Tải bản đầy đủ (.doc) (29 trang)

Thực trạng về việc sử dụng công nghệ Phytoextraction hiện nay

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.18 MB, 29 trang )


TIỂU LUẬN MÔI TRƯỜNG
TIỂU LUẬN MÔI TRƯỜNG
THỰC TRẠNG
THỰC TRẠNG
VỀ VIỆC SỬ DỤNG CÔNG NGHỆ
VỀ VIỆC SỬ DỤNG CÔNG NGHỆ


PHYTOEXTRACTION HIỆN NAY
PHYTOEXTRACTION HIỆN NAY
- 1 -

MỤC LỤC
M C L CỤ Ụ 2
MỞ ĐẦU
Khả năng làm sạch môi trường của thực vật đã được biết từ thế kỷ
XVIII bằng các thí nghiệm của Joseph Priestley, Antoine Lavoissier, Karl
Scheele và Jan Ingenhousz. Tuy nhiên, mãi đến những năm 1990 phương
pháp này mới được nhắc đến như một loại công nghệ mới dùng đề xử lý môi
trường đất và nước bị ô nhiễm bởi các kim loại, các hợp chất hữu cơ, thuốc
súng và các chất phóng xạ [7]. Công nghệ này được gọi là phytoremediation.
Các nghiên cứu trong phòng thí nghiệm cũng như trên thực tế đã chứng tỏ
được phytoremediation là một công nghệ thân thiện với môi trường, sử dụng
rộng rãi ở những nơi có nồng độ ô nhiễm thấp, có thể xử lí ô nhiễm trên diện
rộng, thời gian không bắt buộc, kiểm soát được và tiết kiệm chi phí hơn
những cách thức khác. Hiện nay, các nhà khoa học phát hiện ra khoảng 400
loài thực vật có khả năng sử dụng làm nguyên liệu cho công nghệ
phytoremediation và kèm theo đó là 30.000 chất ô nhiễm có thể xử lý. Các
nhà khoa học đã chia công nghệ này thành 6 công nghệ nhỏ:
Phytoextraction, Phytodegradation, Phytostabilization, Phytovolatilization,


Rhizofiltration, Rhizodegradation.
- 2 -

Phytoextraction: Có thể dịch là hấp thụ thực vật, trong đó cơ chế hoạt
động được dựa vào việc sử dụng thực vật bậc cao để hấp thụ các chất ô
nhiễm từ môi trường và tích luỹ chúng trong các tế bào thân và lá cây.
Phytodegradation: Hay còn gọi là phytotransformation được hiểu là
quá trình hấp thụ, tích luỹ và vận chuyển các hợp chất độc có nguồn gốc hữu
cơ từ đất, nước, không khí bằng thực vật. Tuy nhiên, quá trình này lại phụ
thuộc vào nhiều yếu tố như tính chất đất, điều kiện khí hậu, dạng chất cần xử
lý, bản chất của từng cây. Bởi có những chất hữu cơ bản thân nó cũng bị
phân huỷ do tác dụng của phản ứng hoá học hoặc do vi sinh vật. Khi đó
những chất sau khi bị phân hủy lại đóng vai trò là nguồn cung cấp dinh
dưỡng cho cây. Những chất ô nhiễm sau khi bị cây hấp thụ chúng bị biến đổi
phụ thuộc vào bản chất của chất đó. Khi đó có những chất sẽ được cây giữ
lại trong cấu trúc của tế bào hoặc trở thành nguyên liệu trong quá trình trao
đổi chất và sản phẩm cuối cùng của nó là khí CO2 và H2O.
Phytostabilization: Được hiểu là biện pháp cố định các chất ô nhiễm
trong đất bằng cách hấp phụ chúng lên trên bề mặt rễ hoặc cố định lại trong
vùng rễ của cây đồng thời sử dụng hệ rễ thực vật để ngăn cản sự di chuyển
của các chất ô nhiễm dưới tác dụng của gió, xói mòn do nước, thấm sâu và
phân tán đất. Trong biện pháp này thì chúng ta hiểu rằng cây sẽ không tích
lũy chất ô nhiễm, không sử dụng chất ô nhiễm làm nguồn dinh dưỡng mà
đơn thuần chỉ là cố định nó.
Phytovolatilization: Đây được hiểu là biện pháp sử dụng thực vật để
hút các chất ô nhiễm. Sau đó những chất ô nhiễm này sẽ được biến đổi và
chuyển vào trong thân sau đó lên lá và cuối cùng chúng được bài tiết ra
ngoài qua lỗ khí khổng cùng với quá trình thoát hơi nước của cây. Các chất
ô nhiễm này có thể được biến đổi trước khi đi vào cây do tác dụng của
enzym giúp cho cây hút chúng nhanh hơn, hoặc một số chất khi đi vào trong

