Tải bản đầy đủ (.doc) (43 trang)

đề tài “khảo sát khả năng sống sót của vi khuẩn gluconacetobacter diazotrophicus trong chất mang bã bùn mía”

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (750.43 KB, 43 trang )

Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
PHẦN I: ĐẶT VẤN ĐỀ
Việt Nam là một nước nông nghiệp, trong thời gian vừa qua, để nâng cao năng
suất thu hoạch người nông dân đã không ngừng sử dụng các loại phân bón hóa học. Sự
canh tác liên tục đã trực tiếp làm cho đất trồng thiếu chất dinh dưỡng nghiêm trọng,
đất bị chai cứng, giảm độ phì nhiêu, tính chất vật lí, hóa học và sinh học của đất trồng
bị thay đổi. Để bù đắp phần chất dinh dưỡng bị mất đi, hàng triệu tấn phân hóa học
được bón xuống đất trồng mỗi năm. Tuy nhiên người ta ước tính lượng phân bón mà
cây hấp thụ chỉ khoảng 40-50% lượng phân bón cho cây trồng. Như vậy lượng phân
bón còn lại sẽ hòa vào không khí, thấm vào đất hoặc theo dòng nước đổ ra sông, suối
và làm ô nhiễm môi trường, điều này gây lãng phí cả về tiền của, sức lao động, làm
tăng cao giá thành sản phẩm, giảm tính cạnh tranh trên thị trường. Bên cạnh đó sự hoạt
động hết công suất của các nhà máy sản xuất phân hóa học, lượng phân bón mà cây
không hấp thụ đã gây ảnh hưởng nặng nề đến môi trường sống và làm ảnh hưởng đến
sức khỏe của con người.
Dân số thế giới gia tăng đòi hỏi lượng lương thực thực phẩm sản xuất ra cũng
tăng, tức là phải tăng năng suất cây trồng. Muốn giải quyết vấn đề này, bên cạnh việc
tạo ra nhiều giống cây trồng mới có năng suất cao còn cần phải bón các loại phân hợp
lý để cải tạo đất, làm cho đất không bị kiệt quệ (Chu Thị Thơm et al., 2006).
Sự xuất hiện và sử dụng phân hóa học từ giữa thế kỉ XX đã được phổ biến trên
khắp thế giới vì những lợi ích thực tế vô cùng to lớn mà nó mang lại. Tuy nhiên, người
ta đã nhận ra nhiều khuyết điểm khi sản xuất và sử dụng loại phân này. Quá trình sản
xuất phân hóa học đòi hỏi chi phí đầu tư lớn, nguyên liệu sản xuất có thể làm kiệt quệ
nguồn tài nguyên không phục hồi được (dầu mỏ). Mặt khác, khi sử dụng phân hóa học
trong một thời gian dài có thể làm độ phì nhiêu của đất giảm, ô nhiễm tầng nước mặt,
nhiễm độc đất (Nguyễn Phú Thọ, 2006), ảnh hưởng xấu đến chất lượng sản phẩm, có
thể gây hại đến sức khỏe con người (Lê Văn Tri, 2001).… và ảnh hưởng đến môi
trường không khí của trái đất…
Để cải tạo đất và khắc phục những hậu quả do việc sản xuất và sử dụng phân
bón hóa học, người ta sử dụng phân hữu cơ để thay thế một phần và có thể tiến tới
thay thế hoàn toàn lượng phân hóa học. Nhưng phân hữu cơ truyền thống (phân xanh,


Chuyên ngành công nghệ sinh học 1 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
phân chuồng, phân rác…) khó có thể đáp ứng được nhu cầu của một nền nông nghiệp
hiện đại. Sự phát triển của một nền khoa học tiên tiến điển hình là sự phát triển của
ngành công nghệ sinh học đã cho ra đời một sản phẩm mới: phân hữu cơ vi sinh (gọi
tắt là phân vi sinh). Kết quả nghiên cứu của nhiều quốc gia trên thế giới cho thấy việc
sử dụng phân bón vi sinh vật có thể cung cấp cho đất từ 30-60 kg nitơ (đạm)/ha/năm,
thay thế đến 50% lượng lân vô cơ cần bón và làm tăng độ phì nhiêu của đất. Các chế
phẩm có chứa vi sinh vật còn làm tăng khả năng trao đổi chất trong cây, nâng cao sức
đề kháng và chống bệnh ở cây trồng, làm tăng chất lượng nông sản, tăng thu nhập cho
nông dân (theo www.vneconomy.vn số ra ngày 29/10/2007)…
Từ lợi ích thực tế và nhu cầu cấp thiết của việc nghiên cứu, sử dụng phân vi
sinh, các nước trên thế giới nói chung và Việt Nam nói riêng đang tiến hành nghiên
cứu và triển khai ứng dụng rộng rãi, đã có nhiều sản phẩm được cấp phép và lưu hành
từ nhiều năm nay. Tuy nhiên, để chiếm lĩnh được lòng tin của nông dân và thay thế tập
quán sản xuất của họ từ việc sử dụng phân hóa học sang sử dụng phân vi sinh còn là
một bài toán khó. Lời giải của bài toán này là phải làm sao kết hợp một cách hoàn hảo
giữa chất lượng, giá thành và sự tiện dụng.
Sử dụng những chất mang dễ tìm, rẻ tiền mang tính chất tận dụng các phế thải
từ các quy trình sản xuất các sản phẩm khác là một hướng đi đang được chú ý nhất. Vì
ngoài việc làm giảm chi phí sản xuất, hạn chế việc nhập khẩu phân hóa học, tạo thêm
nhiều công ăn việc làm thì còn góp phần nâng cao lợi nhuận cho nông dân, đóng góp
vào quá trình sản xuất lương thực thực phẩm an toàn, làm giảm ô nhiễm môi trường và
xây dựng mô hình phát triển bền vững trong Công - Nông nghiệp.
Bã bùn mía là một sự lựa chọn phù hợp vì bã bùn mía nếu được xử lý đúng
cách sẽ là một môi trường hữu hiệu để các vi sinh vật phát triển, tạo tiền đề cho một
sản phẩm phân vi sinh chất lượng tốt, giá thành hạ. Không nằm ngoài những mục đích
trên, đề tài “Khảo sát khả năng sống sót của vi khuẩn Gluconacetobacter
diazotrophicus trong chất mang bã bùn mía” được thực hiện.
Chuyên ngành công nghệ sinh học 2 Viện NC&PT Công nghệ Sinh Học

Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
PHẦN II: LƯỢC KHẢO TÀI LIỆU
2.1. Phân vi sinh.
2.1.1. Giới thiệu về phân vi sinh.
2.1.1.1. Khái niệm
Theo TCVN 6169:1996, phân bón vi sinh vật (gọi tắt là phân vi sinh) là sản
phẩm chứa một hay nhiều dòng vi sinh vật sống, đã được tuyển chọn có mật độ đạt
theo tiêu chuẩn hiện hành. Thông qua các hoạt động của chúng sau quá trình bón vào
đất tạo nên các chất dinh dưỡng mà cây trồng sử dụng được (N, P ,K, . . .) hay các hoạt
chất sinh học, góp phần nâng cao năng xuất và (hoặc) chất lượng nông sản. Phân vi
sinh bảo đảm không gây ảnh hưởng xấu đến người, động thực vật, môi trường sinh
thái và chất lượng nông sản.
2.1.1.2. Phân loại
o Phân bón vi sinh vật cố định nitơ
Phân bón vi sinh vật cố định nitơ (tên thường gọi: phân đạm vi sinh) là sản phẩm
chứa một hay nhiều dòng vi sinh vật sống, đã được tuyển chọn với mật độ đạt theo tiêu
chuẩn hiện hành, có khả năng cố định nitơ từ không khí cung cấp các hợp chất chứa
nitơ cho đất và cây trồng, tạo điều kiện nâng cao năng suất và (hoặc) chất lượng nông
sản, tăng độ màu mỡ của đất. Phân vi sinh vật cố định nitơ và các dòng vi sinh vật này
không gây ảnh hưởng xấu đến người, động thực vật, môi trường sinh thái và chất
lượng nông sản.
Vi sinh vật cố định nitơ là vi sinh vật sống cộng sinh hay hội sinh với cây trồng,
hoặc vi sinh vật sống tự do trong đất, nước, không khí, có khả năng tạo khuẩn lạc đặc
trưng trên môi trường nuôi cấy không chứa hợp chất nitơ (môi trường NfM, YMA,
Ashby…).
Các vi khuẩn cố định Nitơ: vi khuẩn có định nitơ không thuộc cây họ đậu thuộc
các giống Achromobacter, Acetobacter, Alcaliganes, Arthrobacter, Azomonas,
Bacillus, Beijesinekia, Clostridium, Camplylobacter, corynebacterium, Decxia,
Desulfporibrio, Enterobacter, Herbaspirium, Lignobacter, Mycobacterium,
Methyllosinys, Pseudomonas, Rhodopspirillum, Rhodopseudomonas và Xanthobacter

