Tải bản đầy đủ (.doc) (6 trang)

Đề + Đáp án chuyên Toán Bến Tre_2011-2012

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.13 KB, 6 trang )

SỞ GIÁO DỤC &ĐÀO TẠO ĐỀ TUYỂN SINH LỚP 10 CHUYÊN BẾN TRE
BẾN TRE Năm học 2011–2012
Môn : TOÁN (chuyên)
Thời gian: 15 0 phút ( không kể thời gian phát đề)
I. PHẦN TRẮC NGHIỆM: Thời gian làm bài 30 phút / 5,0 điểm
(Chọn phương án đúng cho mỗi câu và ghi vào giấy làm bài . Ví dụ: câu 1 chọn A thì ghi 1.A)
Câu 1. Cho
1 2
,x x
là hai nghiệm của phương trình:
2
5 3 0x x− + =
. Khi đó
( )
1
1x +

( )
2
1x +

hai nghiệm của phương trình:
A.
2
5 5 0x x− + =
B.
2
7 5 0x x− + =
C.
2
7 9 0x x− + =


D.
2
7 8 0x x− + =
Câu 2. Cho
1 2
,x x
là hai nghiệm dương của phương trình:
2
7 1 0x x− + =
. Khi đó
1
x

2
x

hai nghiệm của phương trình:
A.
2
3 1 0x x− + =
B.
2
7 1 0x x− + =
C.
2
3 1 0x x− − =
D.
2
7 1 0x x− − =
Câu 3.Cho ba đường thẳng:

( )
1
: 2 1d y x= −
;
( )
2
: 5d y x= − +
;
( )
3
:d y mx m= −
. Để ba đường
thẳng trên đồng quy thì m phải thoả điều kiện:
A.
1m
= −
B.
1m
=
C.
2m
=
D.
3m
=
Câu 4. Cho parabol
( )
2
:P y ax=
và điểm

( )
1 2;1A −
. Để
( )
P
đi qua A thì a phải thoả điều kiện:
A.
1 2a = −
B.
1 2 2a = +
C.
3 2 2a = −
D.
3 2 2+
Câu 5. Cho phương trình
( )
2
1 2 1 0m x mx m− − − + =
có nghiệm khi m thoả điều kiện:
A.
1m ≥
B.
1m ≤
C.
1m ≠
D. Với mọi giá trị
Câu 6. Cho phương trình
( )
2
1 2 0m x mx m+ − + =

có hai nghiệm phân biệt khi m thoả điều kiện:
A.
0m >
B.
0m <
C.
0m <

1m ≠ −
D.
0m >

1m ≠
Câu 7. Tam giác ABC có độ dài ba cạnh lần lượt là: 3a;4a;5a. Bán kính đường tròn ngoại tiếp tam
giác ABC bằng:
A.
7
2
a
B.
5
2
a
C.
5 2
3
a
D.
5 3
2

a

Câu 8. Cho tứ giác ABCD nội tiếp đường tròn. Biết
µ
µ
2
3
A C=
, khi đó số đo góc
µ
A
bằng:
A.
0
60
B.
0
72
C.
0
108
D.
0
120
Câu 9. Cho đường tròn tâm O, bán kính
5R a
=
. Hai dây AB và CD song song nhau và C, D
thuộc cung nhỏ
»

AB
. Biết
8 ; 6AB a CD a= =
, khi đó khoảng cách giửa hai dây bằng:
A.
1a
B.
2a
C.
3
2
a
D.
5
2
a
Câu 10. Nếu diện tích mặt cầu tăng lên 2 lần thì thể tích hình cầu tăng lên mấy lần?:
A.
2 2
B.2 C.4 D. 8
II. PHẦN TỰ LUẬN: Thời gian làm bài 120 phút/15 điểm.
Bài 1. (3,0 điểm)
Cho phương trình x
2
– 2(m + 1) – m +1 = 0
1. Xác định m để phương trình có hai nghiệm khác 0.
2. Xác định m để phương trình có hai nghiệm x
1
, x
2

thoả:
1 2
1 1
2
x x
− =
.
Bài 2. (3,5 điểm)
Cho parabol (P) :
2
2
x
y

=
và đường thẳng (d) :
2y mx m= − +
; ( m là tham số)
1. Tìm m để (d) tiếp xúc với (P). Xác định toạ độ các điểm tiếp xúc đó.
2. Chứng minh (d) luôn đi qua một điểm cố định I, xác định toạ độ của I.
3. Gọi A, B là hai điểm tiếp xúc ở câu a). Tính diện tích tam giác AIB
Bài 3. (3,5 điểm)
1. Giải phương trình:
2 2 2
4 4 4x x x+ − = −
2. Giải hệ phương trình:
3 3
3
2 2
4( )