- 3 -

cây mới bị biến đổi. Trong một số trường hợp thực vật ở vùng nhiệt đới hoặc
có điều kiện sống gần giống vùng nhiệt đới các chất ô nhiễm này có thể bị
bài tiết ra dưới dạng dịch. Giống như cơ chế giảm bớt hàm lượng muối ở cây
có khả năng chịu mặn.
Rhizofiltration: Là quá trình hấp phụ các chất ô nhiễm lên trên bề mặt
rễ hoặc là quá trình hấp thụ các chất ô nhiễm trong vùng rễ vào trong rễ.
Những quá trình này xảy ra nhờ quá trình hoá học hoặc quá trình sinh học.
Biện pháp này phụ thuộc vào nồng độ chất ô nhiễm, tính chất hoá học và lý
học của chất ô nhiễm, loài thực vật … Nó đạt hiệu quả cao khi chất cần xử
lý có khả năng tan tốt trong nước.
Rhizodegradation: Là quá trình phân huỷ chất ô nhiễm hữu cơ trong
đất thông qua quá trình hoạt động của vinh sinh vật. Ở những vùng rễ của
các loài cây ứng dụng biện pháp này thường có số lượng vi sinh vật rất lớn.
Ngoài ra trong quá trình phát triển, bộ rễ của cây không ngừng mở rộng tạo
làm thay đổi tính chất của đất, giúp cho oxy đi vào vùng rễ, điều này cũng
góp phần gián tiếp giúp cho các vi sinh vật phát triển. Có thể hiểu biện pháp
này chính là việc sử dụng khéo léo mối quan hệ cộng sinh của vi sinh vật
trong đất với cây. Chính vì lẽ đó mà biện pháp này chủ yếu sử dụng để xử lý
các chất ô nhiễm hữu cơ như PCB, thuốc trừ sâu, thuốc diệt cỏ,
Mỗi công nghệ có ưu điểm hạn chế riêng, do đó việc lựa chọn một
công nghệ thích hợp còn phụ thuộc vào nhiều yếu tố như: Loại chất ô nhiễm,
môi trường, nồng độ các chất… Trong khuôn khổ bài báo cáo này chỉ trình
bày công nghệ phytoextraction.

- 4 -

NỘI DUNG
1. Khái niệm

Các nhà khoa học trên thế giới nghiên cứu về
công nghệ phytoextraction đã đưa ra nhiều định
nghĩa về công nghệ này.
PHYTOEXTRACTION
- 5 -
The uptake of contaminants by plants roots and movement of
the contaminants from the roots to aboveground parts of plants.
( Các chất ô nhiễm được lấy đi bằng bộ rễ của cây và được vận
chuyển lên các cơ quan trên mặt đất của cây).

 Các cây chiếm các chất gây ô nhiễm và lưu lại trong sinh khối của
nó. Con người thu sinh khối này khi thu hoạch và xử lí cho phù hợp.
 Các chất ô nhiễm được xử lí bằng phương pháp này thì hủy đi một
sinh khối nhỏ hơn so với việc đào lấp đất hay phương pháp khác.
 Phương pháp này chủ yếu dùng để xử lí kim loại. Các thực vật
quan trọng sử dụng trong công nghệ thực vật chiết tách có thực vật siêu hấp
thụ - tức là có khả năng hấp thụ một lượng lớn kim loại.
2. Cơ chế hấp thụ KLN của thực vật
Hầu hết các loài thực vật rất nhạy cảm với sự có mặt của các ion kim
loại, thậm chí ở nồng độ rất thấp. Tuy nhiên, vẫn có một số loài thực vật
không chỉ có khả năng sống được trong môi trường bị ô nhiễm bởi các kim
loại độc hại mà còn có khả năng hấp thụ và tích các kim loại này trong các
bộ phận khác nhau của chúng. Thực vật có nhiều cách phản ứng khác nhau
đối với sự có mặt của các ion kim loại trong môi trường. Có nhiều giả thuyết
đã được đưa ra để giải thích cơ chế vận chuyển, hấp thụ và loại bỏ kim loại
nặng trong thực vật, chẳng hạn chúng hình thành một phức hợp tách kim loại
ra khỏi đất, tích luỹ trong các bộ phận của cây, sau đó được loại bỏ qua lá
khô, rửa trôi qua biểu bì, bị đốt cháy hoặc đơn thuần là phản ứng tự nhiên
của cơ thể thực vật [8].
Giả thuyết sự hình thành phức hợp: cơ chế loại bỏ các kim loại độc

của các loài thực vật bằng cách hình thành một phức hợp. Phức hợp này có
thể là chất hoà tan, chất không độc hoặc là phức hợp hữu cơ - kim loại được
chuyển đến các bộ phận của tế bào có các hoạt động trao đổi chất thấp
(thành tế bào, không bào), ở đây chúng được tích luỹ ở dạng các hợp chất
hữu cơ hoặc vô cơ bền vững.
- 6 -