Chuyên ngành công nghệ sinh học 3 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
(Wani, 1990). Một số loài được tìm thấy trong vùng rễ cây ngũ cốc chủ yếu là
Azobacter và AzoSpirillum; một số vi khuẩn cố định đạm nội sinh trong các cây chủ
(mía) được tìm thấy là vi khuẩn Gluconacetobacter diazotrophicus
o Phân bón vi sinh vật phân giải hợp chất photpho
khó tan
Phân bón vi sinh vật phân giải hợp chất photpho khó tan (tên thường gọi : phân
lân vi sinh) là sản phẩm chứa một hay nhiều dòng vi sinh vật sống đã được tuyển chọn
với mật độ tế bào đạt tiêu chuẩn hiện hành, có khả năng chuyển hoá hợp chất photpho
khó tan thành dạng dễ tiêu cung cấp cho đất và cây trồng, tạo điều kiện nâng cao năng
suất và (hoặc) chất lượng nông sản. Phân lân vi sinh và các dòng vi sinh vật này
không ảnh hưởng xấu đến người, động thực vật, môi trường sinh thái và chất lượng
nông sản.
Thông qua các hoạt động của vi sinh vật phân giải hợp chất photpho khó tan,
các hợp chất photpho khó tan được chuyển hoá thành dạng dễ tiêu đối với cây trồng.
Vi sinh vật phân giải hợp chất khó tan tạo vòng tròn trong suốt bao quanh khuẩn lạc
(vòng phân giải) trên môi trường chứa nguồn photpho duy nhất là Ca
3
(PO
4
)
2
.
Nhóm vi sinh vật được biết có khả năng hòa tan lân (Subba Rao, 1983; Gaus,
1990) bao gồm vi khuẩn Bacillus megaterium, B. Circulans, B. subtilis, Pseudomonas
straita, P. rathonis; nấm Aspergillus awamori, Penicillium digitatum, Trichoderma
sp; nấm men Schwanniomyces occidentails.
o Phân bón vi sinh vật phân giải cellulose
Phân bón vi sinh vật phân gải cellulose (tên thường gọi: phân vi sinh phân giải

cellulose) là sản phẩm chứa một hay nhiều dòng vi sinh vật sống, đã được tuyển chọn
với mật độ đạt theo tiêu chuẩn hiện hành có khả năng phân giải cellulose , để cung cấp
chất dinh dưỡng cho đất và cây trồng, tạo điều kiện nâng cao năng suất và (hoặc) chất
lượng nông sản, tăng độ màu mỡ của đất. Phân vi sinh vật phân giải cellulose và các
dòng vi sinh vật này không ảnh hưởng xấu đến người, động thực vật, môi trường sinh
thái và chất lượng nông sản.
( />tacn=techologystandar&type=first&num=1).
Chuyên ngành công nghệ sinh học 4 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
o Phân vi sinh vật kích thích tăng trưởng cây
Phân vi sinh loại này chứa một nhóm nhiều loài vi sinh vật khác nhau, trong đó
có vi khuẩn, nấm, xạ khuẩn Nhóm này được các nhà khoa học phân lập ra từ tập
đoàn vi sinh vật đất. Vi khuẩn tổng hợp kích thích tố tăng trưởng thực vật thường sống
trong vùng rễ của thực vật có ảnh hưởng đến sự tăng trưởng của cây gọi là vi khuẩn
vùng rễ kích thích tăng trưởng thực vật (PGPR= Plant Growth Promoting Rhizobacter)
(Schoroth và Hancock, 1981). PGPR bao gồm các giống Actinoplanes,Agrobacterium,
Alcaligenes, Amorphosporangium, Arthobacter, Azotobacter, Bacillus,
Brandyrhizobium, cellulomonas, Enterobacter, Pseudomonas, Rhizobium (Weller,
1988).
Nấm rễ dạng bụi (VAM= Vesicular Arbuscular Mycorrhizae): các nấm có
khuẩn ty ăn sâu vào bên trong tế bào nhu mô rễ cây, chúng hút nhiều dưỡng chất từ đất
cung cấp trực tiếp cho thực vật. Ngoài ra nấm còn có khả năng giúp cây chịu hạn trong
vùng đất sa mạc, giúp cây kháng lại các loại nấm gây hại khác (Mosse et al, 1981).
Nấm rễ bao gồm các giống Endogone, Glomus, Entrophosphora, Gigaspora,
Acaulospora, Scutellispora.
Người ta sử dụng những chế phẩm gồm tập đoàn vi sinh vật được chọn lọc để
phun lên cây hoặc bón vào đất làm cho cây sinh trưởng và phát triển tốt, ít sâu bệnh,
tăng năng suất. Chế phẩm này còn làm tăng khả năng nảy mầm của hạt, tăng trọng
lượng hạt, thúc đẩy bộ rễ cây phát triển mạnh. Như vậy, chế phẩm này có tác động
tương đối tổng hợp lên cây trồng.

Để sản xuất chế phẩm vi sinh vật kích thích tăng trưởng của cây, người ta sử
dụng công nghệ lên men vi sinh vật. Ở các nước phát triển người ta sử dụng các thiết
bị lên men tự động, công suất lớn. Ở nước ta, đã dùng kỹ thuật lên men trên môi
trường bán rắn để sản xuất chế phẩm này, bước đầu cho kết quả khá tốt.
( />Chuyên ngành công nghệ sinh học 5 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
2.1.2. Tiêu chí đánh giá chất lượng phân vi sinh
2.1.2.1. Phân bón vi sinh vật trên nền chất mang thanh trùng
Phân bón vi sinh vật trên nền chất mang thanh trùng là sản phẩm, trong đó chất
mang được tiệt trùng trước khi cấy vi sinh vật hữu ích. Phân vi sinh loại này có mật độ
tế bào vi sinh hữu ích (CFU * /g ( hay ml) phân bón) không thấp hơn 1,0 . 10
8
tế bào /g
(ml) phân, tế bào vi sinh vật tạp không lớn hơn 1,0 .10
6
tế bào /g (ml) phân. Phân vi
sinh loại này có thời gian bảo quản từ 6 tháng trở lên.
2.1.2.2. Phân bón vi sinh vật trên nền chất mang không thanh trùng
Phân bón vi sinh vật trên nền chất mang không thanh trùng là sản phẩm, trong
đó chất mang không được tiệt trùng trước khi cấy vi sinh vật hữu ích, có mật độ tế bào
vi sinh hữu ích từ 1,0 . 10
6
đến 1,0 . 10
7
tế bào /g (ml) phân. Thời gian bảo quản tối
thiểu 6 tháng ( />Chất lượng phân vi sinh đã được nhà nước quy định theo những tiêu chuẩn
riêng biệt như: TCVN 6166:04 đối với phân vi sinh cố định đạm, TCVN 6167:96 đối
với phân vi sinh hòa tan lân Ngoài ra, theo Nguyễn Thanh Hiền (2003) thì Trung tâm
Nghiên cứu và Ứng dụng Phân bón Vi sinh đã phối hợp với Trung tâm Nghiên cứu Cố
định Nitơ Sunfit thuộc trường Đại học Tổng hợp Sydney có đưa ra một số tiêu chuẩn

