Tải bản đầy đủ (.docx) (13 trang)

Hệ thống truyền dẫn PDH và SDH

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (434.45 KB, 13 trang )

PDH VÀ SDH
SDH
- Tốc độ SDH gồm:
STM-1 = 155,52 Mbit/s
STM-4 = 4.STM-1 = 622,08 Mbit/s
STM-16 = 4.STM-4 = 2488,32 Mbit/s
STM-64 = 4.STM-16 = 9953.28 Mbit/s
Tốc độ Bit cơ bản là: STM-1 = 155.52 Mbit/s
STM-N = N.STM-1
Tốc độ bit của các tín hiệu ghép bằng một số nguyên với tốc độ bit cơ bản STM-1.
- Tốc độ bit cơ bản trong SDH:
Tốc độ truyền: 155,52 Mbit/s
Độ rộng khung: 125 µs
2430 Bye gồm: 6 hàng 270 cột. STM-1 có dung lương là 63E
1
- Payload: 9.261 Bye
+ Truyền tín hiệu PDH có tốc độ từ 2 Mbit/s đến 140 Mbit/s
+ Các tín hiệu này được chèn trong STM-1
- SDH có 4 phần tử chính:
+ TRM: thiết bị ghép đầu cuối
+ ADM: thiết bị xen/rớt luồng
+ DXC: thiết bị kết nối chéo
+ REG: thiết bị lặp
TRM có thể ghép các luồng nhánh thành các nguồn tổng hoặc ngược lại.
ADM: lấy hoặc chèn luồng nhánh vào luồng tổng.
REG: khuếch đại tín hiệu
DXC: hoán đổi địa chỉ của VC
Mô hình: 1+1: có nghĩa là 1 card chạy 1 card dự phòng
Trang 1
PDH VÀ SDH
TỔNG QUAN VỀ TRUYỀN DẪN ĐỒNG BỘ SDH


Để hiểu đúng khái niệm về SDH/SONET, trước hết ta cần hiểu đúng thế nào là
đồng bộ, không đồng bộ và cận đồng bộ. Trong tập các tín hiệu đồng bộ, việc
chuyển tiếp số liệu trong tín hiệu xảy ra ở chính xác cùng một tốc độ. Tuy nhiên
vẫn có sự lệch pha giữa những lần chuyển giao của hai tín hiệu, và sự lệch pha
này nằm trong giới hạn cho phép. Sự lệch pha này có thể do suy hao, trễ thời gian
hay jitter trong mạng truyền dẫn. Trong mạng đồng bộ, tất cả các đồng hồ đều
tham chiếu đến một đồng hồ chuẩn cơ sở PRC.

1. Nhược điểm của truyền dẫn cận đồng bộ PDH
1.1. Khái niệm truyền dẫn cận đồng bộ (PDH)
Vì các luồng 2Mbit/s được tạo ra từ các thiết bị ghép kênh khác nhau, nên tốc độ bit có khác nhau
một chút. Do đó, trước khi ghép các luồng này thành một luồng tốc độ cao hơn phải hiệu chỉnh
cho tốc độ bit của chúng bằng nhau, tức là phải chèn thêm các bit giả. Mặc dù tốc độ các luồng
đầu vào là như nhau, nhưng phía thu không thể nhận biết được vị trí của các luồng đầu vào trong
luồng đầu ra. Kiểu ghép kênh như vậy gọi là cận đồng bộ (PlesioSynchronous).
1.2. Nhược điểm của PDH
• Việc tách/xen các luồng 2Mbit/s phức tạp làm giảm độ tin cậy cũng như chất lượng của hệ
thống.
• Khả năng giám sát và quản lý mạng kém. Do trong các khung tín hiệu PDH không đủ các
byte nghiệp vụ để cung cấp thông tin cho điều khiển, quản lý, giám sát và bảo dưỡng hệ
thống.
• Tốc độ bit của PDH không cao (tốc độ bit cao nhất được chuẩn hoá là 140Mbit/s trên mạng
viễn thông quốc tế) không thể đáp ứng cho nhu cầu phát triển các dịch vụ băng rộng hiện tại
và trong tương lai.
• Thiết bị PDH cồng kềnh, các thiết bị ghép kênh và thiết bị đầu cuối thường độc lập nhau.
• Trên mạng viễn thông tồn tại 2 tiêu chuẩn phân cấp khác nhau: chuẩn Châu Âu và Châu
Mỹ, gây khó khăn và phức tạp khi nâng cấp, mở rộng và kết nối các mạng với nhau.
Các mặt hạn chế trên của PDH sẽ được khắc phục khi sử dụng phân cấp truyền dẫn đồng bộ SDH.
2. Truyền dẫn đồng bộ SDH
2.1. Khái niệm SDH