1
x y x y
x y

+ = +


+ =


Bài 4. (2,5 điểm)
Cho A và M là hai điểm trên đường tròn tâm O, bán kính R; B là điểm đối xứng của
O qua A và D là trung điểm của OA
1. Chứng minh hai tam giác
OMD∆

OBM∆
đồng dạng.
2. Tính độ dài MB khi
·
0
60MOA =
.
3. Cho C là điểm cố định nằm ngoài đường tròn, xác định vị trí của M trên đường tròn để
tổng 2MC + MB đạt giá trị nhỏ nhất.
Bài 5. (2,0 điểm)
Tìm nghiệm nguyên của phương trình:
3 3 2 2
5x y x y xy+ − − =
.

BÀI GIẢI
I. PHẦN TRẮC NGHIỆM:
1.C 2.A 3.D 4.D 5.D 6.C 7.B 8.B 9.A 10.A.
II. PHẦN TỰ LUẬN:
Bài 1: Phương trình
2
2( 1) 1 0x m x m− + − + =
(1)
1) Phương trình (1) có hai nghiệm khác 0

' 2
( 3) 0
0 ( 1) 1 0
1
1 0 1
m m
m m
m
m m
+ ≥
 
∆ ≥ + + − ≥

⇔ ⇔ ⇔
  

− + ≠ ≠

 


0 0
3 1
1 3
m m
m m
m m
 ≥  ≥
 




≤ − ≠

 



≠ ≤ −
 
Vậy :
0, 1m m≥ ≠
hoặc
3m ≤ −
.
2) Áp dụng hệ thức Vi- ét, ta có:
1 2
1 2
2 2
1

x x m
x x m
+ = +


= − +

Do đó:
2 1
1 2 1 2
1 1
2 2
x x
x x x x

− = ⇔ =

2 2
1 2 1 2
2 2
1 2 1 2 1 2
2 2
( ) 4( )
( ) 4 4( )
(2 2) 4( 1) 4( 1)
20 4 0
1
5
x x x x
x x x x x x

m m m
m
m
⇔ − =
⇔ + − =
⇔ + − − + = − +
⇔ − =
⇔ =
Vậy :
1
5
m =
Bài 2:
1) Phương trình hoành độ giao điểm của (P) và(d) là:
2
2
2 2 4 0
2
x
mx m x mx m− = − + ⇔ − + =
Đường thẳng (d) tiếp xúc với (P)
2
' 4 0m m⇔ ∆ = − =

0
4
m
m
=




=

• Với m = 0

tiếp điểm 0(0;0)
• Với m = 4

tiếp điểm B(4;8)
2) Phương trình:
2 ( 2) 0y mx m x m y= − + ⇔ − + − =

2 0
,
0
x
m
y
− + =

⇔ ∀

− =


2
0
x
y

=



=

Vậy : I(2;0)
3)
1
.
2
AIB
S AI BH=
(H là hình chiếu của B /Ox)
=
1
.2.8
2
= 8 (đvdt)
Bài 3:
1) Phương trình
2 2 2
4 4 4x x x+ − = −
Đặt t =
2
4 0x − ≥
, Khi đó,ta có phương trình:
4 4t t t+ + =

2

( 2)t t⇔ + =
2t t⇔ + =

2 0t t⇔ − − =
(do
2 0t + >
)

1 ( )
2 ( )
t loai
t nhan

= −


=


Do đó :
2
4 4 2 2t x x= − = ⇔ = ±
Vậy phương trình có 2 nghiệm
2 2x = ±
.
2) Hệ phương trình
3 3
3
2 2
4( ) (1)

