24.8
-253 -423 1410 204 860 125 24 27 1870 271 170
24.8
416 bar, longitudinal orientation
(d)

24 75 1400 203 1200 174 15 53 . . . . . . . . .
. . .
-78 -108 1500 218 1260 183 15 52 . . . . . . . . .
. . .
-196 -320 1800 261 1600 232 9 24 . . . . . . . . .
. . .
-253 -423 2020 293 2020 293 0.4 2 . . . . . . . . . . . .
Source: Ref 6, 10, 11, 14, 15, 16, 17, 18, 19, 20
(a)

K
t
= 7 for Nitronic 60 bar.
(b)

Annealed 1 h at 1065 °C (1950 °F), water quenched.

(c)

Annealed 1 h at 1095 °C (2000 °F), water quenched.
(d)

Heat treatment: 1 h at 980 °C (1800 °F), oil quenched, tempered 4 h at 370 °C (700 °F), air cooled.

Results of tensile tests on stainless steel weldments at subzero temperatures, given in Table 17, may be significant in
selecting stainless steels for cryogenic applications. Results of ultrasonic determinations of Young's modulus and
Poisson's ratio for three stainless steels, shown in Fig. 10 and 11, serve to supplement the tensile data.
Table 17 Typical tensile properties of stainless steel weldments
Test
temperature
Yield
strength
Tensile
strength
Notch
tensile
strength
(b)

Alloy condition Welding

process
Filler Form

Base metal
orientation
(a)



°C °F MPa ksi MPa ksi
Elonga-

tion, %

Reduction

in area,
%
MPa
ksi
24 75 . . . . . . 1034 150 7 . . . . . .
. . .
-78 -108 . . . . . . 1489 216 13 . . . . . .
. . .
-196 -320 . . . . . . 2006 291 16 . . . . . .
. . .
Type 301, cold rolled 60%; tested as
welded
GTA None Sheet

L
-253 -423 . . . . . . 1675 243 6 . . . . . .
. . .
24 75 380 55.1 530 76.8 4 . . . . . .
. . .
-78 -108 523 75.9 723 105 4 . . . . . .
. . .

Type 310, hard; tested as welded
GTA 310 Sheet

L
-196 -320 752 109 1026 149 4 . . . . . .
. . .
24 75 334 48.5 582 84.4 40 76 841
122
-196 -320 660 96.6 1066 155 46 67 1428
207
AISI, 310S, annealed SMA 310S Plate . . .
-269 -452 829 120 1102 160 26 24 1672
242
21-6-9, annealed SMA Inconel 625 Plate Weld
(c)
-269 -452 878 127 1276 185 31 27 . . .
. . .

HAZ
(c)
-269 -452 1728 251 1873 272 21 33 . . .
. . .
Weld
(c)
-269 -452 951 138 1222 177 18 20 . . .
. . .
GTA Inconel 625 Plate
HAZ
(c)
-269 -452 1740 252 1921 279 17 37 . . .

. . .
Weld
(c)
-269 -452 833 121 1087 158 19 27 . . .
. . .
GMA Inconel 625 Plate
HAZ
(c)
-269 -452 1689 245 1866 271 15 27

24 75 414 60.0 725 105 51 74 1238
180
-196 -320 1009 146 1456 211 48 61 2119
307
GTA Pyromet
538
Plate . . .
-269 -452 1240 180 1646 239 31 24 1841
267
24 75 413 59.9 729 106 53 75 1018
148
-196 -320 800 116 1045 152 6 37 1416
205

GMA IN-182 Plate . . .
-269 -452 805 117 1086 158 6 40 1419 206
Source: Ref 6, 15, 17, 18, 21, 22
(a)

L, longitudinal.

(b)

K
t
= 10.
(c)

Weld parallel with specimen axis; weld specimens were all weld metal; HAZ specimens contained HAZ plus some weld metal and some base metal.