Để hiểu đúng khái niệm về SDH/SONET, trước hết ta cần hiểu đúng thế nào là đồng bộ,
không đồng bộ và cận đồng bộ. Trong tập các tín hiệu đồng bộ, việc chuyển tiếp số liệu trong tín
hiệu xảy ra ở chính xác cùng một tốc độ. Tuy nhiên vẫn có sự lệch pha giữa những lần chuyển
giao của hai tín hiệu, và sự lệch pha này nằm trong giới hạn cho phép. Sự lệch pha này có thể do
suy hao, trễ thời gian hay jitter trong mạng truyền dẫn. Trong mạng đồng bộ, tất cả các đồng hồ
đều tham chiếu đến một đồng hồ chuẩn cơ sở PRC. Độ chính xác của PRC là 10
-12
- 10
-11
và được
lấy từ đồng hồ nguyên tử Cesium.
Hai tín hiệu số là cận đồng bộ nếu sự chuyển tiếp xảy ra gần như ở cùng tốc độ, và bất kỳ sự
thay đổi nào cũng được cưỡng bức trong một giới hạn nhỏ. Ví dụ nếu có hai mạng tương tác với
Trang 2
PDH VÀ SDH
nhau, xung đồng hồ của chúng có thể lấy từ hai PRC khác nhau. Mặc dù các PRC này vô cùng
chính xác, nhưng vẫn có sự khác nhau giữa hai loại. Điều này gọi là sự sai khác cận đồng bộ.
Trong trường hợp mạng không đồng bộ, sự chuyển giao tín hiệu không nhất thiết phải xảy ra
ở cùng tốc độ. Trong trường hợp này, không đồng bộ có nghĩa là sai khác giữa hai đồng hồ lớn
hơn sai khác cận đồng bộ. Ví dụ, nếu hai đồng hồ lấy từ dao động thạch anh tự do, chúng được
gọi là không đồng bộ. Phân cấp số cận đồng bộ SDH và mạng quang đồng bộ SONET chỉ một
tập hợp các tốc độ truyền dẫn bằng cáp sợi quang có thể truyền tải tín hiệu số với dung lượng
khác nhau.
Người ta chấp nhận rộng rãi rằng một phương thức ghép kênh mới có thể được đồng bộ và
không chỉ dựa trên việc chèn bit, gọi là PDH, mà còn dựa trên việc chèn byte, là các cấu trúc ghép
kênh từ 64kbit/s đến tốc độ cơ sở 1,544kbit/s (1,5Mbit/s) và 2,048kbit/s (2Mbit/s).
SDH được định nghĩa bởi Viện tiêu chuẩn viễn thông Châu Âu (ETSI), được sử dụng ở
rất nhiều nước trên thế giới. Nhật Bản và Bắc Mỹ cũng xây dựng các tiêu chuẩn về SDH riêng.
SONET do Viện tiêu chuẩn quốc gia Hoa Kỳ phát triển và được ứng dụng ở Bắc Mỹ.
2.2. Các tiêu chuẩn SDH