Giả thuyết về sự lắng đọng: các loài thực vật tách kim loại ra khỏi
đất, tích luỹ trong các bộ phận của cây, sau đó được loại bỏ qua lá khô, rữa
trôi qua biểu bì hoặc bị đốt cháy.
Giả thuyết hấp thụ thụ động: sự tích luỹ kim loại là một sản phẩm
phụ của cơ chế thích nghi đối với điều kiện bất lợi của đất (ví dụ như cơ chế
hấp thụ Ni trong loại đất serpentin).
Sự tích luỹ kim loại là cơ chế chống lại các điều kiện stress vô sinh
hoặc hữu sinh: hiệu lực của kim loại chống lại các loài vi khuẩn, nấm ký
sinh và các loài sinh vật ăn lá đã được nghiên cứu.
Cây phát triển một số cơ chế hiệu quả chống chịu cao nồng độ kim loại
trong đất. Ở một số loài, sự linh hoạt này đạt được bằng cách ngăn chặn các
kim loại độc hại hấp thu vào các tế bào gốc nên có ít tiềm năng cho chiết
xuất kim loại.
Một nhóm thứ hai của thực vật, những loài tích tụ, không ngăn chặn
các kim loại nhập vào gốc. Các loài này đã tiến hóa các cơ chế cụ thể cho
giải độc kim loại đã tích lũy trong tế bào. Những cơ chế cho phép chúng tích
lũy với nồng độ rất cao của các kim loại.
Ngoài ra, một nhóm thực vật thứ ba, với sự kiểm soát các quá trình
hấp thụ kim loại và vận chuyển chúng trong cây.
- 7 -

Hình 1: So sánh cơ chế hấp thụ kim loại của thực vật siêu hấp thụ.
Cơ chế hấp thụ vào rễ và vận chuyển các kim loại các ion kim loại không

thể di chuyển tự do qua màng tế bào, trong đó là những cấu trúc lipophilic.
Do đó, vận chuyển ion vào trong tế bào phải được trung gian bởi các protein
màng với chức năng vận tải. Sự vận chuyển này được đặc trưng bởi các
thông số động lực nhất định, chẳng hạn như năng lực vận tải (Vmax) và ái
lực cho các ion (Km). Vmax là tỷ lệ tối đa của các ion vận chuyển qua màng
tế bào. Km là ái lực vận chuyển cho một ion cụ thể . Khi giá trị Km thấp, ái
lực cao, cho thấy rằng mức độ cao của các ion được vận chuyển vào trong tế
bào, ngay cả lúc nồng độ ion bên ngoài thấp. Hấp thụ kim loại lên thành các
tế bào gốc, các điểm có hiệu mô sống, là một bước quan trọng lớn cho quá
trình phytoextraction. Tuy nhiên, để quá trình phytoextraction xảy ra, kim
loại cũng phải được vận chuyển từ gốc đến ngọn. Chuyển động của kim loại
trong nhựa cây từ gốc đến ngọn, gọi là sự di chuyển, chủ yếu được kiểm soát
bởi hai quá trình: áp lực gốc và sự thoát hơi nước của lá. Sau khi di chuyển
đến lá, kim loại có thể được giải hấp thụ từ nhựa cây vào các tế bào lá.
- 8 -

Hình 2: Cơ chế hấp thụ kim loại ở thực vật.
 Cơ chế hấp thụ chất hữu cơ
- 9 -

3. Những vấn đề cần quan tâm khi sử dụng công nghệ phytoextraction.
Công nghệ phytoextraction (thực vật chiết rút – TVCR) chủ yếu được
sử dụng để giải ô nhiễm cho các môi trường đất, trầm tích và bùn lầy. Nó
cũng có thể xử lí ô nhiễm ở môi trường nước nhưng ít hơn.
Dưới đây là một số những điều kiện môi trường cần quan tâm đến khi
sử dụng công nghệ TVCR
3.1. Điều kiện đất
- Điều kiện đất phải phù hợp cho thực vật phát triển.
- Độ pH trong đất cần được điều chỉnh thích hợp.
- Chất tạo keo cần thiết làm tăng khả năng sinh học và hấp thu kim

loại của thực vật.
Loại đất cũng gây ảnh hưởng đến chiều sâu của rễ, chiều dài của rễ có
thể biến thiên từ 40 - 450cm ở những loài giống nhau nhưng sinh trưởng trên
các loại đất khác nhau. Ví dụ như trên nền đất cát, nơi hàm lượng nước trong
đất là rất thấp thì sự sinh trưởng của hệ thống rễ rất hạn chế (Danfors và
cs,1998)
- 10 -