Fig. 10 Young's modulus for three austenitic stainless steels as determined ultrasonically. Source: Ref 23


Fig. 11 Poisson's ratios for three austenitic stainless steels as determined ultrasonically. Source: Ref 23

Fracture Toughness. Fracture toughness data for stainless steels are limited because steels of this type that are suitable
for use at cryogenic temperatures have very high toughness. The fracture toughness data that are available were obtained
by the J-integral method and converted to K
Ic
(J) values. Such data for base metal and weldments are shown in Table 18.
Fracture toughness of base metals are relatively high even at -269 °C (-452 °F); fracture toughness of fusion zones (FZ) of
welds may be lower or higher than that of the base metal.
Table 18 Fracture toughness of austenitic stainless steels and weldments for compact tension specimens
Fracture toughness, (K
Ic
), J, at
Alloy and
condition
(a)


Form Room-
temperature
yield strength
Orientation

24 °C (75 °F) -196 °C (-320 °F)
-269 °C (-452 °F)

MPa ksi

MPa
m


ksi
in


MPa
m


ksi
in


MPa
m



ksi
in


Plate 261 37.9 T-L . . . . . . . . . . . . 262
236
Type 310S,
annealed
Weldment . . . . . . . . . . . . . . . . . . . . . 118
106
Plate 338 49 T-L . . . . . . 275 250 182
165
Weldment . . . . . . . . . . . . . . . . . . . . . 82.4
74.4
Pyromet 538,
STQ
Weldment

. . . . . . . . . . . . . . . . . . . . . 176 159
Source: Ref 17, 24, 25, 26
(a)

STQ, solution treated and quenched. Filler wires for 310S: E 310-16; For Pyromet 538: 21-6-9.

Fracture Crack Growth Rates. Available data for determining fatigue crack growth rates at room temperature and at
subzero temperatures for austenitic stainless steels and weldments are presented in Table 19. The fatigue crack growth
rates of the base metals are generally higher at room temperature than at subzero temperatures, or about equal at room
temperature and at subzero temperatures, except for 21-6-9 stainless steel. For 21-6-9, fatigue crack growth rates are
higher at -269 °C (-452 °F) than at room temperature. A log-log plot of the da/dN data for type 304 stainless steel is
shown in Fig. 12. For this steel, fatigue crack growth rates are nearly the same, at the same values of K, for room-

temperature and cryogenic-temperature tests. Fatigue crack growth rates in the fusion zones of welds tend to be higher
than in the base metal.
Table 19 Fatigue crack growth rate (da/dN) data for compact tension specimens of austenitic stainless steels
Test temperature or
temperature
range
C
(b)

Estimated range for
∆K
Alloy and condition Orienta

tion
(a)

Fre
quency,

Hz
Stress

ratio,

R
°C °F da/dN:mm/
cycle
∆K:MPa
m



da/dN:in./
cycle
∆K:ksi
in


n
(b)

MPa
m


ksi
in


Type 304 annealed plate T-L 20-28 0.1 24 to -269 75 to -452 2.7 × 10
-9
1.4 × 10
-10
3.0 22-80
20-73
24 75 2.0 × 10
-10
1.2 × 10
-11
4.0 22-54
20-49

Type 304L annealed plate T-L 20-28 0.1
-196, -269 -320, -452 3.4 × 10
-11
2.0 × 10
-12
4.0 26-80
24-73
24 75 3.5 × 10
-11
2.1 × 10
-12
4.4 24-35
22-32
24 75 4.7 × 10
-9
2.4 × 10
-10
3.0 35-60
32-55
T-L 20-28 0.1
-196, -269 -320, -452 1.1 × 10
-10
6.1 × 10
-12
3.7 25-80
23-73
Type 310S annealed plate
. . . 10 0.1 -196, -269 -320, -452 1.4 × 10
-10
7.9 × 10

-12
3.75

24-71
22-65
Type 310S, SMA weld with E310-16 filler . . . 10 0.1 -196, -269 -320, -452 7.8 × 10
-13
5.0 × 10
-14
5.15

27-66
25-60
Type 316 annealed plate T-L 20-28 0.1 24 to -269 75 to -452 2.1 × 10
-10
1.2 × 10
-11
3.8 19-16
17-14
24, -196 75, -320 1.9 × 10
-10
1.1 × 10
-11
3.7 25-80
23-73
21-6-9 annealed plate T-L 20-28 0.1
-269 -452 3.6 × 10
-11
2.2 × 10
-12

4.4 25-70
23-64
24 75 1.8 × 10
-10
9.9 × 10
-12
3.7 26-55
24-50
Pyromet 538, GTA weld in annealed plate using 21-6-9 filler T-L 10 0.1
-196, -269 -320, -452 7.6 × 10
-14
5.47 × 10
-15
6.36

24-44
22-40
Pyromet 538, SMA weld in annealed plate using Inconel
182 filler
T-L 10 0.1 24 to -269 75 to -452 2.5 × 10
-12
1.6 × 10
-13
5.13

25-55 23-50
Source: Ref 17, 26
(a)

T, transverse; L, longitudinal.