khác cũng không kém phần quan trọng:
Giống có hoạt tính (cố định nitơ hoặc phân giải photpho) mạnh.
Phân vi sinh thay được ít nhất 50% lượng phân hóa học.
Không gây bệnh cho cây và tăng năng suất cây trồng từ 10% trở lên.
2.1.3. Tầm quan trọng của việc sử dụng phân vi sinh
2.1.3.1. Khuyết điểm của phân hóa học
o Đối với phân đạm (nitơ)
Hàng năm chi phí cho phân đạm trong nông nghiệp trên thế giới khoảng 45 tỉ
USD, và tăng với một tỉ lệ tương đương với dân số thế giới (2%) (Shenoy et al., 2001).
Hầu hết đạm hóa học được sản suất theo quy trình Haber – Bosch, đòi hỏi một lượng
Chuyên ngành công nghệ sinh học 6 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
lớn khí tự nhiên, than đá, hoặc dầu mỏ. Một số nghiên cứu đã chỉ ra rằng để sản xuất 1
tấn phân đạm hóa học cần 1,3 tấn dầu, để sản xuất 80 triệu tấn phân đạm hóa học cần
100 triệu tấn dầu, bằng 1,4% số dầu sử dụng trên toàn cầu. Dầu cần cho sản xuất công
nghiệp, nông nghiệp, giao thông vận tải… Khai thác quá mức thì nguồn tài nguyên
này cũng sẽ cạn kiệt, không còn cho các thế hệ sau. Thêm vào đó việc sản xuất đạm
sinh học sẽ sinh ra một lượng lớn CO
2
– một trong những nguyên nhân gây ra hiệu ứng
nhà kính mà cả thế giới đang tìm cách khắc phục. Hơn nữa, chỉ có khoảng 1/3 lượng
phân bón vào đất cây trồng có thể sử dụng, lượng đạm còn thừa sẽ thất thoát ra môi
trường bên ngoài gây ô nhiễm nguồn nước ngầm và ảnh hưởng đến sức khỏe con
người. Việc sử dụng quá mức lượng đạm hóa học sẽ dẫn đến sự sản sinh N
2
O cũng gây
ra hiện tượng nóng lên toàn cầu.
Ngoài ra, chưa kể đến chất lượng nông sản khi sử dụng đạm hóa học không
đúng cách. Nếu bón phân đạm vào lúc thời tiết không thuận lợi (trời rét đậm, nắng gắt,
sương nhiều đọng trên lá) chẳng những cây không hấp thu hiệu quả mà còn có thể gây

độc. Bón nhiều phân đạm càng gặp nhiều tác hại hơn. Cây có thể bị giảm năng suất do
phát triển quá nhanh làm thân mềm, phân nhiều nhánh, dễ đổ ngã và chậm ra hoa, khó
đậu trái… Phân đạm dư thừa còn làm cây trồng giảm khả năng chống chịu với sâu
bệnh và thời tiết (Lê Văn Tri, 2001).
o Đối với phân lân (Photpho)
Photpho (P) là nguồn dinh dưỡng quan trọng thứ 2 của cây trồng. Cây xanh hấp
thụ lân ở dạng hòa tan nhưng phần lớn lân tồn tại trong đất dưới dạng không hòa tan
(Ca
3
(PO
4
)
2
) hoặc dạng hữu cơ nên cây không hấp thu được. Nếu bổ sung lân cho đất
bằng con đường hóa học có thể gây ô nhiễm môi trường và giá thành cao. Ngoài ra,
việc sản xuất lân bằng con đường hóa học đòi hỏi nguồn nguyên liệu là quặng mỏ,
điều này làm cho nguồn tài nguyên thiên nhiên ngày càng cạn kiệt. Theo Goldstein
(1986), phân lân hóa học sản xuất từ quặng mỏ có thể chuyển thành hợp chất khác từ
70 – 80% gây nên sự lãng phí vô cùng lớn.
Trên đây là một số khuyết điểm đáng chú ý đi kèm với những ưu điểm mà phân
hóa học đã mang lại cho con người từ nửa thế kỉ qua. Mặt hạn chế của phân hóa học
đã đến lúc làm cho chúng ta phải suy nghĩ và gấp rút tiến hành những nghiên cứu tìm
Chuyên ngành công nghệ sinh học 7 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
ra hướng đi mới trong vấn đề dinh dưỡng cho cây trồng để đạt được mục đích cuối
cùng là phát triển một nền nông nghiệp bền vững, lâu dài.
2.1.3.2. Ưu điểm của phân vi sinh
Theo đánh giá của các chuyên gia kinh tế nông nghiệp, trường Đại học Sydney, thì
phân vi sinh mang lại lợi ích cho các thành phần sau:
o Cho các hộ nông dân sử dụng phân vi sinh

Bón phân vi sinh, chi phí cho sản xuất giảm, do giảm được phân hóa học và
giá phân vi sinh rẻ, ít nhất giảm được 16%. Với chế độ bón phân hợp lý, chi phí còn
giảm được nhiều hơn.
Bón phân vi sinh năng suất tăng, với chế độ bón bình thường (khoảng
300kg/ ha), năng suất tăng trung bình 10%. Nếu kết hợp với phân hóa học đúng cách,
năng suất còn có thể tăng cao hơn.
Bón phân vi sinh đất tốt hơn, cây khỏe hơn, giảm sâu bệnh, do vậy giảm chi
phí cho thuốc bảo vệ thực vật.
o Đối với địa phương
Nếu công nghệ sản xuất phân vi sinh được chuyển giao cho địa phương và
sản phẩm làm ra cung ứng cho chính nông dân của địa phương đó thì chắc chắn phân
vi sinh góp phần phát triển kinh tế của địa phương.
o Đối với nhà nước
Hiện nay, hầu hết các nước đang phát triển phải nhập khẩu phân bón vì vậy
nếu sản xuất được phân vi sinh tại chổ thì sẽ giảm được một lượng lớn ngoại tệ cho
việc nhập phân bón. Ngoài ra, tiêu hao nguyên liệu để sản xuất phân vi sinh không
đáng kể so với sản xuất phân hóa học.
o Lợi ích cho môi trường
Những lợi ích phân vi sinh mang lại cho môi trường còn lớn hơn nhiều so với
lợi ích kinh tế. Những lợi ích cho môi trường là:
Chuyên ngành công nghệ sinh học 8 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
Sử dụng hiệu quả hơn các chất dinh dưỡng trong đất (lân); trong không khí
(đạm).
Giảm sự rửa trôi phân đạm hóa học, gây nên sự ô nhiễm nguồn nước do
NO
3
-
.
Giảm đáng kể quá trình denitrit hóa, sinh ra khí N

2
O rất độc, độc hại hơn
NO
3
-
nhiều.
Giảm được lượng khí đốt khi sản xuất phân hóa học.
Các chất còn lại trong đất có thể được phân hủy sinh học.
Từ những đánh giá trên, việc sử dụng phân vi sinh là cần thiết để xây dựng nền nông
nghiệp bền vững trên toàn cầu (Chu Thị Thơm et al., 2006).
Bảng 2.1. Hiệu quả của phân hữu cơ sinh học đối với lúa ở một số quốc gia châu Á
Quốc gia Tỉ lệ % tăng năng suất
Trung Quốc
Triều Tiên
Thái Lan
Ấn Độ
25,2 – 32,6
8 – 12
2,5- 29,5
9,9
Nguồn: Lê Xuân Phương (2005)
2.1.4. Tình hình sản xuất và sử dụng phân vi sinh trong nước và thế giới
2.1.4.1. Trong nước
Ở Việt Nam, phân vi sinh vật cố định đạm, phân giải lân đã được bước đầu
nghiên cứu từ những năm 1960. Năm 1958, Lê Văn Căn và Đặng Văn Ngữ đã nghiên
cứu loài nấm có khả năng phân giải photpho khó tan là Aspergillus niger và đạt được
thành công bước đầu. Chỉ sau 4 tuần nuôi cấy, loài nấm này đã chuyển hóa được
17,2% photpho tổng số trong apatit và 14,2% photpho tổng số trong photphorit. Năm
1980 bắt đầu thử nghiệm phân vi sinh cho cây đậu tương và chế phẩm ViDane,
ViDapho cho cây đậu nành, đậu phộng của Trường Đại học Cần Thơ. Trong chương