Tiêu chuẩn mới xuất hiện lần đầu tiên là SONET do công ty Bellcore (Mỹ) đưa ra, được chỉnh
sửa nhiều lần trước khi trở thành tiêu chẩn SDH quốc tế. Cả SDH và SONET được giới thiệu rộng
rãi giữa những năm 1988 và 1992. SDH được định nghĩa bởi Viện tiêu chuẩn viễn thông Châu Âu
(ETSI), được sử dụng ở rất nhiều nước trên thế giới. Nhật Bản và Bắc Mỹ cũng xây dựng các tiêu
chuẩn về SDH riêng. SONET do Viện tiêu chuẩn quốc gia Hoa Kỳ phát triển và được ứng dụng ở
Bắc Mỹ.
Bảng dưới đây thể hiện các tốc độ tiêu chuẩn của SDH và SONET.
Mặc dù SONET và SDH được đưa ra ban đầu cho truyền dẫn cáp quang, nhưng các hệ thống
SDH hiện tại vẫn tương thích cao với cả SDH và SONET.

Bảng 1: Phân cấp đồng bộ SDH/SONET

Tín hiệu SONET
Tốc độ bit
(Mbit/s)
Tín hiệu
SDH
Dung lượng
SONET
Dung lượng
SDH
STS-1, OC-1 51,840 STM-0 28DS1, hoặc 1 DS-3 21E1
STS-3, OC-3 155,520 STM-1 84DS-1, hoặc 3DS-3 63E1, hoặc 1E4
STS-12, OC-12 622,080 STM-4 336DS-1, hoặc12DS-3 252E1, hoặc 4E4
STS-48, OC-48 2488,320 STM-16 1344DS-1, hoặc 48DS-3 1008E1, hoặc 16E4
STS-192, OC-192 9953,280 STM-64 5376DS-1, hoặc 192DS-3 4032E1, hoặc 64E4

Bảng 2: Phân cấp không đồng bộ ANSI/ITU-T
ANSI ITU-T
Trang 3

PDH VÀ SDH
Tín hiệu Tốc độ bit Số kênh Tín hiệu Tốc độ bit Số kênh
DS-0 64 Kbit/s 1 DS-0 64 Kbit/s 64 Kbit/s 1 64 Kbit/s
DS-1 1,544 Mbit/s 24 DS-0 E1 2,048 Mbit/s 1 E1
DS-2 6,312 Mbit/s 96 DS-0 E2 8,450 Mbit/s 4 E1
DS-3 44,7 Mbit/s 28 DS-1 E3 34 Mbit/s 16 E1
E4 144 Mbit/s 64 E1

2.3. Tương lai của SDH.
Hầu hết tất cả các hệ thống truyền dẫn quang hiện nay trong mạng công cộng đều dùng
SONET và SDH. Chúng được mong đợi sẽ thống trị môi trường truyền dẫn trong 10 năm, như
công nghệ PDH đi trước đã làm được trong 20 năm (và hiện vẫn còn được sử dụng, dù rất ít).
Trong khi tốc độ bit của với mạng đường trục được kỳ vọng vượt qua 40Gbit/s thì các tốc độ nhỏ
hơn hoặc bằng 155Mbit/s đã được dùng rất rộng rãi trong các mạng truy nhập.
2.4. Tại sao cần đồng bộ hóa
2.4.1. Đồng bộ và không đồng bộ.
Nói chung, hệ thống truyền dẫn là không đồng bộ, do mỗi thiết bị trong mạng đều sử dụng
đồng hồ riêng của nó. Trong truyền dẫn số, xung đồng hồ là một thông số rất quan trọng. Xung
đồng hồ có nghĩa là sử dụng một chuỗi các xung lặp đi lặp lại để giữ cho tốc độ bit của dữ liệu
không đổi và chỉ ra vị trí các bit 1 và 0 trong luồng dữ liệu. Ghép kênh không đồng bộ trải qua
nhiều giai đoạn. Các tín hiệu không đồng bộ, ví dụ DS-1 ghép với nhau, cộng với các bit thêm
vào, gọi là bit chèn để bù cho sự sai khác của mỗi luồng riêng lẻ, và kết hợp với các bit khác (bit
khung) để tạo ra một luồng DS-2. Các bit chèn lại được sử dụng theo cách đó để tạo ra các DS-3
và cao hơn nữa. Chúng ta không thể truy nhập tới các luồng không đồng bộ tốc độ cao mà không
sử dụng các bộ tách kênh. Trong hệ thống đồng bộ SONET/SDH, tần số trung bình của các đồng
hồ trong hệ thống là giống nhau (đồng bộ) hoặc gần giống nhau (cận đồng bộ). Mỗi đồng hồ có
thể truy ngược đến nguồn đồng hồ độ chính xác cao. Do đó, các luồng STS-1 dễ dàng ghép với
nhau thành các luồng tốc độ cao hơn mà không cần bit chèn. Vì thế, ta có thể truy nhập ngay đến
tốc độ STS-1 cũng như các tốc độ cao hơn STS-N.
2.4.2. Phân cấp đồng bộ hóa.