(b)

C and n are constants from da/dN = C (∆K)''; ∆K, stress intensity factor range.


Fig. 12 Fatigue crack growth rate data for type 304 austenitic stainless steel (
annealed) at room temperature
and at subzero temperatures. Source: Ref 27
Fatigue Strength. The results of flexural and axial fatigue tests at 10
6
cycles on austenitic stainless steels at room
temperature and at subzero temperatures are presented in Table 20. Fatigue strength increases as exposure temperature is
decreased. Notched specimens have substantially lower fatigue strengths than corresponding unnotched specimens at all
testing temperatures. Reducing the surface roughness of unnotched specimens improves fatigue strength.
Table 20 Results of fatigue life tests on austenitic stainless steels
Fatigue strengths at 10
6
cycles
24 °C (75 °F)

-196 °C (-320 °F)

-253 °C (-423 °F)

Alloy and condition Stressing

mode
Stress
ratio, R


Cyclic
frequency, Hz

K
t

MPa ksi MPa ksi MPa
ksi
Type 301 sheet, extra full hard

Flex -1.0 29, 86 1 496 72 793 115 669
97

3.1

172 25 303 44 . . .
. . .
1 269 39 483 70 552
(a)

80
(a)

Type 304L bar, annealed Axial -1.0 . . .
3.1

193 28 207 30 228
(a)

33

(a)

Flex
(b)
-1.0 . . . 1 186 27 455 66 597
84
Type 310 sheet, annealed
Flex
(c)
-1.0 . . . 1 213 31 490 71 662
96
1 255 37 469 68 607
(a)

88
(a)

Type 310 bar, annealed Axial -1.0 . . .
3.1

186 27 234 34 352
(a)

51
(a)

1 221 32 303 44 372
54
Axial -1.0 . . .
3.5


124 18 154 22.3 181
26.3
Type 321 sheet, annealed
Flex
(b)
-1.0 30-40 1 172 25 303 44 358
52
Flex
(b)
-1.0 30-40 1 221 32 421 61 386
56
Type 347 sheet, annealed
Flex
(c)
-1.0 30-40 1 241 35 469 68 510 74
Source: Ref 6, 28, 29, 30, 31
(a)

Tested at -269 °C (-452 °F).
(b)

Surface finish 64 rms.
(c)

Surface finish 11 rms.


References cited in this section
4. R.L. Tobler, R.P. Reed, and D.S. Burkhalter, "Temperatu

re Dependence of Yielding in Austenitic Stainless
Steels," National Bureau of Standards, U.S. Department of Commerce
5. D.C. Larbalestier and H.W. King, Austenitic Stainless Steels at Cryogenic Temperatures, 1-
Structural
Stability and Magnetic Properties, Cryogenics, Vol 13 (No. 3), March 1973, p 160-168
6. K.R. Hanby et al., "Handbook on Materials for Superconducting Machinery," MCIC-HB-
04, Metals and
Ceramics Information Center, Battelle Columbus Laboratories, Jan 1977
7. A.J. Nachtigall, Strain Cyclin
g Fatigue Behavior of Ten Structural Metals Tested in Liquid Helium, Liquid
Nitrogen, and Ambient Air, in Properties of Materials for Liquified Natural Gas Tankage,
STP 579,
American Society for Testing and Materials, 1975, p 378-396
8. W. Weleff, H.S. Mc
Queen, and W.F. Emmons, Cryogenic Tensile Properties of Selected Aerospace
Materials, in Advances in Cryogenic Engineering,
Vol 10, K.D. Timmerhaus, Ed., Plenum Press, 1965, p
14-15
9. L.P. Rice, J.E. Campbell, and W.F. Simmons, Tensile Behavior of Parent-Metal and Welded 5000-
Series
Aluminum Alloy Plate at Room and Cryogenic Temperatures, in Advances in Cryogenic Engineering,
Vol
7, K.D. Timmerhaus, Ed., Plenum Press, 1962, p 478-489
10.