trình 52b-01-03 (1987), quy trình sản xuất Nitragin trên nền đất than bùn đã được hoàn
Chuyên ngành công nghệ sinh học 9 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
thiện (Lê Văn Tri, 2002). Từ những năm 1989 – 1991 đã có rất nhiều sản phẩm sinh
học, sinh hóa được sản xuất với nhiều tên gọi khác nhau như: Komix (của công ty
Donall); Biomix (công ty phân bón hóa chất Kiên Giang); Biomix C (xí nghiệp than
bùn Củ Chi, Tp. Hồ Chí Minh); Biomix P (xí nghiệp phân Chư Sê Playku); Biofer A
(Trung tâm khuyến nông tỉnh Sông Bé)…(Nguyễn Đăng Diệp, 2000).
Nhu cầu sử dụng phân sinh học hiện nay rất lớn, đặc biệt là phân chuyên dùng
và tận dụng được chế phẩm sẵn có như: phân Komix chuyên dùng cho mía, cà phê,
cacao,… Các xí nghiệp phân sinh học, phân vi sinh được xây dựng ở nhiều nơi như:
La Ngà (Đồng Nai), Nha Trang (Khánh Hòa), Vĩnh Phúc, Hà Tây, Tây Ninh, Long
An… Để tận dụng nguồn phế thải ở địa phương và đáp ứng nhu cầu phân bón hiện
nay.
Trong năm 2003 – 2004 cả nước đã có 34/42 nhà máy đường tận dụng bã bùn
mía để sản xuất phân vi sinh, sản lượng phân vi sinh đạt 200.000 tấn và chỉ mới đáp
ứng 50% nhu cầu cho vùng nguyên liệu của các nhà máy (Bộ Nông nghiệp và Phát
triển Nông thôn Việt Nam, 2004).
2.1.4.2. Thế giới
Phân bón vi sinh đầu tiên do Noble Hiltner sản xuất tại Đức năm 1896 và được
đặt tên là Nitragin (Nitragin là loại phân được chế tạo bởi vi khuẩn Rhizobium do
Beijerink phân lập năm 1888 và được Fred đặt tên vào năm 1889 dùng để bón cho các
loại cây thích hợp của họ đậu). Năm 1900 – 1914 nhiều nước trên thế giới triển khai
sản xuất chế phẩm vi sinh vật: Canada, Tân Tây Lan, Áo (Nguyễn Xuân Thành, 2003).
Ngày nay, phân vi sinh vật cố định đạm đã được sử dụng nhiều nơi trên thế giới
với nhiều tên gọi khác nhau như: Rizonit (Hungary), Nitrobacterin (Anh), Estrasol
(Nga), Mana (Nhật, Philippin), Tian-li-bao (Trung Quốc, Hồng Kong)… (Lê Văn Tri,
2002).
Bên cạnh đó đã có nhiều công trình nghiên cứu nhằm ứng dụng và mở rộng việc
sản xuất các loại phân bón vi sinh cố định nitơ mà thành phần còn được phối hợp thêm

một số vi sinh vật có ích khác như một số xạ khuẩn cố định nitơ sống tự do Frankia
spp, Azotobacter spp, các vi khuẩn cố định nitơ sống tự do Clostridium, Pasterium,
Beijerinkiaindica, các xạ khuẩn có khả năng phân giải cellulose, hoặc một số dòng vi
Chuyên ngành công nghệ sinh học 10 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
sinh vật có khả năng chuyển hóa các nguồn dự trữ photpho và kali ở dạng khó hoà tan
với số lượng lớn có trong đất mùn, than bùn, trong các quặng apatit, photphoric
chuyển chúng thành dạng dễ hoà tan, cây trồng có thể hấp thụ được.Bã bùn mía và một
số chất mang khác trong việc sản xuất phân vi sinh
2.1.5. Bã bùn mía
Bã bùn mía là cặn bã sau khi lắng lọc nước mía ở các nhà máy đường. Đây là
hỗn hợp những tạp chất như: bùn đất, bã mía nhỏ, bụi… Ngoài ra, trong bã bùn mía
còn sót lại khoảng 0,5 – 1% đường (Bùi Quang Vinh, 1998).
Để sản xuất đường, hằng năm Việt Nam phải trồng từ 10 - 12 triệu tấn mía cây
với diện tích canh tác từ 250.000 đến 300.000 ha chủ yếu là đất bạc màu và vùng
nhiễm phèn nặng (không trồng được các loại cây khác). Vì thế, để trồng được 250.000
ha mía, ngoài phân hóa học (đạm - lân - kali) tối thiểu phải bón 4 - 5 tấn phân chuồng
cho 1 ha tức là phải có 1 triệu tấn phân chuồng bón cho 250.000 ha.
Trong khi đó, việc chế biến 10 triệu tấn mía để làm đường sinh ra một lượng phế thải
khổng lồ: 2,5 triệu tấn bã mía, 250.000 tấn bã bùn (sau khi đã lấy nước đường) và
250.000 tấn mật rỉ. Trước đây 80% lượng bã mía này được dùng để đốt lò hơi trong
các nhà máy sản xuất đường, sinh ra 50.000 tấn tro và 20% còn lại là 500.000 tấn bã
được dùng làm ván ép, còn mật rỉ dùng để sản xuất cồn, mì chính hoặc dùng cho các
công nghệ vi sinh khác như chế biến thành thức ăn chăn nuôi. Riêng tro và bã bùn
không sử dụng được phải đổ ra các bãi đất trống. Tuy là phế thải nhưng trong bã bùn
mía lại có nhiều chất hữu cơ "bổ béo" mà cây mía đã hút từ đất như protein, lipit, các
chất khoáng, vitamin Và cả những chất bẩn từ cây mía (vì khi đưa vào máy nghiền,
cây mía không được cọ rửa). Các chất này sau một thời gian đã lên men vi sinh vật có
mùi thối ngấm xuống đất gây ô nhiễm môi trường và ô nhiễm nguồn nước rất nặng.
( />Tuy nhiên nếu xử lý đúng cách, chẳng những bã bùn mía không gây ảnh hưởng

môi trường mà còn mang lại nhiều lợi ích cho các nhà máy đường và người dân. Bã
bùn mía là nguồn nguyên liệu tốt cho sản xuất phân sinh học vì sinh khối bã bùn mía
cung cấp cung cấp nguồn carbon hữu ích cho vi sinh vật phát triển (Malik et., al 2001).
Bảng 2.2. Thành phần lý hóa tính của bã bùn mía
Chuyên ngành công nghệ sinh học 11 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
Thành phần
Carbon tổng số (%) 50,797
Đạm tổng số (%) 2,322
P
2
O
5
(%) 5,287
K
2
O (%) 1,789
pH 6,7
Nguồn: Bộ môn Khoa học đất, khoa Nông nghiệp và Sinh học Ứng dụng, Trường Đại học Cần Thơ
2.1.6. Một số chất mang khác
2.1.6.1. Than bùn
Than bùn được tạo thành từ xác các loài thực vật khác nhau. Xác thực vật được
tích tụ lại, được đất vùi lấp và chịu tác động của điều kiện ngập nước trong nhiều năm.
Với điều kiện phân huỷ yếm khí các xác thực vật được chuyển thành than bùn. Màu
sắc của than bùn thay đổi theo thành phần cấu tạo, tuổi của than và các điều kiện
khống chế khi hình thành.
Trong than bùn có hàm lượng chất vô cơ là 18 – 24%, phần còn lại là các chất
hữu cơ (Cục Trồng trọt, Bộ Nông nghiệp và Phát triển Nông thôn Việt Nam). Khoa
học về than bùn đã xác định được 5 nhóm hợp chất hữu cơ căn bản sau:
Các hợp chất hữu cơ hòa tan trong nước.

Các hợp chất hữu cơ hòa tan trong ete và rượu.
Cellulose và hemicellulose
Lignin và các chất dẫn xuất từ lignin.
Hợp chất nitơ.
Theo số liệu điều tra của các nhà khoa học, trên thế giới trữ lượng than bùn có
khoảng 300 tỷ tấn, chiếm 1,5% diện tích bề mặt quả đất. Ở Việt Nam, theo tài liệu của
Tổng cục Địa chất (1978), trữ lượng than bùn của U Minh (U Minh thượng và U Minh
hạ) khoảng 300 triệu tấn. Nhưng đến nay trữ lượng than bùn ở đây đã giảm chỉ còn 1/3
do thiên tai và sự khai thác của con người. Ngoài U Minh, một số nơi khác cũng có trữ
lượng than bùn đáng kể như Phong Điền (Thừa Thiên Huế), Hảo Sơn (Phú Yên)…
(Võ Đình Ngộ et al., 1999).
Chuyên ngành công nghệ sinh học 12 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
Đứng trên phương diện nông nghiệp thì than bùn ở Việt Nam là một nguồn tài
nguyên rất có giá trị. Từ than bùn người ta có thể sản xuất ra các chất kích thích và
điều hòa tăng trưởng cho cây trồng, cũng như có thể sản xuất ra các loại phân bón hữu
cơ có tác dụng cải tạo đất, tăng độ phì của đất, giảm được tác hại của việc lạm dụng
phân hóa học trong sản xuất nông nghiệp.
Bảng 2.3. Hàm lượng các chất dinh dưỡng trong than bùn ở miền Đông Nam Bộ
Nguồn: Hồ Thìn, Võ Đình Ngộ – Trung tâm Địa chất học, Phân viện Khoa học Việt Nam, TP. Hồ Chí Minh
Bảng 2.4. Thành phần lý hóa của than bùn Long An
Thành phần
N (%) 0,3 – 4,0
P
2
O
5
(%) 0,047
K
2