Các tổng đài số thường được dùng trong mạng số phân cấp đồng bộ hóa. Mạng được tổ chức
theo quan hệ chủ-tớ (master-slave) với đồng hồ của các node cao hơn cung cấp tín hiệu đồng hồ
cho các node thấp hơn.Tất cả các node có thể truy ngược đến nguồn đồng hồ chuẩn. Nguồn đồng
hồ chuẩn PRC có độ chính xác là 1x10
-11
theo khuyến nghị G.811 của ITU-T. Các nguồn đồng hồ
có độ chính xác thấp hơn là SSU (nguồn đồng hồ phụ) và SEC (thiết bị cấp xung đồng bộ) theo
khuyến nghị của ITU-T.

Hình 1. Các cấp đồng hồ đồng bộ trong hệ thống SDH
Trang 4
PDH VÀ SDH
3. Nguyên tắc ghép kênh và cấu trúc khung
3.1. Nguyên tắc ghép
Hệ thống số đồng bộ được hình thành từ các hệ thống cận đồng bộ khác nhau, các hệ thống
cận đồng bộ này có thể thuộc hệ Châu Âu hoặc Bắc Mỹ. Đầu vào của các hệ thống đồng bộ cơ sở
là các luồng cận đồng bộ có tốc độ bít khác nhau, được ghép lại thành nhiều bước, mỗi bước lại
được đưa vào các bit điều khiển, quản lý và phối hợp tốc độ. Khi đó, đầu ra được một luồng đồng
bộ cơ sở. Các luồng đồng bộ cơ sở được nâng lên N lần thành các luồng đồng bộ cấp N. Cấu trúc
bộ ghép SDH như hình 2.


Hình 2. Cấu trúc bộ ghép SDH G.709 ITU-T

Các chữ số trong hình này liên quan đến các tốc độ truyền dẫn cận đồng bộ như sau:

11 Tương ứng với 1554 Kbit/s
12 Tương ứng với 2048 Kbit/s
21 Tương ứng với 6312 Kbit/s
22 Tương ứng với 8448 Kbit/s

31 Tương ứng với 34368 Kbit/s
32 Tương ứng với 44736 Kbit/s
4 Tương ứng với 139264 Kbit/s

Chữ số đầu tiên đại diện cho mức phân cấp truyền dẫn như quy định trong G702-"Tốc độ bit của
các cấp truyền dẫn số", và chữ số thứ hai đặc trưng cho tốc độ thấp hơn (1) và cao hơn (2). Còn
chữ số 4 là mức thứ 4, bằng 140 Mbit/s có trong tiêu chuẩn Châu Âu và Bắc Mỹ. Các khối có ký
hiệu và chức năng sau đây:
C-n: (n = 1 >4) là các contener: Phần tử này có kích thước đủ để chứa các byte tải trọng thuộc
một trong các luồng cận đồng bộ.
b. VC-n: là các contener ảo:
+ Contener ảo cơ sở (n = 1,2): gồm một C-n (n = 1,2) đơn cộng thêm các byte mang
thông tin điều khiển và giám sát tuyến nối hai VC-n này và gọi là POH.
+ Contener ảo bậc cao hơn VC-n (n = 3,4): gồm một C-n (n = 3,4) đơn và tập hợp các
nhóm khối nhánh (TUG-2S) hoặc một tập của TU-3S cùng với các byte mang thông tin điều
khiển và giám sát tuyến nối hai VC-n và được gọi là POH.
Con trỏ được sử dụng để tìm các phần khác nhau của AU và TU gọi là container ảo VC.
Con trỏ AU xác định ở VC bậc cao hơn và con trỏ TU xác định ở VC bậc thấp hơn. Ví dụ AU-3
gồm VC-3 cộng với một con trỏ, TU-2 gồm VC-2 cộng với một con trỏ.
Trang 5
PDH VÀ SDH
Một VC là một thực thể tải chạy trên mạng được tạo ra và hủy đi ở điểm kết cuối dịch
vụ hoặc ở gần điểm đó. Các tín hiệu lưu lượng PDH được ánh xạ tới các container với kích thước
phù hợp với yêu cầu băng thông, sử dụng các bit đơn để bám tốc độ đồng hồ khi cần thiết. Các
POH được thêm vào sau đó cho mục đích quản lý, tạo một VC. Phần mào đầu này được bỏ đi sau
khi VC bị hủy và tín hiệu gốc ban đầu được tái tạo lại. Mỗi tín hiệu PDH được ánh xạ vơi VC
của nó, và các VC với cùng kích thước không đáng kể được ghép lại bằng cách chèn byte tạo
thành tải SDH.
c. TU-n (n = 1,2,3) là khối nhánh: gồm một VC cộng thêm một con trỏ khối
nhánh. Con trỏ khối nhánh chỉ thị sự đồng bộ pha của VC-n đối với POH của VC mức cao

hơn tiếp theo. Con trỏ khối nhánh có vị trí cố định so với POH mức cao hơn.
d. AU-3S (S = 1 hoặc 2) và AU-N (N=4): gồm một VC bậc cao cộng thêm
con trỏ khối quản lý. Con trỏ khối quản lý có vị trí cố định trong khung STM-1 và thể hiện
quan hệ về pha của VC bậc cao hơn.
3.2. Cấu trúc khung STM-1
Khung STM-1 bao gồm 2430 bytes và thường được chia làm hai vùng, tương ứng với 9 hàng
x 270 cột. Độ dài khung là 125µ s, tương ứng với tần số của khung là 8000 Hz. Tốc độ truyền
dẫn của một byte trong khung là 64 Kbit/s. Khung STM-1 gồm 3 khối:
e. Khối trọng tải Payload
f. Khối con trỏ AU
g. Khối SOH
Các byte trong khung STM-1 được truyền từng hàng một và truyền từ trái sang phải,
bắt đầu từ hàng thứ nhất và cột thứ nhất. Như vậy, sau 9 byte SOH (trừ hàng 4 là 9 byte AU)
là 261 byte tải trọng được truyền xen kẽ.
+ Phần điều khiển SOH: gồm có 8x9 byte, gồm các byte cần thiết cho dịch vụ như từ
mã đồng bộ khung, các byte bổ sung để giám sát, điều khiển và quản lý.
+ Phần trọng tải : các tín hiệu phân nhánh, các tín hiệu POH trong khuyến nghị G.703
của CCITT từ 2 Mbit/s đến 140 Mbit/s được truyền tải trong cùng tải trọng gồm có 9x261
byte.
+ Phần con trỏ: Quan hệ thời gian giữa trọng tải và khung STM-1 được ghi lại nhờ
con trỏ, ngoài ra nó còn định vị các tín hiệu phân nhánh ở trong khối tải trọng. Do đó, sau khi
diễn giải con trỏ một cách thích hợp thì có khả năng truy nhập tới từng kênh của người sử
dụng độc lập ở bất kỳ thời điểm nào, mà không cần tách luồng STM-1. Con trỏ ở hàng thứ tư,
cột từ 1 > 9 gọi là con trỏ vùng A, còn con trỏ ở hàng 1 >3 và cột 11 >14 gọi là con trỏ
vùng B. Khung STM-1 có độ dài 125µs, có tần số là 8000 Hz, như vậy được truyền 8000
lần/s. Do đó, tốc độ bit của tín hiệu STM-1 là : 8000 x 9 x 270 x 8 = 155520 kbit/s