K.A. Warren and R.P. Reed, Tensile and Impact Properties of Selected Materials from 20° to 300 °K,

Monograph 63, National Bureau of Standards, U.S. Department of Commerce, June 1963
11.


C.J. Guntner and R.P. Reed, Mechanical Properties of Four Austenitic Steels at Temperatures Between 300°
and 20 °K, in Advances in Cryogenic Engineering,
Vol 6, K.D. Timmerhaus, Ed., Plenum Press, 1961, p
565-576
12.

C.J. Guntner and R.P. Reed, The Effect of Experimental Variables Including the Martensitic
Transformation on the Low-Temperature Mechanical Properties of Austenitic Stainless Steels, Trans. ASM,

Vol 55, Sept 1962, p 399-419
13.

J.F. Watson and J.L. Christian, Low Temperature Properties of Cold-
Rolled AISI Types 301, 302, 304ELC,
and 310 Stainless Steel Sheet, in Low-Temperature Properties of High-Strength Aircraft and Missile

Materials, STP 287, American Society for Testing and Materials, 1961, p 170-193
14.

J.H. Bolton, L.L. Godby, and B.L. Taft, Materials for Use at Liquid Hydrogen Temperature, in Low-
Temperature Properties of High-Strength Aircraft and Missile Materials, S
TP 287, American Society for
Testing and Materials, 1961, p 108-120
15.

H.L. Martin et al.,
"Effects of Low Temperature on the Mechanical Properties of Structural Metals," NASA
SP-5012 (01), Office of Technology Utilization, National Aeronautics and Space Administration, 1968
16.


D.T. Read and H.M. Ledbetter, Temperature Dependencies of the Elastic Constants of Precipitation-
Hardened Aluminum Alloys 2014 and 2219, in J. Eng. Mater. Technol. (Trans. ASME),
Series H, Vol 99
(No. 2), April 1977, p 181-184
17.

J.M. Wells, W.A. Logsdon, and R. Kossowsky, Evaluations of Weldments in Austenitic Stainless Steels for
Cryogenic Applications, in Advances in Cryogenic Engineering, Vol 24, K.D. Timmerhaus et al.,
Ed.,
Plenum Press, 1978, p 150-159
18.

R.R. Vandervoort, Mechanical Properties of Inconel 625 Welds in 21-6-9 Stainless Steel, Cryogenics,
Vol
18 (No. 8), Aug 1979, p 448-452
19.

J.W. Montano, "The Stress Corrosion Resistance and the Cryogenic Temperature Mechanical Properties of
Annealed Nitronic 60 Bar Material," NASA TM X-
73359, National Aeronautics and Space Administration,
Jan 1977
20.

J.E. Campbell and L.P. Rice, Properties of Some Precipitation-
Hardening Stainless Steels at Very Low
Temperatures, in Low-Temperature Properties of High-Strength Aircraft and Missile Materials,
STP 287,
American Society for Testing and Materials, 1961, p 158-167
21.


R.W. Finger, "Proof Test Criteria for Thin-Walled 2219 Aluminum Pressure Vessels," Vol I, NASA CR-
135036, Vol II, NASA CR-135037, The Boeing Aerospace Company, Aug 1976
22.

J.F. Watson and J.L. Christian, Mechanical Properties of High-Strength 301 Stainless Steel Sheet at 70, -
320, and -423 F in Base Metal and Welded Joint Configuration, in Low-Temperature Properties of High-
Strength Aircraft and Missile Materials, STP 287, American Society for Testing and Materials, 1961
23.

H.M. Ledbetter, W.F. Weston, and E.R. Naimon, Low-
Temperature Elastic Properties of Four Austenitic
Stainless Steels, J. Appl. Phys., Vol 6 (No. 9), Sept 1975, p 3855-3860
24.

R.L. Tobler et al., Low Temperature Fracture Behavior of Iron Nickel Alloy Steels, in
Properties of
Materials for Liquified Natural Gas Tankage,
STP 579, American Society for Testing and Materials, Sept
1975, p 261-287
25.