O (%) 0,02
Axit humic (%) 1,4
Carbon tổng số (%) 12,4
pH 3,0 – 4,6
Nguồn: Viện Nghiên cứu và Phát triển Công nghệ Sinh học, Trường Đại học Cần Thơ
Trong than bùn có axid humic, có tác dụng kích thích tăng trưởng của cây. Hàm
lượng đạm tổng số trong than bùn cao hơn trong phân chuồng gấp 2 – 7 lần, nhưng
chủ yếu ở dưới dạng hữu cơ. Các chất đạm này cần được phân huỷ thành đạm vô cơ
cây mới sử dụng được.
Chế biến than bùn thành các dạng phân bón khác nhau được thực hiện trong các
xưởng. Thông thường quá trình chế biến thông qua các công đoạn sau đây:
Chuyên ngành công nghệ sinh học 13 Viện NC&PT Công nghệ Sinh Học
% chất dinh dưỡng
Địa điểm lấy than bùn
Tây Ninh Củ Chi Mộc Hoá Duyên Hải
N (%) 0,38 0,09 0,16 – 0,91 0,64
P
2
O
5
(%) 0,03 0,1 – 0,3 0,16 0,11
K
2
O (%) 0,37 0,1 – 0,5 0,31 0,42
pH 3,4 3,5 3,2 2,6
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
Dùng tác động của nhiệt để khử bitumic trong than bùn. Có thể phơi nắng một
thời gian để Ôxy hoá bitumic. Có thể hun nóng than bùn ở nhiệt độ 70
o
C.

Dùng vi sinh vật phân giải than bùn. Sau đó trộn với phân hoá học NPK, phân vi
lượng, chất kích thích sinh trưởng, tạo thành loại phân hỗn hợp giàu chất dinh dưỡng.
Hiện nay, ở nước ta có nhiều xưởng sản xuất nhiều loại phân hỗn hợp trên cơ sở
than bùn. Trên thị trường có các loại phân hỗn hợp với các tên thương phẩm sau đây:
Biomix (Củ Chi), Biomix (Kiên Giang), Biomix (Plây Cu), Biofer (Bình Dương),
Komix (Thiên Sinh), Komix RS (La Ngà), Compomix (Bình Điền II), phân lân hữu cơ
sinh học sông Gianh và nhiều loại phân lân hữu cơ sinh học ở nhiều tỉnh phía Bắc.
( _phan_doi, _tro.html)
2.1.6.2. Phân chuồng
Phân chuồng là phân do các loài gia súc gia cầm thải ra. Phân chuồng có thành
phần không ổn định, phụ thuộc nhiều vào loại gia súc, gia cầm, sức khỏe, tuổi cũng
như khẩu phần thức ăn và phương thức nuôi dưỡng.
Bảng 2.5. Thành phần dinh dưỡng của một số loại phân gia súc (%)
Loại phân H
2
O N P
2
O
5
K
2
O CaO MgO
Lợn 82.0 0.80 0.41 0.26 0.09 0.10
Trâu bò 83.1 0.29 0.17 1.00 0.35 0.13
Ngựa 75.7 0.44 0.35 0.35 0.15 0.12
Gà 56.0 1.63 1.54 0.85 2.40 0.74
Vịt 56.0 1.00 1.40 0.62 1.70 0.35
Nguồn: Cục Khuyến nông, khuyến lâm (2004)
Trong 10 tấn phân chuồng có thể lấy ra được một số nguyên tố vi lượng như sau:
Bo: 50 – 200g; Mn: 500 – 2000g; Co: 2 – 10g; Cu: 50 – 150g; Zn: 200 – 1000g; Mo: 2

–25g ( />Phân chuồng có thể được bón trực tiếp nhưng trong phân có thể chứa những vi
sinh vật gây hại hoặc trứng giun sán gây nhiễm cho rau màu và ảnh hưởng trực tiếp
đến người tiêu dùng. Vì vậy, người ta thường xử lý phân chuồng trước khi đưa vào sử
dụng. Có thể thêm vào những tập đoàn vi sinh vật phù hợp để sản xuất phân vi sinh
vừa tăng thành phần dinh dưỡng của phân vừa có thể tiêu diệt được các mầm bệnh.
Chuyên ngành công nghệ sinh học 14 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
Theo nghiên cứu của các chuyên gia thuộc Viện Sinh học Nhiệt đới, phân lợn,
gà sau khi được thải ra sẽ được xử lý ẩm độ, sau đó ủ với chế phẩm BIO-F, chế phẩm
chứa các vi sinh vật đã được phân lập và tuyển chọn gồm: xạ khuẩn Streptomyces sp.,
nấm mốc Trichoderma sp. và vi khuẩn Bacillus sp. Sau ba ngày, các vi sinh vật hữu
ích nói trên bắt đầu phát triển, phân giải và làm mất mùi phân. Nhiệt độ trong khối ủ
cũng tăng lên tới 60 - 70
o
C, tiêu diệt các vi sinh vật gây bệnh và trứng giun, sán trong
phân. Sau 7 - 10 ngày, giai đoạn kết thúc và sản phẩm thu được là phân bón hữu cơ vi
sinh chất lượng cao, có tác dụng phòng chống nấm hại cây trồng.
2.1.6.3. Rác thải hữu cơ
Thành phần của rác thải hữu cơ gồm các dạng protein (thịt, cá, trứng…); tinh
bột (cơm, các loại vỏ củ quả, một số loại hạt…); cellulose (rau các loại, gỗ, lá…); lipit
(mỡ động vật, dừa, xác bã đậu phộng…); lignin…) là môi trường thuận lợi cho nhiều
vi sinh vật phát triển, các vi sinh vật này sử dụng chất hữu cơ làm nguồn cung cấp
năng lượng và đưa chúng trở lại chu trình vật chất, do vậy chất thải sẽ bị phân hủy
nhanh chóng tạo thành phân hữu cơ (Nguyễn Đức Lượng, 2004).
Quy trình xử lí rác thải hữu cơ bằng công nghệ sinh học bắt đầu được ứng dụng
ở nước ta cách đây khoảng hai thập kỉ. Tuy nhiên, chỉ đến mấy năm gần đây, công
nghệ này mới thật sự được chú trọng. Nhờ sự đầu tư của nhà nước kết hợp với những
dự án đầu tư, sự giúp đỡ của một số nước như: Đức, Hà Lan, Đan Mạch… Chúng ta đã
xây dựng được một số nhà máy chuyên sản xuất phân vi sinh và khí sinh học từ rác
như: Nhà máy Xử lí rác Thanh Trì, Nhà máy Xử lí rác Cầu Diễn, Nhà máy Xử lí rác

Hoóc Môn Sản phẩm của các nhà máy này bắt đầu được bán ra thị trường, như Nhà
máy Xử lí rác Hóc Môn (Thành phố Hồ Chí Minh) mỗi năm xuất xưởng khoảng
25.000 tấn phân hữu cơ; Xí nghiệp Xử lí rác Cầu Diễn mỗi năm cũng xuất xưởng được
khoảng 7.500 tấn ().
Trong nước cũng có nhiều đề tài nghiên cứu, xử lý rác thải hữu cơ làm phân vi
sinh từ nhiều năm qua. Gần đây, có đề tài nghiên cứu của PGs.Ts. Đào Châu Thu, Ts.
Nguyễn Ích Tân cùng cộng sự thuộc Trung tâm Nghiên cứu và Phát triển Nông nghiệp
bền vững (TTNC & PTNNBV - Trường Đại học Nông nghiệp I) hợp tác với Khoa
Sinh học và Kinh tế Nông nghiệp, Đại học Udine (Italia) mang tên “Sản xuất phân hữu
cơ từ rác thải hữu cơ sinh hoạt và phế thải nông nghiệp để dùng làm phân bón cho rau
Chuyên ngành công nghệ sinh học 15 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
sạch vùng ngoại ô thành phố”. TTNC & PTNNBV tiến hành xây dựng quy định sản
xuất phân hữu cơ từ rác thải và phế phẩm vi sinh vật tại trường. Cho tới nay, Trung
tâm đã xây dựng hoàn thiện nhà ở và thiết bị xử lý, ủ phân, chế biến phân hữu cơ bằng
công nghệ vi sinh và ứng dụng được ba chế phẩm vi sinh vật cho quá trình ủ phân.
Xây dựng được một báo cáo tổng quan về công tác tuyên truyền, giáo dục, quy trình
thu gom, phân loại, xử lý các rác thải sinh hoạt hữu cơ thành phân vi sinh và thử
nghiệm trước tại trường Đại học Nông nghiệp I. Kết quả chương trình đã sản xuất
được 2,8 tấn phân vi sinh từ rác thải hữu cơ - đã được kiểm tra chất lượng, đóng gói
bao bì và mang đi tiêu thụ (Khoa học và đời sống, số 89(1702), ngày 5/11/2004, tr.5).
2.1.6.4. Xác bã cà phê
Công trình nghiên cứu của nhóm Phan Thị Thanh Hoài, Đặng Ngọc Huê,
Nguyễn Nữ Quỳnh Giang, Ngô Nữ Quỳnh Như và Nguyễn Bá Dũng (Đại Học Tây
Nguyên) đạt giải nhất cuộc thi “Phát minh xanh Sony 2004” với đề tài “Nghiên cứu
ứng dụng công nghệ sinh học trong xử lý phế thải chế biến ướt cà phê” cho thấy vỏ cà
phê sau khi được các nhà máy sản xuất cà phê thải ra có thể làm phân vi sinh bằng
phương pháp ủ và phối trộn thích hợp.
Theo kết quả phân tích của nhóm nghiên cứu này thì thành phần hóa học của vỏ
cà phê có hàm lượng đường rất cao (14,4%), trong đó đường khử chiếm tới 12,4%,