Trang 6
PDH VÀ SDH

Hình 3. Cấu trúc khung STM-1

Các mức cao hơn STM-N của phân cấp đồng bộ được hình thành bởi cách chèn byte vào
phần tải của N tín hiệu STM-1, thêm các mào đầu gấp N lần mào đầu của STM-1 và lấp đầy với
dữ liệu quản lý và giá trị con trỏ phù hợp.
Hình 4. Cấu trúc khung STM-4
4. Các cơ chế bảo vệ
Có hai cơ chế bảo vệ trong mạng SDH: bảo vệ tuyến tính và bảo vệ mạch vòng.
4.1. Bảo vệ tuyến tính
Đây là hình thức dự phòng đơn giản nhất, còn gọi là bảo vệ 1+1. ở đây, mỗi đường làm
việc được bảo vệ bởi một đường bảo vệ. Việc chuyển sang đường bảo vệ xảy ra khi xác định
được lỗi như là mất tín hiệu LOS. Cấu trúc 1+1 là dự phòng 100% khi mỗi đường làm việc có
một đường bảo vệ. Nhưng do vấn đề kinh tế, nên người ta thường sử dụng cơ cấu 1:N, nhất là
những đường truyền có khoảng cách xa. Theo cách này, vài đường làm việc được bảo vệ bằng
một đường dự phòng. Các đường dự phòng có thẻ sử dụng cho các lưu lượng có độ ưu tiên thấp
và có thể bị ngắt đi khi đướngự phòng thay thế cho các đường làm việc bị lỗi. Cơ cấu bảo vệ 1+1
và 1:N được tiêu chuẩn hóa trong khuyến nghị G.783 của ITU-T.
Trang 7
PDH VÀ SDH

Hình 5. Sơ đồ bảo vệ tuyến tính
4.2. Bảo vệ mạch vòng
Bảo vệ mạch vòng có nhiều ưu điểm hơn so với bảo vệ tuyến tính. Một mạch vòng bảo vệ là
cách đơn giản nhất và hiệu quả nhất khi có một số phần tử mạng liên kết với nhau. Có nhiều cơ
cấu bảo vệ được dùng cho loại mạng này, song chỉ có một số cơ cấu được tiêu chuẩn hóa theo
khuyến nghị G.841 ITU-T. Có 2 loại cơ cấu mạch vòng là vòng đơn hướng và vòng hai hướng.

4.2.1. Mạch vòng đơn hướng



Hình 6. Mạch vòng bảo vệ đơn hướng

Trên hình thể hiện cách thức cơ bản của mạch vòng bảo vệ đơn hướng.
Giả sử có sự gián đoạn thông tin giữa 2 phần tử mạng A và B, hướng Y không bị ảnh hưởng bởi
sự cố này. Tất nhiên, một đường thứ hai được thiết lập cho hướng X. Do đó, kết nối này được
chuyển sang đường thứ hai trong phần tử mạng A và B. Còn hai phần tẻ khác, C và D được
chuyển qua đường dự phòng. Thủ tục này gọi là chuyển đường thẳng. Một cách khác đơn giản
hơn được sử dụng là chuyển vòng. Lưu lượng được truyền trên cả hai đường làm việc và đường
bảo vệ. nếu có sự cố, phía thu (trường hợp này là A) chuyển sang đường bảo vệ và ngay lập tức
duy trì kết nối.
Trang 8
PDH VÀ SDH
4.2.2. Mạch vòng hai hướng
Trong cấu trúc mạng này, kết nối giữa hai phần tử mạng là hai hướng. Toàn bộ dung
lượng mạng được chia thành nhiều đường, mỗi đường làm việc là hai hướng. Nếu có sự cố giữa
hai phần tử mạng cạnh nhau A và B, B sẽ chuyển sang đường bảo vệ. Có thể mang lại hiệu quả
bảo vệ cao hơn khi dùng mạch vòng bảo vệ hai hướng với 4 sợi cáp, mỗi đôi cáp chạy cả đường
làm việc và đường bảo vệ. Kết quả, ta có cấu trúc bảo vệ 1:1, nghĩa là dự phòng 100%.