Bảng 1: Chiều dài của rễ (tính theo cm) ở một số loài giống nhau trong các
loại đất khác nhau
Một số bằng chứng cho thấy rằng các vi sinh vật đất có cơ chế, có khả
năng thay đổi tính di động môi trường của chất gây ô nhiễm kim loại với khả
năng hấp thụ ở rễ. Ví dụ, một chủng Xanthomonas maltophyla được chứng
minh xúc tác làm giảm lượng Cr
6+
di động để tạo ra Cr
3 +
, một chât ít di động
và ít độc hại với môi trường, Blake et al., 1993). Các chủng khác cũng được
tìm thấy để tạo ra sự chuyển đổi của các ion kim loại độc hại khác bao gồm
PB
2+
, Hg
2 +
, Au
3+
, Te
4+
, Ag
+

…[4]
3.2. Nước ngầm và nước mặt
Điều đầu tiên cần xét đến của công nghệ xử lý ô nhiễm bằng thực vật
đối với nước ngầm là:
- Độ sâu của mực nước.
- Độ sâu của tầng ô nhiễm.
Tuy nhiên với công nghệ xử lý chất ô nhiễm bằng thực vật ở nước
ngầm ngoài việc bị hạn chế hay không hạn chế bởi độ sâu của mực nước thì
còn tùy thuộc vào khả năng phát triển của hệ rễ của thực vật.
- 11 -
Acer
pseudoplatanus
Populus spp
Populus
tremula
Betula
pendula
- - - 40 -60
Đất nhiều
cacbon
70 -500 120 - 140 90 - 150 100 - 150
Đất sâu, giàu
sét
110 - 140 100 - 260 30 - 150 - 450
Đất nhiều cát
130 - 140 110 - -
Các loại đất
khác
40 - 50 - - 90 - 130


Hình 3: Kỹ
thuật trồng cây xử lý nước ngầm
Hình
4: Kỹ
thuật trồng cây xử lý nước ngầm
3.3. Điều kiện thời tiết khí hậu
Những thực vật có khả năng siêu hấp thụ kim loại thường được tìm
thấy ở một số nơi có điều kiện địa lý đặc biệt và có thể không sống được
- 12 -

dưới một số điều kiện khác. Ví dụ như loài Thlaspi caerulescens không có
khả năng chịu được hạn hán.
Điều kiện khí hậu (chủ yếu là nhiệt độ và lượng mưa) gây ảnh hưởng
trực tiếp đến sự sản xuất sinh khối và gián tiếp đến sự tích lũy nồng độ kim
loại. Theo nghiên cứu trên loài S. viminalis trong thời gian sinh trưởng là 3
tháng trên những điều kiện đất có lượng mưa và nhiệt độ khác nhau ở Les
Abattes, Dormach, Caslano ( Hammer và Keller, 2002) thì sản xuất sinh
khối ở loài này đạt mức thấp nhất ở Les Abattes, nơi có lượng mưa trung
bình thấp hơn và nhiệt độ cao nhất.
Biểu đồ: Sự so sánh về sản xuất sinh khối của loài S. viminalis ở
Les Abattes, Dormach, Caslano ( Hammer và Keller, 2002).
4. Các chất ô nhiễm và nồng độ có thể áp dụng
Tùy thuộc vào từng trường hợp cụ thể mà các chất có thể được hấp thụ
bao gồm:
- Các kim loại: Ag, Cu, Co, Cd, Cr, Hg, Mo, Pb, Zn, Ni, Mn.
Việc hấp thụ các kim loại khác nhau thì khác nhau. Trên thực tế, yếu tố
quyết định khả năng hấp thụ kim loại là hệ số nhân ( Tỉ số của số g kim loại
trên số g trọng lượng khô của rễ với số g kim loại trên số g trọng lượng khô
của đất). Một ví dụ, sự hấp thụ Pb khó hơn sự hấp thụ Cd.
- 13 -


Kim loại
Khả năng hấp thụ
(Theo hệ số nhân)
Cr
6+
58
Cd
2+
52
Ni
2+
31
Cu
2+
7
Pb
2+
1.7
Cr
3+
0,1
Zn
2+
17
- Á kim: As, Se
- Các chất phóng xạ:
90
Sr,
137

Cs,
239
Pu,
234
U
- Phi kim: B
- Các chất hưu cơ: Sự tích lũy các chất hữu cơ và vận chuyển sinh
khối này nói chung vẫn còn chưa được nghiên cứu nhiều.