hàm lượng protein (10,1%). Lượng hữu cơ trong đó cũng rất cao, hàm lượng cellulose
trong vỏ cà phê là 63,2% và lignin là 17,7% - hai thành phần nếu được phân hủy sẽ tạo
mùn. Ngoài ra, còn có hàm lượng protein là 11,2% cùng các loại khoáng vi lượng
khác Đó quả là nguồn nguyên liệu lý tưởng để làm ra phân vi sinh có hàm lượng hữu
cơ cao, dinh dưỡng khoáng đầy đủ và cân đối.
( />2.2. Một số chỉ tiêu quan trọng trong việc khảo sát chất lượng bã bùn mía
2.2.1. Độ ẩm
Ảnh hưởng đến khả năng sống sót của các vi sinh vật. Độ ẩm cao hoặc thấp quá
đều có thể gây bất lợi cho các vi sinh vật. Ngoài ra, độ ẩm còn ảnh hưởng tới mức độ
bám dính, độ bền của viên phân khi thành phẩm.
Chuyên ngành công nghệ sinh học 16 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
2.2.2. pH
pH = -lg aH
+
, là đại lượng biểu thị hoạt độ H
+
trong môi trường. Đó là chỉ tiêu
đơn giản đầu tiên về độ chua thường được xác định nhất, nó có ý nghĩa rất lớn trong
việc đánh giá tính chất của bã bùn mía.
2.2.3. Hàm lượng nitơ
Vi sinh vật sử dụng carbon như nguồn năng lượng cần thiết, chúng còn cần nitơ
để tổng hợp protein cho tế bào của chúng. Nguồn nitơ dễ hấp thụ nhất đối với vi sinh
vật là NH
3
và NH
4
+
. Muối nitrat (NO
3

-
) là nguồn thức ăn nitơ thích hợp đối với nhiều
loại tảo, nấm sợi và xạ khuẩn nhưng ít thích hợp đối với nhiều loài nấm men và vi
khuẩn (Nguyễn Lân Dũng et al., 2008).
Mỗi loài vi sinh vật có nhu cầu về nitơ nhất định. Lượng nitơ cần thiết này được
tính theo tỉ lệ C/N. Vi khuẩn cần 0,4 – 0,8 %N (tỉ số C/N thích hợp là 10 – 20), xạ
khuẩn cần 1,2 – 2,4 (C/N = 15 – 25) và nấm cần từ 1,2 – 1,6 %N (C/N = 25 – 33)
(Phạm Văn Kim, 2000).
2.2.4. Lượng chất hữu cơ
Thuật ngữ “chất hữu cơ” bao gồm toàn bộ phần không phải khoáng của cơ chất
(đất, phân hữu cơ…) và một ít xác động thực vật ở trong đó (Viện Thổ nhưỡng Nông
hóa, 1998).
Chất hữu cơ là một chỉ tiêu quan trọng. Đó là nguồn cung cấp trực tiếp nhiều
dinh dưỡng cho cây trồng và các vi sinh vật như: C, N, P, K, Ca, Mg…
2.2.5. Lượng lân hòa tan
Photpho (P) bao giờ cũng chiếm tỉ lệ cao nhất trong các nguyên tố khoáng của
tế bào vi sinh vật (nhiều khi P chiếm đến 50% so với tổng số chất khoáng). P có mặt
trong cấu tạo của nhiều thành phần quan trọng của tế bào (axit nucleic,
photphoprotein, photpholipit, nhiều coenzim quan trọng như ADP, ATP, UDP, NAD,
NADP, flavin…; một số vitamin như tiamin, biotin…). (Nguyễn Lân Dũng et al.,
2008)
Chuyên ngành công nghệ sinh học 17 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
2.2.6. Kali, canxi và magie
Kali (K) là nguyên tố chiếm một tỷ lệ khá cao trong thành phần khoáng của tế
bào vi sinh vật. Người ta nhận thấy kali thường tồn tại trong dạng ion K
+
ở ngoài cấu
trúc tế bào. Kali làm tăng độ ngậm nước của các hệ thống keo do đó ảnh hưởng đến
các quá trình trao đổi chất, nhất là các quá trình tổng hợp. Kali có thể còn tham gia vào

quá trình tổng hợp một số vitamin (như tiamin…) và có những ảnh hưởng đáng kể đến
quá trình hô hấp của tế bào vi sinh vật (Lê Xuân Phương, 2005).
Canxi (Ca) mặc dầu là nguyên tố ít tham gia vào việc xây dựng nên các hợp
chất hữu cơ nhưng nó có vai trò đáng kể trong việc xây dựng các cấu trúc tinh vi của tế
bào. Canxi đóng vai trò là cầu nối trung gian của nhiều thành phần quan trọng trong tế
bào (DNA với protein trong nhân, nucleocid này với nucleocid khác, RNA với protein
trong ribosom…)
Là nguyên tố được vi sinh vật đòi hỏi cũng với lượng khá cao (10
-3
– 10
-4
M).
Magie (Mg) mang tính chất một cofactor, chúng tham gia vào nhiều phản ứng enzyme
có liên quan đến các quá trình photphoryl hóa. Mg
2+
có thể làm hoạt hóa các
hexokinaza, ATPaza, các men trao đổi protein, các men oxi hóa khử của chu trình
Krebs… Hàm lượng kali tổng số phụ thuộc vào nguồn gốc phát sinh. Khoáng vật chủ
yếu chứa kali ở dạng alumino silicat và nhiều nhất là fenpat. Trong đất, canxi có phổ
biến ở các dạng carbonat, photphat, silicat, florua và sunfat. Nguồn quan trọng nhất là
carbonat, kế đó là photphat và sunfat. Magie có trong các khoáng sét thường gặp như
mica, vecmiculit, clorit và đôi khi tìm thấy ở dạng carbonat. Cùng với canxi, magie có
ý nghĩa về lý hóa tính của đất và dinh dưỡng của cây trồng (Nguyễn Lân Dũng et al.,
2008).
2.3. Quá trình cố định đạm của các vi sinh vật tham gia cố định đạm.
2.3.1. Quá trình cố định đạm (quá trình cố định nitơ phân tử)
Quá trình cố định nitơ phân tử (N) là quá trình đồng hóa nitơ của không khí
thành đạm amon dưới tác dụng của một số vi sinh vật có hoạt tính nitrogenase. Nguồn
nitơ dự trữ nhiều nhất trong tự nhiên là nguồn khí nitơ tự do (N
2