Hình 7. Mạch vòng bảo vệ hai hướng

5. Các phần tử của mạng đồng bộ
Hình vẽ thể hiện cấu trúc của một vòng SDH với nhiều nhánh. Đặc trưng của SDh là có
nhiều ứng dụng khác nhau được truyền trên mạng. Mạng đồng bộ còn có khả năng truyền các tín
hiệu cận đồng bộ, cũng như khả năng điều khiển các dịch vụ như ATM. Tất cả điều đó yêu cầu
mạng phải có nhiều phần tử khác nhau. Về cơ bản, mạng có 4 phần tử sau:
5.1. Bộ tái tạo tín hiệu
Như tên gọi của nó, phần tử này có nhiệm vụ tái tạo lại xung đồng hồ và biên độ của tín
hiệu đầu vào đã bị suy hao và méo dạng do tán sắc. Các thông tin nhận được bằng cách trích ra
nhiều kênh 64 kbit/s trong phần mào đầu RSOH.


Bộ tái tạo
tín hiệu
STM-N
Trang 9
PDH VÀ SDH
STM-N



Hình 8. Sơ đồ mạng đồng bộ
5.2. Đầu cuối ghép kênh TM
Được sử dụng để kết hợp các luồng tín hiệu cận đồng bộ và đồng bộ đầu vào thành các
luồng STM-N có tốc độ cao hơn.

Đầu cuối
ghép kênh (TM)
PDH
STM-N
SDH


Trang 10
PDH VÀ SDH
5.3. Bộ xen/rẽ kênh ADM

ADM
STM-N
STM-N
PDH SDH



Các tín hiệu cận đồng bộ và các ín hiệu đồng bộ tốc độ thấp có thể được lấy ra từ các luồng
đồng bộ tốc độ cao hơn, hoặc được chèn vào đó, sử dụng các bộ ADM. Đặc trưng này làm cho
ADM rất hữu ích trong các cấu trúc mạch vòng, tạo các đường bảo vệ trong vòng trong trường
hợp xảy ra sự cố. Tại một nút ADM, chỉ những tín hiệu nào cấn thết để truy nhập mới được chèn
vào / hay rẽ xuống. Phần lưu lượng còn lại tiếp tục được chuyển đi trong mạng mà không cần một
thiết bị đặc biẹt nào khác.

5.4. Bộ đấu chéo số DXC
Thiết bị này có chức năng ứng dụng rất rộng. Nó cho phép ánh xạ các luồng nhánh PDH vào
các VC cũng như chuyển các giá trị container thành VC-4.



Hình 9. Thiết bị đấu chéo số

Trang 11
PDH VÀ SDH
5.4.1. Quản lý các phần tử mạng
Bộ phận quản lý mạng viễn thông TNM cũng được xem như một phần tử trong mạng đồng
bộ. Tất cả các phần tử được đề cập trên đây đều được quản lý bằng phần mềm. Nghĩa là chúng có
thể được giám sát và điều khiển từ xa, một trong những đặc tính quan trọng nhất của mạng SDH.
Chức năng của TNM được tóm tắt là :"Vận hành, quản lý, bảo dưỡng và giám sát-OAM&P".
Một số lỗi thường gặp trong quản lý, vận hành mạng truyền dẫn.

