Tải bản đầy đủ (.pdf) (67 trang)

2dof Forced vibration of two degrees of freedom system

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (849.55 KB, 67 trang )

Twodegreeoffreedomsystems
•Equationsofmotionforforcedvibration
•Freevibrationanalysisofanundampedsystem
Introduction
Introduction
h dd d dbh
• Systemst
h
atrequiretwoin
d
epen
d
entcoor
d
inatesto
d
escri
b
et
h
eir
motionarecalledtwodegreeoffreedomsystems.
f
Nb
masseach ofmotion of s
y
stemin the s
y
stem theof
typespossible ofnumber masses ofNumber freedom of degrees
o


f
N
um
b
er

y
y
Introduction
Introduction
h f d f fd f h
• T
h
erearetwoequations
f
oratwo
d
egreeo
f

f
ree
d
omsystem,one
f
oreac
h

mass(preciselyoneforeachdegreeoffreedom).
• Theyaregenerallyintheformofcoupleddifferentialequations‐thatis,

eachequationinvolvesallthecoordinates.
• Ifaharmonicsolutionisassumedforeachcoordinate,theequationsof
motionleadtoafre
q
uenc
y
e
q
uationthat
g
ivestwonaturalfre
q
uenciesof
qyq g q
thesystem.
Introduction
Introduction
If i it bl iitil it ti th t ib t t f th

If
weg
i
vesu
it
a
bl
e
i
n
iti

a
l
exc
it
a
ti
on,
th
esys
t
emv
ib
ra
t
esa
t
oneo
f

th
ese
naturalfrequencies.Duringfreevibrationatoneofthenatural
frequencies,theamplitudesofthetwodegreesoffreedom(coordinates)
are related in a specified manner and the configuration is called a
normal
are

related

in


a

specified

manner

and

the

configuration

is

called

a

normal

mode,principlemode,ornaturalmodeofvibration.
• Thusatwodegreeoffreedomsystemhastwonormalmodesofvibration
correspondingtotwonaturalfrequencies.
• Ifwegiveanarbitraryinitialex citationtothesystem,theresultingfree
vibrationwillbeasuperpositionofthetwonormalmodesofvibration.
However
,
ifthes
y

stemvibratesundertheactionofanexternalharmonic
, y
force,theresultingforcedharmonicvibrationtak esplaceatthefrequency
oftheappliedforce.
Introduction
Introduction
d f h h h f h f f
• Asisevi
d
ent
f
romt
h
esystemss
h
ownint
h
e
f
igures,t
h
econ
f
igurationo
f
a
systemcanbespecifiedbyasetofindependentcoordinatessuchas
length,angleorsomeotherphysicalparameters.Anysuchsetof
coordinatesiscalledgeneralizedcoordinates.


Although the equations of motion of a two degree of freedom system are

Although

the

equations

of

motion

of

a

two

degree

of

freedom

system

are

generallycoupledsothateachequationinvolvesallcoordinates,itis
alwayspossibletofindaparticularsetofcoordinatessuchthateach

i f i i l di Th i f i
equat
i
ono
f
mot
i
onconta
i
nson
l
yonecoor
di
nate.
Th
eequat
i
onso
f
mot
i
on
arethenuncoupled andcanbesolvedindependentlyofeachother.Such
asetofcoordinates,whichleadstoanuncoupledsystemofequations,is
calledprinciplecopordinates.
Equationsofmotionforforced
vibration
d l ddd f fd
• Consi
d

eraviscous
l
y
d
ampe
d
two
d
egreeo
f

f
ree
d
omspring‐masssystem
showninthefigure.
• Themotionofthesystemiscompletelydescribedbythecoordinatesx1(t)
andx
2(t),whichdefinethepositionsofthemassesm1 andm2 atanytimet
from the respective equilibrium positions
from

the

respective

equilibrium

positions
.

Equationsofmotionforforced
vibration
h l f
d
h
d
l
• T
h
eexterna
l

f
orcesF1 an
d
F2 actont
h
emassesm1 an
d
m2,respective
l
y.
Thefreebodydiagramsofthemassesareshowninthefigure.
• Thea
pp
licationofNewton’ssecondlawofmotiontoeachofthemasses
pp
givestheequationofmotion:
Equationsofmotionforforced
vibration

b h h f l
h
• Itcan
b
eseent
h
att
h
e
f
irstequationcontainstermsinvo
l
vingx2,w
h
ereas
thesecondequationcontainstermsinvolvingx
1.Hence,theyrepresenta
systemoftwocoupledsecond‐orderdifferentialequations.Wecan
thereforeexpectthatthemotionofthem1 willinfluencethemotionof
m
2,andvicaver sa.
Equationsofmotionforforced
vibration
h b f
• T
h
eequationscan
b
ewritteninmatrix
f

ormas:
where [m] [c] and [k] are mass damping and stiffness matrices
where

[m]
,
[c]

and

[k]

are

mass
,
damping

and

stiffness

matrices
,
respectivelyandx(t)andF(t)arecalledthedisplacementandforce
vectors,respectively. whicharegivenby:
Equationsofmotionforforced
vibration
b h h [][] d [k] ll h
• Itcan

b
eseent
h
att
h
ematrices
[
m
]
,
[
c
]
an
d

[k]
area
ll
2x2matricesw
h
ose
elementsaretheknownmasses,dampingcoefficienst,andstiffnessofthe
system,respectively.
• Further,thesematricescanbeseentobesymmetric,sothat:
Freevibrationanalysisofanundampedsystem