Nồng độ chất ô nhiễm
Nồng độ các chất ô nhiễm trong đất được dùng trong các nghiên cứu
hay được tìm thấy trên các cánh đồng trong các cuộc điều tra, khảo sát được
đưa ra dưới đây. Đây là nồng độ tổng số các kim loại, còn nồng độ di động
hoặc có sẵn có hoặc không.
- 1250mg/kg As (Pierzynski et al. 1994).
- 9,4 mg/kg Cd (Pierzynski et al. 1994).
- 11mg/kg Cd ( Pierzynski and Schwab 1992).
- 13,6mg/kg Cd (Thlaspi caerulescens ) (Baker et al . 1995).
- 2000 mg/kg Cd được sử dụng trong nghiên cứu sử dụng thực vật hấp
thụ Cd (Azadpour and Matthews, 1996).
- 110mg/kg Pb ( Pierzynski and Schwab 1992).
- 625mg/kg Pb (Nanda Kumar et al. 1995).
- 14 -

- 40mg/kg Se (Bãnuelos 1997b).
- 444mg/kg Zn (Thlaspi caerulescens )(Baker et al . 1995).
- 1165mg/kg Zn trong nghiên cứu về độc tính ( Pierzynski and
Schwab 1992).
5. Những loài thực vật sử dụng trong công nghệ phytoextraction
Đặc điểm của các loài thực vật được sử dụng trong phương pháp này

là phải cho sinh khối cao, vòng đời ngắn, có thể chống chịu và có khả năng
tích lũy chất ô nhiễm cao [7]. Các loài này là thực vật thân thảo hoặc thân
gỗ, có khả năng tích luỹ và không có biểu hiện về mặt hình thái khi nồng độ
kim loại trong thân cao hơn hàng trăm lần so với các loài bình thường khác.
Thực vật có nhiều cách phản ứng khác nhau ứng với mỗi chất khác
nhau ở những nồng độ khác nhau. Do vậy việc lựa chọn loài thực vật nào
ứng dụng trong lĩnh vực, phạm vi nào cần đảm bảo yếu tố và những điều
kiện sau:
- 15 -
Brassica juncea

 Những thực vật thường được sử dụng là Brassicaceae, Euphorbiaceae,
Asteraceae, Lamiaceae hay các cây thuộc họ Scrophulariaceae (Baker 1995).
Cụ thể:
* Brassica juncea (cây mù tạc Ấn Độ)
Cây mù tạc ấn độ (Brassica juncea) là một trong những loài thực vật
được công nhận là có khả năng lọc kim loại từ đất.
- Cho sinh khối cao hơn 20 lần
sinh khối của Thalaspi caerulescens
(Sate1995).
- Có thể tích luỹ kim loại như Pb,
Cr(VI), Cd, Cu, Ni, Zn, Sr90, B, và Se
(Nanda và Kumar 1995; Sate 1995,
Raskin 1994).
- Loại B. juncea phát triễn trên
phạm vi rộng thì tích luỹ Pb trong quá trình phát triển, với những cây có
phạm vi phát triển riêng thì tích luỹ Pb trong cành non từ 0.04 đến 3.5% và
trong rễ là từ 7 đến 19% ( Nanda Kumar 1995).
Các nhà nghiên cứu Thụy điển mới cho biết việc nhân giống in vitro
và các biến thể somaclonal có thể dùng để nâng cao tiềm năng của các loài

thực vật hấp thụ và tích lũy kim loại độc. Các nhà nghiên cứu đã tạo ra các
biến thể somaclonal của cây mù tạc Ấn Độ từ các tế bào sẹo chống chịu
được kim loại.
- 16 -

- Cây mù tạc Ấn Độ( Brassica
juncea) và canola ( Brassica
napus) được chỉ ra là tích
luỹ Se và B. Kenaf
(HIbiscus canabinus L. cv.
Indian) và các đồi đồng cỏ
(Festuca arundinacea Schreb
cv. Alta) chỉ hấp thụ Se, nhưng mức độ ít hơn canola (Banuxelos 1997).
Trong các cuộc khảo sát các mẫu thực vật khác nhau, B. juncea vận
chuyển đưa lên các cành non, chồi non, khả năng tích luỹ hơn 1.8% đến các
chồi non, cành non (khô nặng). Khảo sát các mẫu cây thì có 0.82% đến
10.9% Pb trong rễ ( Brassica là cao nhất), còn cành non, chồi non thì ít Pb
hơn. Đối với hoa hướng dương ( Helianthus annuus) và cây thuốc lá
(Nicotiana tabacum), hay các cây không thuộc Brassica có hệ số khấu chiết
thấp hơn.
• Thlaspi caerulescens
Có thể tích luỹ Ni và Zn
(Brown 1994).
Các nhà khoa học thuộc ĐH
Purdue, West Lafayette, Mỹ, đã
tập trung nghiên cứu và tìm ra
những loại thực vật có khả năng
thẩm tách và lưu giữ một số lượng
rất lớn kim loại nặng trong thân,
chúng được gọi là