W.A. Logsdon, J.M. Wells, and R. Kossowsky
, Fracture Mechanics Properties of Austenitic Stainless Steels
for Advanced Applications, in
Proceedings of the Second International Conference on Mechanical
Behavior of Materials, American Society for Metals, 1976, p 1283-1289
26.

R.P. Reed, R.L. Tobler,
and R.P. Mikesell, The Fracture Toughness and Fatigue Crack Growth Rate of an

Fe-Ni-Cr Superalloy at 298, 76, and 4K, in Advances in Cryogenic Engineering,
Vol 22, K.D. Timmerhaus
et al., Ed., Plenum Press, 1977, p 68-79
27.

R.L. Tobler and R.P. Reed, Fa
tigue Crack Growth Resistance of Structural Alloys at Cryogenic
Temperatures, in Advances in Cryogenic Engineering, Vol 24, K.D. Timmerhaus, et al.,
Ed., Plenum Press,
1978, p 82-90
28.

T.F. Kiefer, R.D. Keys, and F.R. Schwartzberg, "Determination of Low-
Temperature Fatigue Properties of
Structural Metal Alloys," Final Report, The Martin Company, Oct 1965
29.

E.H. Schmidt, "Fatigue Properties of Sheet, Bar, and Cast Metallic Materials for Cryogenic Applications,"
Report R-7564, Rocketdyne Division, North American Rockwell Corporation, Aug 1968
30.

D.N. Gideon et al.,
The Fatigue Behavior of Certain Alloys in the Temperature Range from Room
Temperature to -423 F, in Advances in Cryogenic Engineering,
Vol 7, K.D. Timmerhaus, Ed., Plenum
Press, 1962, p 503-508
31.

D.N. Gideon et al.,
"Investigation of Notch Fatigue Behavior of Certain Alloys in the Temperature Range

of Room Temperature to -423 F," ASD-TR-62-351, Battelle Memorial Institute, Aug 1962
Wrought Stainless Steels
Revised by S.D. Washko and G. Aggen, Allegheny Ludlum Steel, Division of Allegheny Ludlum Corporation

Influence of Product Form on Properties
The mechanical properties of cast or wrought stainless steels vary widely from group to group, vary less widely from type
to type within groups, and may vary with product form for a given type. Because of the wide variation from group to
group, one must first decide whether a martensitic, ferritic, austenitic, duplex, or precipitation-hardening stainless steel is
most suitable for a given application. Once the appropriate group is selected, the method of fabrication or service
conditions may then dictate which specific type is required.
Before typical properties of the various product forms are discussed, it is important that two key points about stainless
steels be recognized. First, many stainless steels are manufactured and/or used in a heat-treated condition, that is, in some
thermally treated condition other than process annealed or, typically, mill processed. When this is the case, a tabulation of
typical properties may not give all the required information. Second, in many products strain hardening during fabrication
is a very important consideration. All stainless steels strain harden to some degree depending on structure, alloy content,
and amount of cold working. Consequently, for applications in which the service performance of the finished product
depends on the enhancement of properties during fabrication, it is essential that the manufacturer determine this effect
independently for each individual product. Here, techniques such as statistical-reliability testing are invaluable.
Cast Structures. Whether produced as ingot, slab, or billet in a mill or as shape castings in a foundry, cast structures
can exhibit wide variations in properties. Because of the possible existence of large dendritic grains, intergranular phases,
and alloy segregation, typical mechanical properties cannot be stated precisely and generally are inferior to those of any
wrought structure. Detailed information on the composition and properties of cast stainless steels is given in the article
"Cast Stainless Steels" in this Volume.
Hot Processing. The initial purpose of hot rolling or forging an ingot, slab, or billet is to refine the cast structure and
improve mechanical properties. Hot reduced products and hot reduced and annealed products exhibit coarser grain
structures and lower strengths than cold processed products. Grain size and shape depend chiefly on start and finish
temperatures and on the method of hot reduction. For instance, cross-rolled hand mill plate will exhibit a more equiaxed
grain structure than continuous hot rolled strip.
Hot reduction may be a final sizing operation, as in the case of hot-rolled bar, billet, plate, or bar flats, or it may be an
intermediate processing step for products such as cold-finished bar, rod, and wire, and cold-rolled sheet and strip.