1 (2)
x y x y
x y

+ = +


+ =


Ta có :
(1)
( )
( )
3
3 3
4x y x y⇔ + = +

( ) ( )
3 3 3 3
3 ( ) 4 0x y xy x y x y⇔ + + + − + =

( )
3 3
3 3 ( ) 0x y xy x y⇔ − + + + =
( )
2
3 ( ) 0x y x y⇔ − + − =

( ) ( )

2
3 4 0x y x y xy
 
⇔ + + − =
 
(2)
( )
2
2 1x y xy⇔ + − =
. Đặt
a x y
b xy
= +


=

ta được:
( )
2
2
2
2
2
1
0,
3 0
2
2 1
3 4 0

1
2,
2
4 0
2 1
1
2 1
2,
2
a b
a
a b
a a b
a b
a b
a b
a b
a b

= = −

=





− =
− =






⇔ ⇔
= =





− =
− =









− =



= − =






. Với
( )
0 0
2 2 2 2
, , ; ,
1 1
2 2 2 2
2 2
a x y
x y
b xy
= + =
 
   
 
⇒ ⇒ = − −
 ÷  ÷
 
= − = −
   
 
 
. Với
2 2
2

1 1
2

2 2
a x y
x y
b xy
 
= + =
 
 
⇒ ⇒ = =
 ÷
 
= =
 
 
 
. Với
2 2
2

1 1
2
2 2
a x y
x y
b xy
 
= − + = −
 
 
⇒ ⇒ = = −

 ÷
 
= =
 
 
 
Vậy hệ pt đã cho có 4 nghiệm:
( )
,x y =
2 2
;
2 2
 

 ÷
 
,
2 2
;
2 2
 

 ÷
 
,
2 2
;
2 2
 
 ÷

 
,
2 2
;
2 2
 
− −
 ÷
 
Bài 4:
1)
OMD


OBM

có:
Ô : góc chung
1
( )
2
OM OD
OB OM
= =
Do đó
OMD OBM∆ ∆:
(c.g.c)
1
2
DM

BM
⇒ =
2)
MOA∆
đều ( do OA = OM và
·
0
60MOA =
) nên:
MD vuông góc với OA tại D
3
. 3
2
R
MD OD⇒ = =

1
2
DM
BM
=
(cmt) . Do đó:
2 3MB MD R= =
(đvđd)
3) Vẽ (d) qua C cắt (O) tại M và N, tiếp tuyến CE.
Ta có :
CME CEN∆ ∆:
(g.g)
2
.

CM CE
CE CM CN
CE CN
⇒ = ⇔ =

2 2 2
CE CO R= −
( không đổi do C cố định)
Theo BĐT Cô-si , ta có:
2 2
2 . 2CM CN CM CN CO R+ ≥ = −
(1). Dấu “=” xãy ra khi và chỉ khi CM = CN. Khi
đó
M N E≡ ≡
hoặc
'M N A≡ ≡


CM là tiếp tuyến của đường tròn (O).
(1)


2 2
2 2 2 . 2 2( )CM CN CM CN CO R+ ≥ = −
. Dấu “=” xãy ra khi và chỉ khi 2CM = CN .
Khi đ ó :
2 2 2 2
4
3 2 2( ) 2 2( )
3

CM CO R CM CO R= − ⇔ = −
Mặt khác:
2BM OB OM R R R≥ − = − =
. Suy ra:
2 2
4
2 2( )
3
CM BM CO R R+ ≥ − +
.
Vậy :2CM + BM đạt GTNN
A M
⇔ ≡
và CM là tiếp tuyến của (O)
Bài 5:
Phương trình :
3 3 2 2
5x y x y xy+ − − =
( )
( )
3 3
5x y xy x y⇔ + − + =


( ) ( )
2
5x y x y⇔ + − =
E
A
A'

O
N
B'
C
M
B
D

( )
( )
2
2
1
( / )
5
5
2 3

3 2
1
x y
VN Z
x y
x y
x x
hoac
y y
x y
 + =





− =





+ =

= =
 



  

= =
− =
 



Vậy phương trình đã cho có nghiệm nguyên (x,y) = (2;3) ; (3;2).

×