For the free vibration analysis of the system shown in the figure we set
For


the

free

vibration

analysis

of

the

system

shown

in

the

figure
,
we

set

F
1(t)=F2(t)=0.Further,ifthedampingisdisregarded,c1=c2=c3=0,andthe
equationsofmotionreduceto:
Freevibrationanalysisofan

undampedsystem
d k hh
d
ll
• Weareintereste
d
in
k
nowingw
h
et
h
erm1 an
d
m2 canosci
ll
ate
harmonicallywiththesamefrequencyandphaseanglebutwithdifferent
amplitudes.Assumingthatitispossibletohaveharmonicmotionofm
1
andm2 atthesamefrequency

andthesamephaseangle

,wetakethe
solutionstotheequations
as:
h X
d X
h d h i li d f

w
h
ere
X
1 an
d

X
2 areconstantst
h
at
d
enotet
h
emax
i
mumamp
li
tu
d
eso
f

x
1(t)andx2(t)and isthephaseangle.Substitutingtheabovetwo
solutionsintothefirsttwoequations,wehave:
Freevibrationanalysisofan
undampedsystem
• Sincetheaboveequationsmustbesatisfiedforallvaluesoftimet,the
termsbetweenbracketsmustbezero.Thisyields,

which represents two simultaneous homogeneous algebraic equations in
which

represents

two

simultaneous

homogeneous

algebraic

equations

in

theunknownsX
1 andX2.Itcanbeseenthattheaboveequationcanbe
satisfiedbythetrivialsoutionX
1=X2=0,whichimpliesthatthereisno
ib i F iil li f X
d X
h di f
v
ib
rat
i
on.
F

oranontr
i
v
i
a
l
so
l
ut
i
ono
f

X
1 an
d

X
2,t
h
e
d
eterm
i
nanto
f

coefficientsofX
1 andX2 mustbezero.
Freevibrationanalysisofan

undampedsystem
• Theaboveequationiscalledthefrequency orcharacteristicequation


0}))({(})({)(
2
23221
2
132221
4
21
 kkkkkmkkmkkmm

becausesolutionofthisequationyieldsthefrequenciesofthe
characteristicvaluesofthesystem.Therootsoftheaboveequationare
g
ivenb
y
:
g y
Freevibrationanalysisofan
undampedsystem
Thi h th t it i ibl f th t t h tii lhi

Thi
ss
h
ows
th
a

t

it

i
sposs
ibl
e
f
or
th
esys
t
em
t
o
h
aveanon
t
r
i
v
i
a
l

h
armon
i
c

solutionoftheform
when=1 and=2 givenby:
WeshalldenotethevaluesofX1 andX2 correspondingto1 as
andthosecorrespondingto
2 as.
Freevibrationanalysisofan
Fth i
undampedsystem

F
ur
th
er,s
i
nce
theaboveequationishomogeneous,onlytheratiosand
r2=canbefound.For,theequations
give:
• Noticethatthetworatiosareidentical.
Freevibrationanalysisofan
undampedsystem
Th l d f ib ti di t b

Th
enorma
l
mo
d
eso
f

v
ib
ra
ti
oncorrespon
di
ng
t
ocan
b
e
expressed,respectively,as:
• Thevector s,whichdenotethenormalmodesofvibrationare
knownasthemodalvect orsofthes
y
stem.Thefreevibrationsolutionor
y
themotionintimecanbe expressedusing
as:
as:
wheretheconstantsaredeterminedbytheinitial
conditions.
Freevibrationanalysisofan
undampedsystem
Iitil diti
I
n
iti
a
l

con
diti
ons:
Eachofthetwoequationsofmotion,
involvessecondordertimederivatives;henceweneedtospecifytwo
initial conditions for each mass
initial

conditions

for

each

mass
.
Thesystemcanbemadetovibrateinitsithnormalmode(i=1,2)by
subjectingittothespecificinitialconditions.
However,foranyothergeneralinitialconditions,bothmodeswillbe
excited.Theresultingmotion,whichisgivenbythegeneralsolutionofthe
equations
canbeobtainedbyalinearsuperpositionoftwonormalmodes.
Freevibrationanalysisofan
undampedsystem
Iitil diti
I
n
iti
a
l

con
diti
ons:
Sinceandalreadyinvolvetheunknownconstantsand
constants. arec and c where
)()()(
21
2211
txctxctx





wecanchoosec1=c2=1withnolossofgenerality.Thus,thecomponentsofthe
vectorcanbeexpressedas:
)(tx

wheretheunknowncanbedeterminedfromtheinitial
conditions
Freevibrationanalysisofan
undampedsystem
Freevibrationanalysisofan
undampedsystem
Freevibrationanalysisofan
undampedsystem
Frequencies of a mass
spring system
Frequencies


of

a

mass

spring

system
l
d h l f d
Examp
l
e:Fin
d
t
h
enatura
l

f
requenciesan
d

modeshapesofaspringmasssystem,which
isconstrainedtomoveinthevertical
direction.
Solution:Theequationsofmotionaregiven
by:
by:

Byassumingharmonicsolutionas:
thefrequencyequationcanbeobtainedby:
Frequencies of a mass
spring system
Frequencies

of

a

mass

spring

system
• Thesolutiontotheaboveequationgivesthenaturalfrequencies:
Frequencies of a mass
spring system
Frequencies

of

a

mass

spring

system
• From

theamplituderatiosaregivenby:
Frequencies of a mass
spring system
Frequencies

of

a

mass

spring

system
• From
• Thenaturalmodesaregivenby

×