hyperaccumulators. Họ đã nghiên
- 17 -
Thlaspi caerulescens

cứu hơn 20 loài thực vật hoang dại có họ với cây cải bắp. Dựa trên số lượng
thực vật đó, họ lựa chọn ra một số loại cải xoong, có tên khoa học là Thlaspi
caerulescens. Loài cải xoong này rất dễ trồng và mọc được ngay trong
phòng thí nghiệm. Hơn thế nữa, chúng được xếp vào những thực vật dòng
hyperaccumulators.
Trên thực tế, khả năng tích luỹ của cải xoong đã được phát hiện từ rất
lâu, năm 1865. Khi những người nông dân tiến hành phát quang đất đai để
trồng trọt đã phát hiện ra trong thân cải xoong có chứa một lượng lớn kẽm.
Kể từ đó, rất nhiều loại thực vật dòng hyperaccumulators được tìm thấy và
được sử dụng để loại bỏ kim loại nặng ra khỏi đất. Tuy nhiên, việc sử dụng
chúng mới dừng lại ở mức như một cách truyền bá kinh nghiệm. Hiểu sâu và
có thể lai tạo được các giống thực vật này thì vẫn chưa được quan tâm đúng
mức.
* Alyssum wulfenianum
- Có khả năng tích luỹ Ni
(Reeves và Brooks 1983).
* Hybrid poplar
- Cây bạch dương lai được sử dụng
trong nghiên cứu ở các đoạn cuối của
hầm mỏ nơi thải ra các chất ô nhiễm với
As và Cd (Pierzynski 1994)
- 18 -

* Lambsquarter
Cho phép tập trung một lương As cao
(14 mg/kg As) hơn các loài khác (Pierzynski

1994).
* Hoa hướng dương (Helianthus)
Hoa hướng dương sử dụng trong mô hình
westland có thể xử lí 90% Urani. [10]
Các loại ngũ cốc như ngô, cây lúa miến và cây cỏ đinh lăng có thể
hiệu quả hơn trong việc tích lũy và loại bỏ kim loại lớn hơn so với những
thực vật siêu hấp thụ bởi tốc độ sinh trưởng nhanh và sinh khối lớn hơn.
- 19 -
Cây lúa miến Cỏ đinh lăng

* Thực vật siêu hấp thụ là loài có khả năng tích tụ các kim loại ở mức
100-lần lớn hơn những loài thực vật thông thường khác. Vì thế, một TVSHT
sẽ tập trung hơn 10 Hg ppm; 100 ppm Cd; 1.000 ppm Co, Cr,Cu, Pb và
10.000 ppm Zn. Đến nay, trong khoảng 400 loài TVCR thì có ít nhất 45loài
đã được thông báo là các hyperaccumulate kim loại. Được biết đến nhiều
nhất trong các hyperaccumulator kim loại là loài Thlaspi caerulescens.
Trong khi hầu hết các loài biểu hiện triệu chứng ngộ độc do tích tụ Zn của
tại khoảng 100 ppm, T. caerulescens có thể tích lũy lên đến 26.000 ppm mà
không hiển thị bất kỳ tổn thương nào (Brown et al, 1995b.).
Loài thực vật dòng hyperaccumulators có thể mọc được trên nền đất
nông nghiệp hoặc công nghiệp bị nhiễm bẩn kim loại nặng. Các nhà khoa
học hy vọng rằng với nghiên cứu của họ về dòng thực vật này, có thể những
vùng đất rộng lớn bấy lâu bị bỏ hoang có thể được phục hồi. Tuy nhiên, để
áp dụng được thành tựu này với quy mô tương đối lớn, chắc chắn cần thêm
những nghiên cứu sâu hơn nữa.
Kim loại Số lượng loài có khả năng hấp thụ
Ni >300
- 20 -
Lúa miến
Vetiver zizaniodes L.