) trong khí quyển.
Chúng chiếm tỉ lệ rất cao trong không khí (78%) (Dobereiner, 1987). Số lượng nitơ
trong lớp khí quyển bên trên mỗi hecta đất tới 85.000 tấn, còn tổng số nitơ trong cả khí
Chuyên ngành công nghệ sinh học 18 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
quyển tới 4.10
15
tấn. Trong khí nitơ, hai nguyên tử nitơ liên kết với nhau bằng 3 liên
kết rất bền vững. Năng lượng của 3 liên kết này cao tới 225kcal/M. Chính vì vậy mà
N
2
rất khó kết hợp với nguyên tố khác và nitơ có nhiều xung quanh ta nhưng cả người,
động vật lẫn cây trồng đều luôn thiếu thốn nitơ. Muốn phá vỡ 3 liên kết này, người ta
cần phải sử dụng những năng lượng rất lớn. Chẳng hạn ở nhà máy phân đạm hóa học,
muốn làm cho nitơ liên kết được với hidro để tạo thành NH
3
người ta phải dùng một
nhiệt độ là 500
o
C và một áp suất cao tới 350 atm (Nguyễn Lân Dũng et al., 2008).
Trong khi đó vi sinh vật dưới sự trợ giúp của nitrogenase có thể phá vỡ 3 liên
kết của phân tử nitơ một cách dễ dàng ngay trong điều kiện bình thường về nhiệt độ và
áp suất. Có thể nói quá trình cố định nitơ phân tử là quá trình khử N
2
thành NH
3
có xúc
tác của nitrogenase và sự có mặt của ATP.
2.3.2. Các vi sinh vật tham gia quá trình cố định đạm
o Vi sinh vật cố định đạm cộng sinh

Các vi khuẩn cố định nitơ bằng cộng sinh được gọi chung là Rhizobium (số
nhiều: Rhizobia), chúng thuộc bộ Rhizobiales, bao gồm 12 chi và 57 loài. Có 5 chi
quan trọng trong nông nghiệp nhờ đặc tính cộng sinh trên cây (Phạm Văn Kim, 2000):
Rhizobium (họ Rhizobiaceae): Các loài quan trọng gồm R. arachis (cộng sinh
trên đậu phọng); R. etli (cộng sinh trên các loại đậu); R. gallicum (cộng sinh trên các
loại đậu); R. hainanense (cộng sinh trên các loài đậu nhiệt đới); R. huautlense (cộng
sinh trên điền thanh); R. indigoferae (cộng sinh trên cây chàm indigo); R.
leguminosarum (cộng sinh trên các loại đậu); R. phaseoli (cộng sinh trên các loại đậu
ve, đậu xanh); R. tropici (Rhizobium leguminosarum biovar phaseoli).
Bradyrhizobium (họ Bradyrhizobiaceae): Các loài quan trọng gồm B. betae
(cộng sinh trên củ cải đường); B. canariense (cộng sinh trên các cây họ đậu, chịu được
đất chua); B. japonicum (cộng sinh trên đậu nành); B. lupine (cộng sinh trên đậu
lupin).
Mesorhizobium (họ Phyllobacteriaceae): Các loài quan trọng gồm M. huakuii,
M. septentrionale và M. temperatum (cộng sinh trên các loại đậu đồng cỏ); M. loti
(cộng sinh trên sen); M. amorphae, M. mediterraneum và M. tianshanense (cộng sinh
trên đậu chickpea); M. plurifarium (cộng sinh trên các loài keo).
Chuyên ngành công nghệ sinh học 19 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
Sinorhizobium (họ Rhizobiaceae): Các loài quan trọng gồm S. abri (cộng sinh
trên các loại đậu nhiệt đới, điên điển); S. americanus và S. terangae (cộng sinh trên
các loài keo); S. aroris (cộng sinh trên các loại đậu của Phi châu); S. medicae và S.
meliloti (cộng sinh trên cỏ alfalfa); S. saheli (cộng sinh trên thân điên điển, điền
thanh); S. xinjiangense (cộng sinh trên các loại đậu ở Trung Quốc).
Azorhizobium (họ Hyphomicrobiaceae): Các loài quan trọng gồm A. caulinodans
(cộng sinh trên rễ và thân điền thanh, điên điển); A. johannae (cộng sinh trên đậu, điền
thanh, điên điển).
• Vi sinh vật cố định đạm không cộng sinh
Vi khuẩn Azospirillum là một loại vi khuẩn cố định đạm hiện diện trong rễ,
vùng đất quanh rễ, thân và lá cây. Chúng sống trong đất hay cộng sinh với rễ của các

loại ngũ cốc, cỏ và cây có củ. Đây là loài vi khuẩn được nghiên cứu và ứng dụng nhiều
vì ngoài khả năng cố định nitơ chúng còn có thể tiết ra những kích thích tố tăng trưởng
như IAA (Indole-3-acetic acid), IBA (Indole-3-butyric acid), ABA (Abscisic acid) và
cytokynins (Bashan và Levanony, 1990). Những thí nghiệm ở Mỹ cho thấy
Azospirillum có thể thay thế được 40kg N/ha/năm (Smith et al., 1978). Ở Brazil,
Azospirillum lipoferum có thể cung cấp cho bắp 2kg nitơ mỗi ngày. Ở Thái Lan, những
thí nghiệm trên bắp năm 1984 – 1985 cho thấy sản lượng bắp tăng 15 – 35% (Vasuvat
et al., 1986)… Ở Việt Nam, thí nghiệm của Nguyễn Thị Phương Tâm (2006) ở Cù Lao
Dung, Sóc Trăng cũng cho thấy dòng vi khuẩn Azospirillum lipoferum HA28 làm tăng
năng suất 6,6 lần so với đối chứng không bón đạm, không chủng vi khuẩn.
Vi khuẩn Azotobacter. Năm 1901, Beyjeirinh đã phân lập được từ đất một loài vi
sinh vật có khả năng cố định nitơ phân tử cao, ông đặt tên cho loài này là Azotobacter.
Vi khuẩn Beijerinskii. Nhà bác học Ấn Độ Stacke (1893) đã phân lập được một
loài vi khuẩn ở ruộng lúa nước pH rất chua có khả năng cố định nitơ phân tử và ông
đặt tên là vi khuẩn Beijerinskii.
Vi khuẩn Clostridium. Loài vi khuẩn này được Vinogratxkii (1939) phân lập đầu
tiên (Lê Xuân Phương, 2005).
Ngoài các vi khuẩn trên, chúng ta còn có rất nhiều loài có khả năng cố định nitơ
phân tử sống tự do như:
Chuyên ngành công nghệ sinh học 20 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
+ Xạ khuẩn: Một số loài thuộc giống Streptomyces, Actinomyces, Frankia,
Nocardia, Actinopolyspora, Actinosynoema…
+ Các vi khuẩn quang tổng hợp: Chromatium, Rhodomicrobium,
Rhodopseudomonas, Rhodospirillum
+ Các tảo lam: Anabaena, Anabaenapsis, Calothris, Nostoc, Tolvcothrix…
(Phạm Văn Kim, 2000).
2.5. Giới thiệu về PVP (polyvinyl Pyrrolidone).
PVP (1-Vinyl-2-pyrrolidinon-Polymere) có công thức phân tử (C
6

H
9
NO)
n
; khối lượng
phân tử từ 2.500 - 2.5000.000 g·mol
−1
, màu sắc trắng hoặc vàng nhạt, khối lượng riêng
1.2g/cm
3
, nhiệt độ nóng chảy 110 - 180 °C (theo Wikipedia).
Là một polymer tan trong nước và trong các dung môi hữu cơ phân cực như:
alcolhol, acid, amide,lactam, amine, chlorinate hydrocarbon.
( />rrolidone.html(22/12/09).
Trong dung dịch nó hình thành một màng mỏng. Lớp màng này tạo một lớp áo
tốt giúp cho vi khuẩn có khả năng sống ở dạng tiềm sinh. Nó có tính hút ẩm, tạo màng
và khả năng tương thích sinh học tốt. PVP được tạo thành từ các đơn phân n-vinyl
pyrrolidone. Những đơn phân này là những carcinogenic và là chất cực độc trong môi
trường sống nhưng polymer của nó thì lại rất an toàn.
Chuyên ngành công nghệ sinh học 21 Viện NC&PT Công nghệ Sinh Học
Hình 2.1: Công thức hóa học của PVP
Nguồn: Wikipedia
n
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
PVP lần đầu tiên được tổng hợp bởi Gs. Walter Reppe và một bằng sáng chế đã
được nộp vào năm 1939 với một trong các dẫn xuất thú vị nhất của hóa học axetylen.
PVP bước đầu đã được sử dụng như một chất thay thế huyết tương và sau này trong
nhiều ứng dụng trong y học, dược phẩm, mỹ phẩm và sản xuất công nghiệp.
Công dụng:
PVP cũng được sử dụng trong nhiều ứng dụng kỹ thuật:

• Mỹ phẩm:
PVP-K30 được sử dụng như là một chất tạo màng, tăng độ nhớt Nó là
thành phần chính trong các sản phẩm chăm sóc tóc, da, mắt, son môi, kem
chống nắng, dầu thơm
• Dược phẩm:
Povidone k30 là một dược liệu mới tuyệt vời. Nó là một tá dược trong
hàng trăm loại thuốc. Nó có khả năng kết dính thuốc, hỗ trợ hòa tan cho tiêm
• Ứng dụng khác:
PVP K30 còn là chất phụ gia trong nghành sơn, phủ, nhựa, sợi thủy tinh,
phim, mực in, vỏ bao thuốc con nhộng, áo bên ngoài tấm hình, trong chế biến
thực phẩm có vai trò như chất ổn định.
2.6. Giới thiệu về vi khuẩn Gluconacetobacter diazotrophicus
2.6.1. Vi khuẩn Gluconacetobacter diazotrophicus.
Loài vi khuẩn này tình cờ được phát hiện lần đầu tiên trên cây mía. Vào năm
1988, Cavalcante và Dobereiner đã báo cáo về một loài vi khuẩn cố định đạm chịu
được acid, sống nội sinh trong cây mía và gọi đó là vi khuẩn Acetobacter
diazotrophicus. Vi khuẩn này có khả năng cung cấp gần 50% tổng lượng đạm mà cây
sử dụng. Khi dựa vào trình tự của 16rARN của vi khuẩn để phân tích Acetobacter
diazotrophicus được đổi tên lại thành Gluconacetobacter diazotrophicus (Yamada et
al., 1998). Gluconacetobacter diazotrophicus là vi khuẩn sống nội sinh trong mía, củ
cải đường, khoai lang, cà phê, chuối,…(Muthukumarasamy et al., 2002).
2.6.2. Hình dạng và kích thước
Chuyên ngành công nghệ sinh học 22 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
Gluconacetobacter diazotrophicus là vi
khuẩn Gram âm, chịu được acid, hiếu khí
bắt buộc, tế bào có hình que thẳng, có kích
thước bề rộng từ 0.7 – 0.9
µ
m và chiều dài

từ 1 - 2
µ
m . Tế bào của chúng có thể được
quan sát dưới kính hiển vi ở dạng đơn,
dạng cặp, hay dạng cấu trúc hình chuỗi.
nhưng không có nội bào tử.
2.6.3. Dinh dưỡng - tăng trưởng.
Vi khuẩn này có thể phát triển trong môi trường có nồng độ đường cao (10%)
và ở pH rất thấp (pH=3.0) và có khả năng cố định nitơ trong điều kiện vi hiếu khí.
Nguồn carbon cung cấp là điều kiện tốt nhất cho sự phát triển của vi khuẩn là ở nồng
độ 10%, tuy nhiên vi khuẩn này có thể phát triển tốt ở nồng độ đường 30%. Nguồn
sucrose không thể được vận chuyển hay hô hấp bởi G. diazotrophicus, nó sinh trưởng
bởi sự tiết ra các enzmye ngoại bào, levansucrase - enzyme này có thể cắt sucrose
thành fructose và glucose. Một vài nguồn dinh dưỡng tốt khác chứa gluconate,
glucose, fructose, mannitol, arabinose, meso-inositol, sorbitol, glycerol, galactose,
jaggery và sodium gluconate. Một số aminoacid như Glutamate, serine, alanine và
histidine cũng có thể được sử dụng như nguồn carbon và N cho sự phát triển của
G.diazotrophicus. Tuy nhiên, cellobiose, tinh bột, meso-erythritol và methanol (1%)
thì không thích hợp cho sự phát triển của chúng. Không có acid hữu cơ phổ biến nào
như acid succinate hay dicarboxylic khác hỗ trợ cho sự phát triển của chúng trừ acid 2-
keto gluconic hiện diện trong thân cây mía. Theo báo cáo gần đây, vi khuẩn tận dụng
nó như nguồn carbon để cung cấp cho quá trình cố định N. pH tối ưu cho sự phát triển
là pH=5.5. G. diazotrophicus là vi sinh vật hiếu khí bắt buộc, vì thế oxy là phương tiện
để sản sinh ra một lượng lớn ATP cung cấp cho quá trình cố định đạm. Sự oxi hóa
ngoại bào gluconate đóng một vai trò quan trọng trong bước đầu chuyển hóa glucose
bởi G. diazotrophicus. Pyrroloquinoline quinone (PQQ) liên kết với gluconase
dehyrogenase mang lại sự chuyển hóa glucose thành gluconate. Theo Mería F. Luna et
Chuyên ngành công nghệ sinh học 23 Viện NC&PT Công nghệ Sinh Học
Hình 2.2: G.diazotrophicus
Nguồn: sugarcane-breeding.tn.nic.inagronomy.htm

(Nguồn: sugarcane-
breeding.tn.nic.inagronomy.htm
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
al.,(2002), sinh khối của G. diazotrophicus sẽ dưới 30% trong điều kiện cố định N, và
trên 30% trong điều kiện không cố định N khi gluconate được sử dụng như nguồn
carbon.
2.6.4. Phân tích bộ gen của G. diazotrophicus
Trật tự sắp xếp của gen nif và các gene liên kết với nhiễm sắc thể (hoặc
plasmid) có sự khác biệt rất lớn giữa các chủng của vi sinh vật cố định đạm. Dựa vào
phân tích trình tự 16s rDNA người ta thấy nhóm Gluconacetobacter có chứa những
loài Rhodopila, Acidomonas, Acidiphilium và Gluconabacter. Theo một báo cáo gần
đây của Sevilla et al.,1998, sự giống nhau giữa gen nif HDK của G. diazotrophicus
với các loài vi khuẩn cố định đạm khác. Sự giống nhau khoảng 91% về gen nifH (R.
leguminosarum bv. phaseoli), 89% nifD (Herbaspirillum seropedicae vaf Azospirillum
brasilense, 76% nif K (Bradyrhizobium japonicum (Franke et al.,1998).
Sự đa dạng của diazotrophic bacteria được phân lập từ rễ, vùng đất quanh rễ
(Beijerinckia), củ ( Azospirillum, Bacillus, Klebsiella, Enterobacter, Erwinia), của cây
mía.
Bảng2.6: Nguồn gốc của các chủng vi khuẩn G. diazotrophicus.
Nguồn Phần
Mía Rễ, lông hút, thân, lá
Cỏ Cameroon Rễ, thân
Khoai lang Rễ, thân mầm
Cà phê Rễ, vùng rễ, thân
Ragi Rễ, vùng rễ, thân
Chè (trà) Rễ
Khóm Trái
Xoài Trái
Chuối Vùng rễ
Một vài loài côn trùng khác Môi trường ngoài

Nguồn: CURRENT SCIENCE, VOL.83, NO.2,25 JULY 2002
Chuyên ngành công nghệ sinh học 24 Viện NC&PT Công nghệ Sinh Học
Luận văn tốt nghiệp Đại học khóa 32 _ 2010 Trường Đại học Cần Thơ
PHẦN III. PHƯƠNG TIỆN VÀ PHƯƠNG PHÁP NGHIÊN CỨU
3.1. Địa điểm nghiên cứu.
Phòng vi sinh vật đất- Viện nghiên cứu và phát triển công nghệ sinh học- Trường Đại
học Cần Thơ.
3.2. Thời gian nghiên cứu.
Đề tài được thực hiện từ tháng 8/2009- tháng 1/2010.
3.3. Phương tiện nghiên cứu.
3.3.1. Nguyên vật liệu nghiên cứu.
• Chất mang: bã bùn mía (do nhà máy Mía đường Vị Thanh – Hậu Giang cung
cấp).
• Vi khuẩn: Gluconacetobacter diazotrophicus do Viện Nghiên Cứu và Phát
Triển Công Nghệ Sinh Học – Trường Đại học Cần Thơ cung cấp.
3.3.2. Thiết bị và hóa chất.
3.3.2.1.Thiết bị
• Máy ép viên, máy ép bọc.
• Cân điện tử, cân đồng hồ.
• pH kế.
• Tủ sấy, tủ ủ, nồi khử trùng, máy lắc.
• Bình tam giác, ống nghiệm, đĩa petri.
• Pipet, Micropipet.
• Tủ cấy.
• Máy vortex.
3.3.2.2. Hóa chất
Đường cát (sucrose), Bromothymol blue, Acid acetic, yeast extract, agar, khoáng
LGI, Fecl
3
, Chất bảo quản PVP(polyvinyl pyrrolidone).

Chuyên ngành công nghệ sinh học 25 Viện NC&PT Công nghệ Sinh Học

×