STT Các lỗi Mô tả
1 LOS (Loss Of
Signal)
LOS xảy ra khi tín hiệu đồng bộ giảm xuống dưới ngưỡng

có BER =1x10
-3
. Nó cũng có thể đo đứt cáp, suy giảm mạnh
tín hiệu hoặc lỗi thiết bị. Trạng thái LOS được xóa khi 2
khung liên tiếp nhận được không thấy dấu hiệu của LOS
mới.
2 OOF (Out of Frame
alignment)
OOF xảy ra 4 hoặc 5 khung SDH liên tiếp nhận được bị lỗi,
mẫu khung không hợp lệ. Thời gian lớn nhất để xác định
OOF là 625µs. OOF xóa khi nhận được 2 khung liêm tiếp
có mẫu khung hợp lệ.
3 LOF (Loss of frame
alignment)
LOF xẩy ra khi OOF tồn tại trong khoảng thời gian xác định
bằng ms. LOF xóa khi một điều kiện trong khung tồn tạiliên
tiếp trong thời gian xác định bằng ms.
4 LOP (Loss of
pointer)
LOP xảy ra khi nhận được N con trỏ liên tiếp không hợp lệ,
hoặc nhận được N cờ dữ liệu mới (NDF), ở đây, N=8,9 và
10. LOP xóa khi có 3 con trỏ hợp lệ bằng nhau, hoặc nhận
được 3 chỉ thị AIS liên tiếp.
5 AIS (Alarm
Indicator Signal)
AIS là trạng thái tất cả các bit =1. Nó được tạo ra để thay
thế cho tín hiệu bình thường khi nó bao gồm một điều kiện
lỗi để ngăn các lỗi hoặc cảnh báo tăng lên.
6 RDI (Remote
defect indication)

Đây là tín hiệu trả về của thiếp bị truyền dẫn khi có các lỗi
LOS, LOF hoặc AIS.
7 RFI (Remote
failure indication)
Một lỗi xảy ra rất dài khi vượt qua thời gian lớn nhất cho
phép của cơ cấu bảo vệ hệ thống truyền dẫn. Khi tình huống
nằy xảy ra, một bản tin RFI sẽ được gửi đến đầu xa và sẽ
khởi tạo chuyển mạch bảo vệ nếu chức năng này đã được
kích hoạt.

KẾT LUẬN
SDH mang lại nhều lợi ích to lớn cho nhà cung cấp mạng:
• Tốc độ truyền dẫn cao: Tốc độ truyền dẫn có thể đạt tới 10Gbit/s, do đó phù hợp
với các mạng đường trục, mạng lõi.
• Chức năng xen/rẽ kênh đơn giản: so với PDH, SDH dễ dàng chèn các luồng tốc độ
thấp vào luồng tốc độ cao, và cũng như lấy các luồng tốc đọ thấp hơn ra khỏi các
luồng tốc đọ cao hơn.
• Khả năng đáp ứng cao và dung lượng phù hợp: với SDH, nhà cung cấp dễ dàng và
Trang 12
PDH VÀ SDH
nhanh chóng đáp ứng yêu cầu của khách hàng. Các phần tử mạng được quản lý và
điều khiẻn từ trung tâm, sử dụng hệ thống TNM.
• Độ tin cậy cao: mạng SDH hiện đại có nhiều cơ chế bảo vệ và dự phòng khác nhau.
Lỗi một phần tử trong mạng không thể gây lỗi toàn bộ hệ thống.
• Làm nền tảng của nhiều dịch vụ tương lai: Ngay bây giờ, mạng SDH đã là nền tảng
cho các dịch vụ POTS, ISDN, di động Nó cũng dề dàng đáp ứng được các dịch vụ
video theo yêu cầu, truyền hình số quảng bá
• Kết nối dễ dàng với các hệ thống khác: Giao diện SDH được tiêu chuẩn hóa toàn
cầu, có thể kết hợp nhiều phần tử khác nhau trong cùng một mạng và tương tác với các
mạng khác dễ dàng.

Sắp tới, công nghệ ghép kênh phân chia theo bước sóng DWDM sẵn sàng được sử dụng thay
thế cho SDH. Công nghệ này có thể truyền nhiều bước sóng trong cùng sợi quang đơn mode.
Hiện tại có thể truyền 16 bước sóng, từ 1520nm đến 1580nm, do đó tốc độ truyền dẫn có thể
đạt tới 40Gbit/s và cao hơn nữa trên một sợi quang. Do đó, có thể nói rằng DWDM là công
nghệ truyền dẫn quang của tương lai.

Hết
Trang 13

×