Typical properties of hot processed products and of hot processed and annealed products are different from those of either
cast or cold reduced products. Hot processed products tend to have coarser grain sizes than cold reduced products.
Cold Reduced Products. When strained at ambient temperatures, all stainless steels tend to work harden, as shown in
Fig. 13. Because recrystallization does not occur during cold working, the final properties of thermally treated products
depend on:
• Amount of cold reduction (which helps determine the number of potential recrystallization sites)
• Type of mill thermal treatment (subcritical annealing, normalizing, or solution treatment)
• Time at any given temperature
Wrought products that have been cold reduced and annealed generally have finer grain sizes, which produce higher
strengths than hot processed products. Cold reduced products sometimes exhibit greater differences between transverse
and longitudinal properties than hot processed products.

Fig. 13 Typical effect of cold rolling on the tensile strength of selected stainless steels
Cold finishing is generally done to improve dimensional tolerances or surface finish or to raise mechanical strength. Cold-
finished products whether they have been previously hot worked and annealed or have been hot worked, cold worked,
and annealed have higher mechanical strength and slightly lower ductility than their process-annealed counterparts.
Wrought Stainless Steels
Revised by S.D. Washko and G. Aggen, Allegheny Ludlum Steel, Division of Allegheny Ludlum Corporation

Physical Properties
There are relatively few applications for stainless steels in which physical properties are the determining factors in
selection. However, there are many applications in which physical properties are important in product design. For
instance, stainless steels are used for many elevated-temperature applications, often in conjunction with steels of lesser
alloy content. Because austenitic stainless steels have higher coefficients of thermal expansion and lower thermal
conductivities than carbon and alloy steels, these characteristics must be taken into account in the design of stainless steel-
to-carbon steel or stainless steel-to-alloy steel products such as heat exchangers. In such products, differential thermal
expansion imposes stresses on the unit that would not be present were the unit made entirely of carbon or alloy steel; also,
if the heat-transfer surface is made of stainless steel, it must be larger than if it were made of carbon or alloy steel.
Typical physical properties of selected grades of annealed wrought stainless steels are given in Table 21. Physical
properties may vary slightly with product form and size, but such variations are usually not of critical importance to the

application.
Table 21 Typical physical properties of wrought stainless steels, annealed condition
Mean CTE from 0 °C (32 °F) to: Thermal conductivity Type UNS
number

Density

g/cm
3

(lb/in.
3

Elastic
modulus

GPa
(10
6
psi)
100 °C
(212 °F)
μm/m · °C
(μin./in. ·
°F)
315 °C
(600 °F)
μm/m · °C
(μin./in. ·
°F)

538 °C
(1000 °F)
μm/m · °C
(μin./in. ·
°F)
at 100 °C
(212 °F)
W/m · K
(Btu/ft · h ·
°F)
at 500 °C
(932 °F)
W/m · K
(Btu/ft · h ·
°F)
Specific
heat
(a)

J/kg · K
(Btu/lb ·
°F)
Electrical

resistivity,

nΩ · m
Magnetic

perme-

ability
(b)

Melting range
°C (°F)
201 S20100 7.8
(0.28)
197
(28.6)
15.7 (8.7) 17.5 (9.7) 18.4 (10.2) 16.2 (9.4) 21.5 (12.4) 500 (0.12) 690 1.02
1400-1450 (2550-
2650)
202 S20200 7.8
(0.28)
. . . 17.5 (9.7) 18.4 (10.2) 19.2 (10.7) 16.2 (9.4) 21.6 (12.5) 500 (0.12) 690 1.02
1400-1450 (2550-
2650)
205 S20500 7.8
(0.28)
197
(28.6)
. . . 17.9 (9.9) 19.1 (10.6) . . . . . . 500 (0.12) . . . . . .
. . .
301 S30100 8.0
(0.29)
193
(28.0)
17.0 (9.4) 17.2 (9.6) 18.2 (10.1) 16.2 (9.4) 21.5 (12.4) 500 (0.12) 720 1.02
1400-1420 (2550-
2590)