Co 26
Cu 24
Zn 18
Mn 8
Pb 5
Cd 1
Bảng: Số lượng loài có khả năng hấp thụ đối với từng kim loại
Ví dụ: Khả năng tích luỹ Cr trong các bộ phận của cỏ Vetiver
Cr được tìm thấy trong các bộ phận của cỏ
ở các nồng độ khác nhau. Tuy nhiên, ở nồng độ
200ppm, hàm lượng Cr tích lũy trong thân, lá cao
nhất sau 70 xử lý (1,25mg). Ở tất cả các nồng độ
xử lý, hàm lượng Cr tích lũy trong rễ đều cao hơn
trong thân và lá. Tốc độ tích lũy Cr trong rễ tăng
đều theo thời gian, trong khi tích lũy trong thân,
lá tăng chậm ở 50 ngày đầu, sau đó tăng rất
nhanh ở giai đoạn 20 ngày tiếp theo. Điều này
chứng tỏ có sự tích lũy Cr trong rễ sau đó vận chuyển lên thân và lá.
Khả năng loại bỏ Cr ra khỏi đất
Hàm lượng Cr trong đất ở tất cả chậu thí nghiệm đều giảm theo thời
gian. Sau 70 ngày xử lý, hàm lượng Cr còn lại trong các chậu từ 37,8 –
45,7%. Các kết quả trên cho thấy, ở nồng độ Cr 150 và 200ppm, sau 50 ngày
thí nghiệm cỏ vetiver phục hồi và phát triển mạnh, khả năng tích lũy Cr
trong cây cao, đồng thời hiệu quả xử lý Cr cũng rất lớn.
- 21 -

Ghi chú:
- Các số có cùng chữ cái ở cùng 1 phía không có sự sai khác đáng kể với
mức ý nghĩa a=0,05

- Các chữ cái ở góc phải biểu thị sự khác nhau theo thời gian.
- Các chữ cái ở góc trái biểu thị sự khác nhau theo nồng độ.
- (-) không phân tích
Như vậy, kết quả này cho thấy cỏ vetiver có khả năng xử lý đất ô nhiễm Cr
dưới 250ppm[7].
6. Thuận lợi và khó khăn
6.1. Thuận lợi
Nguồn sinh khối thực vật sử dụng để hấp thụ các chất ô nhiễm có thể
trở thành nguồn tài nguyên lớn. Ví dụ như nguồn sinh khối thực vật sau khi
hấp thụ Se, một chất dinh dưỡng trong nước, có thể được vận chuyển đến
những vùng bị thiếu hụt Se và sử dụng chúng làm thức ăn cho gia súc
(Bãnuelos 1997a).
- 22 -

Không gây ô nhiễm môi trường bởi vì sự hấp thụ chất ô nhiễm trong
đất là tại chỗ, nên tránh được sự phá vỡ cảnh quan và bảo tồn hệ sinh thái.
Tiết kiệm chi phí:
+ Theo Cunningham, 1996 trong vòng 30 năm thì giá trị tiêu tốn cho
việc xử lí 12 mẫu Anh nơi bị ô nhiễm chì là 12 triệu $ cho việc đào bới và
tẩy, 6,3 triệu $ cho việc rửa đất, 600000$cho việc rửa đất và 200000$ cho
việc xử lí bằng phytoextraction.
+ Trong một nghiên cứu có liên quan đến việc xử lí cho lớp trầm tích
dày 20 inch bị ô nhiễm Cd, Zn, và
137
Cs từ cái ao chứa nước thải chất hoá
học có diện tích là 1,2 mẫu Anh. Trong đó trị giá việc sử dụng
phytoextraction chỉ tiêu tốn 1/3 so với việc rửa đất.
+ Đánh giá phytoextraction chất ô nhiễm đã được định giá từ 60000-
100000$ cho việc xử lí của 1,2 mẫu Anh có lớp trầm tích dày 20 inch, so với
mức nhỏ nhất là 400000$ cho việc đào bới và sắp xếp lại mảnh đất này.

Nếu sử dụng các loài thực vật là cây ngũ cốc thì thu sinh khối cao, tốc
độ sinh trưởng nhanh, là các loài cỏ thì có khả năng tích lũy lớn.
Các loài thực vật thì có thể được điều khiển dễ dàng, khả năng phục
hồi và sử dụng lại những kim loại có giá trị (theo Entry và cs, 1997).
Ứng dụng thực vật trong việc thu hồi các chất ô nhiễm vô cơ là một
công nghệ hoàn toàn mới mẻ, đang ở giai đoạn đầu của sự phát triển. Theo
đánh giá sơ bộ, giá thành trung bình của việc tẩy độc bằng các phương pháp
hoá học, cơ học, lý hoá học… cao hơn rất nhiều lần so với giá thành xử lý
môi trường ô nhiễm bằng biện pháp sinh học.
Theo tính toán lý thuyết, ở điều kiện Việt Nam, một hecta rừng ngập
mặn mỗi năm tăng trưởng 56 tấn sinh khối và có thể hấp thụ 219 kg Nitơ, 20
- 23 -