302 S30200 8.0
(0.29)
193
(28.0)
17.2 (9.6) 17.8 (9.9) 18.4 (10.2) 16.2 (9.4) 21.5 (12.4) 500 (0.12) 720 1.02
1400-1420 (2550-
2590)
302B S30215 8.0
(0.29)
193
(28.0)
16.2 (9.0) 18.0 (10.0) 19.4 (10.8) 15.9 (9.2) 21.6 (12.5) 500 (0.12) 720 1.02
1375-1400 (2550-
2550)
303 S30300 8.0
(0.29)
193
(28.0)
17.2 (9.6) 17.8 (9.9) 18.4 (10.2) 16.2 (9.4) 21.5 (12.4) 500 (0.12) 720 1.02
1400-1450 (2550-
2590)
304 S30400 8.0
(0.29)
193
(28.0)
17.2 (9.6) 17.8 (9.9) 18.4 (10.2) 16.2 (9.4) 21.5 (12.4) 500 (0.12) 720 1.02
1400-1450 (2550-
2650)
304L S30403 8.0
(0.29)

. . . . . . . . . . . . . . . . . . . . . . . . 1.02
1400-1450 (2550-
2650)
302Cu S30430 8.0
(0.29)
193
(28.0)
17.2 (9.6) 17.8 (9.9) . . . 11.2 (6.5) 21.5 (12.4) 500 (0.12) 720 1.02
1400-1450 (2550-
2650)
304N S30451 8.0
(0.29)
196
(28.5)
. . . . . . . . . . . . . . . 500 (0.12) 720 1.02
1400-1450 (2550-
2650)
305 S30500 8.0
(0.29)
193
(28.0)
17.2 (9.6) 17.8 (9.9) 18.4 (10.2) 16.2 (9.4) 21.5 (12.4) 500 (0.12) 720 1.02
1400-1450 (2550-
2650)
308 S30800 8.0
(0.29)
193
(28.0)
17.2 (9.6) 17.8 (9.9) 18.4 (10.2) 15.2 (8.8) 21.6 (12.5) 500 (0.12) 720 . . .
1400-1420 (2550-

2590)
309 S30900 8.0
(0.29)
200
(29.0)
15.0 (8.3) 16.6 (9.2) 17.2 (9.6) 15.6 (9.0) 18.7 (10.8) 500 (0.12) 780 1.02
1400-1450 (2550-
2650)
310 S31000 8.0
(0.29)
200
(29.0)
15.9 (8.8) 16.2 (9.0) 17.0 (9.4) 14.2 (8.2) 18.7 (10.8) 500 (0.12) 780 1.02
1400-1450 (2550-
2650)
314 S31400 7.8
(0.28)
200
(29.0)
. . . 15.1 (8.4) . . . 17.5 (10.1) 20.9 (12.1) 500 (0.12) 770 1.02
. . .
316 S31600 8.0
(0.29)
193
(28.0)
15.9 (8.8) 16.2 (9.0) 17.5 (9.7) 16.2 (9.4) 21.5 (12.4) 500 (0.12) 740 1.02
1375-1400 (2500-
2550)
316L S31603 8.0
(0.29)

. . . . . . . . . . . . . . . . . . . . . . . . 1.02
1375-1400 (2500-
2550)
316N S31651 8.0
(0.29)
196
(28.5)
. . . . . . . . . . . . . . . 500 (0.12) 740 1.02
1375-1400 (2500-
2550)
317 S31700 8.0
(0.29)
193
(28.0)
15.9 (8.8) 16.2 (9.0) 17.5 (9.7) 16.2 (9.4) 21.5 (12.4) 500 (0.12) 740 1.02
1375-1400 (2500-
2550)
317L S31703 8.0
(0.29)
200
(29.0)
16.5 (9.2) . . . 18.1 (10.1) 14.4 (8.3) . . . 500 (0.12) 790 . . .
1375-1400 (2500-
2550)
321 S32100 8.0
(0.29)
193
(28.0)
16.6 (9.2) 17.2 (9.6) 18.6 (10.3) 16.1 (9.3) 22.2 (12.8) 500 (0.12) 720 1.02
1400-1425 (2550-

2600)
329 S32900 7.8
(0.28)
. . . . . . . . . . . . . . . . . . 460 (0.11) 750 . . .
. . .
330 N08330

8.0
(0.29)
196
(28.5)
14.4 (8.0) 16.0 (8.9) 16.7 (9.3) . . . . . . 460 (0.11) 1020 1.02
1400-1425 (2550-
2600)
347 S34700 8.0
(0.29)
193
(28.0)
16.6 (9.2) 17.2 (9.6) 18.6 (10.3) 16.1 (9.3) 22.2 (12.8) 500 (0.12) 730 1.02
1400-1425 (2550-
2600)
384 S38400 8.0
(0.29)
193
(28.0)
17.2 (9.6) 17.8 (9.9) 18.4 (10.2) 16.2 (9.4) 21.5 (12.4) 500 (0.12) 790 1.02
1400-1450 (2550-
2650)
405 S40500 7.8
(0.28)

200
(29.0)
10.8 (6.0) 11.6 (6.4) 12.1 (6.7) 27.0 (15.6) . . . 460 (0.11) 600 . . .
1480-1530 (2700-
2790)
409 S40900 7.8
(0.28)
. . . 11.7 (6.5) . . . . . . . . . . . . . . . . . . . . .
1480-1530 (2700-
2790)
410 S41000 7.8
(0.28)
200
(29.0)
9.9 (5.5) 11.4 (6.3) 11.6 (6.4) 24.9 (14.4) 28.7 (16.6) 460 (0.11) 570 700-1000

1480-1530 (2700-
2790)
414 S41400 7.8
(0.28)
200
(29.0)
10.4 (5.8) 11.0 (6.1) 12.1 (6.7) 24.9 (14.4) 28.7 (16.6) 460 (0.11) 700 . . .
1425-1480 (2600-
2700)
416 S41600 7.8
(0.28)
200
(29.0)
9.9 (5.5) 11.0 (6.1) 11.6 (6.4) 24.9 (14.4) 28.7 (16.6) 460 (0.11) 570 700-1000


1480-1530 (2700-
2790)
420 S42000 7.8
(0.28)
200
(29.0)
10.3 (5.7) 10.8 (6.0) 11.7 (6.5) 24.9 (14.4) . . . 460 (0.11) 550 . . .
1450-1510 (2650-
2750)
422 S42200 7.8
(0.28)
. . . 11.2 (6.2) 11.4 (6.3) 11.9 (6.6) 23.9 (13.8) 27.3 (15.8) 460 (0.11) . . . . . .
1470-1480 (2675-
2700)
429 S42900 7.8
(0.28)
200
(29.0)
10.3 (5.7) . . . . . . 25.6 (14.8) . . . 460 (0.11) 590 . . .
1450-1510 (2650-
2750)
430 S43000 7.8
(0.28)
200
(29.0)
10.4 (5.8) 11.0 (6.1) 11.4 (6.3) 26.1 (15.1) 26.3 (15.2) 460 (0.11) 600 600-1100

1425-1510 (2600-
2750)

430F S43020 7.8
(0.28)
200
(29.0)
10.4 (5.8) 11.0 (6.1) 11.4 (6.3) 26.1 (15.1) 26.3 (15.2) 460 (0.11) 600 . . .
1425-1510 (2600-
2750)
431 S43100 7.8
(0.28)
200
(29.0)
10.2 (5.7) 12.1 (6.7) . . . 20.2 (11.7) . . . 460 (0.11) 720 . . .
. . .
434 S43400 7.8
(0.28)
200
(29.0)
10.4 (5.8) 11.0 (6.1) 11.4 (6.3) . . . 26.3 (15.2) 460 (0.11) 600 600-1100

1425-1510 (2600-
2750)
436 S43600 7.8
(0.28)
200
(29.0)
9.3 (5.2) . . . . . . 23.9 (13.8) 26.0 (15.0) 460 (0.11) 600 600-1100

1425-1510 (2600-
2750)
439 S43035 7.7

(0.28)
200
(29.0)
10.4 (5.8) 11.0 (6.1) 11.4 (6.3) 24.2 (14.0) . . . 460 (0.11) 630 . . .
. . .
440A S44002 7.8
(0.28)
200
(29.0)
10.2 (5.7) . . . . . . 24.2 (14.0) . . . 460 (0.11) 600 . . .
1370-1480 (2500-
2700)

×