kg Photpho (Jesper Clausen, 2002). Rừng ngập mặn có bộ rễ với cấu tạo đặc
biệt là nơi lưu giữ các trầm tích và hấp thụ các kim loại nặng[1].
6.2. Khó khăn và giải pháp
Sử dụng TV hấp thụ gặp phải một số khó khăn như sau:
Đối với việc sử dụng TVCR, chất gây ô nhiễm phải sẵn sàng để được
hấp thụ bởi rễ. Khả dụng này phụ thuộc vào tính hòa tan kim loại trong dung
dịch đất. Chỉ có liên kết với các kim loại tồn tại trong đất như là các ion kim
loại sẵn có và phức kim loại hòa tan; hoặc được hấp thụ ở dạng các ion trao
đổi. Một số kim loại như Zn và Cd, chủ yếu ở dạng trao đổi, hình thức dễ
dàng cho cây hấp thụ. Một số khác chẳng hạn như Pb, chủ yếu ở dạng kết
tủa trong đất, nên làm giảm đáng kể khả năng hấp thụ.
Sự tích lũy các KLN nói chung là gia tăng chậm khi sinh khối nhỏ và
sự phát triển kém của hệ thống rễ.
Một số loài thực vật chỉ tích lũy kim loại ở nồng độ lớn như loài :
Thlaspi rotundifolum chỉ sinh trưởng, phát triển ở các khu vực có hàm lượng
khoáng Pb-Zn đạt 8200g/ gPb (0,82 %) và 17300g/g Zn (1,73%), hay loài
Armeria maritima var. halleri với 1300g/g Pb tính theo trọng lượng khô

(Reeves and Brooks 1983).
Sinh khối TV phải được thu hoạch lại và vận chuyển kéo theo sự phát
tán kim loại và sự phân hủy, thối rữa của lượng sinh khối đó.
Một số kim loại có thể có độc tính (Nanda kumar và cs,1995).
Nếu sử dụng thực vật là các loại ngũ cốc có thể gây độc cho chuỗi
thức ăn.
Việc loại bỏ các chất phóng xạ có thể đòi hởi thời gian lâu hơn so với
các phương pháp truyền thống. Ví dụ: Việc loại bỏ
137
Cs và
90
Sr có thể mất
từ 5 – 20 năm để xử lí toàn bộ (theo Entry và cộng sự 1997).
- 24 -

Những nghiên cứu về sự hấp thụ của TV thường được tiến hành với
các loài thực vật sinh trưởng trong điều kiện thí nghiệm, với các chất ô
nhiễm được bổ sung vào trong mỗi tình huống, vì vậy không sát với các điều
kiện thực tế cũng như các quá trình diễn ra và kết quả có thể mang lại trong
môi trường đất. (Nanda Kumar và cs,1995).
7. Tình hình nghiên cứu ứng dụng và triển vọng
Khái niệm của việc sử dụng thực vật để làm sạch môi trường bị ô
nhiễm không phải là mới. Khoảng 300 năm trước đây, hệ thống này đã được
đề xuất để sử dụng trong việc xử lý nước thải (Hartman, 1975). Vào cuối của
thế kỷ 19, Thlaspi caerulescens và Viola calaminaria là 2 trong số các loài
TV được sử dụng để tích luỹ các kim loại trong lá (Baumann, 1885). Năm
1935, theo báo cáo của Byers với các loài trong chi Astragalus có khả năng
tích lũy lên đến 0,6% Se theo sinh khối khô. Một thập kỷ sau đó, Minguzzi
và Vergnano (1948) xác định được khả năng tích lũy có thể lên tới 1% trong
các cành[5].

Tuy nhiên sử dụng thực vật để làm sạch môi trường bị ô nhiễm trong
đó có đất bị nhiễm kim loại là một công nghệ mới được nghiên cứu trong
những năm gần đây (Salt et al., 1995; Bert et al., 2000 – 01). Kỹ thuật này
ngày càng phát triển nhờ vào tính hiệu quả, kinh tế và tránh được những hậu
quả phụ so với sử dụng những kỹ thuật khác (Lasat, 2002). Chiến lược mới
trong giải ô nhiễm đất bị nhiễm kim loại nặng theo hướng sinh học bởi cơ
chế thực vật chiết tách (phytoextraction) hoặc tích lũy (phytoaccumulation)
với các loài thực vật siêu hấp thụ (hyperaccumulator) đã dẫn đến phong trào
quan tâm đến những loại thực vật có khả năng siêu hấp thụ (Haag-Kerner,
1999; McGrath và cs,1993; Robinson và cs,1997). Thực vật có khả năng hấp
thụ và di chuyển kim loại từ đất vào những phần bên trên mặt đất của cây
hoặc rễ, sau đó có thể thu hoạch dễ dàng (Garbisu và cs, 2001). Một số nhà
- 25 -

×