Tải bản đầy đủ (.pdf) (46 trang)

vấn đề nhận giá trị của hàm hữu tỷ trên trường đóng đại số, đặc trưng không và áp dụng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (338.04 KB, 46 trang )

ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KHOA HỌC
VŨ THỊ THÙY DUNG
VẤN ĐỀ NHẬN GIÁ TRỊ CỦA HÀM HỮU TỶ
TRÊN TRƯỜNG ĐÓNG ĐẠI SỐ,
ĐẶC TRƯNG KHÔNG VÀ ÁP DỤNG
LUẬN VĂN THẠC SĨ TOÁN HỌC
Thái Nguyên - Năm 2014
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KHOA HỌC
VŨ THỊ THÙY DUNG
VẤN ĐỀ NHẬN GIÁ TRỊ CỦA HÀM HỮU TỶ
TRÊN TRƯỜNG ĐÓNG ĐẠI SỐ, ĐẶC TRƯNG
KHÔNG VÀ ÁP DỤNG
Chuyên ngành: PHƯƠNG PHÁP TOÁN SƠ CẤP
Mã số: 60460113
LUẬN VĂN THẠC SĨ TOÁN HỌC
Người hướng dẫn khoa học:
TS. VŨ HOÀI AN
Thái Nguyên - Năm 2014
i
Mục lục
Mục lục . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Lời cam đoan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Lời cảm ơn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Bảng ký hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Về vấn đề nhận giá trị đối với hàm phân hình p-adic 1
1.1 Về vấn đề nhận giá trị đối với hàm số thực trong toán học trung
học phổ thông . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Các định lý xác định tập giá trị của hàm số liên tục . . . 1


1.1.2 Các phương pháp tìm tập giá trị . . . . . . . . . . . . . 2
1.2 Về vấn đề nhận giá trị đối với hàm phân hình p-adic . . . . . . 18
1.2.1 Hàm đặc trưng của hàm phân hình p-adic . . . . . . . . 18
1.2.2 Một số kết quả của lý thuyết Nevanlinna p-adic . . . . . 21
2 Vấn đề nhận giá trị của hàm hữu tỷ trên trường đóng đại số,
đặc trưng không và áp dụng 25
2.1 Vấn đề nhận giá trị của hàm hữu tỷ trên trường đóng đại số,
đặc trưng không . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Một số áp dụng của các Định lý nhận giá trị đối với hàm hữu
tỷ trên trường đóng đại số, đặc số không . . . . . . . . . . . . . 34
Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
ii
Lời cam đoan
Tôi xin cam đoan luận văn Thạc sĩ chuyên ngành Phương pháp toán sơ
cấp với đề tài “Vấn đề nhận giá trị của Hàm hữu tỷ trên trường đóng đại số,
đặc trưng không và áp dụng” là của tôi. Các tài liệu được trích dẫn đầy đủ.
Tác giả
Vũ Thị Thùy Dung
iii
Lời cảm ơn
Trước hết, tôi xin gửi lời biết ơn chân thành và sâu sắc tới TS. Vũ Hoài
An. Sau quá trình nhận đề tài và nghiên cứu dưới sự hướng dẫn khoa học của
Thầy, luận văn “Vấn đề nhận giá trị của Hàm hữu tỷ trên trường đóng đại số,
đặc trưng không và áp dụng” của tôi đã được hoàn thành.
Tôi xin cảm ơn GS.TSKH Hà Huy Khoái, GS.TSKH Nguyễn Tự Cường,
PGS. TS Lê Thị Thanh Nhàn, PGS. TS Đàm Văn Nhỉ, PGS.TS Trịnh Thanh
Hải đã có nhiều ý kiến quý báu để tác giả hoàn thành luận văn.
Tôi cũng xin gửi lời cảm ơn chân thành đến Ban Giám hiệu, Phòng Đào
tạo - Khoa học - Quan hệ quốc tế và Khoa Toán - Tin của Trường Đại học

Khoa học - Đại học Thái Nguyên đã tạo điều kiện thuận lợi nhất trong suốt
quá trình học tập tại trường cũng như thời gian tôi hoàn thành đề tài này. Sự
giúp đỡ nhiệt tình và thái độ thân thiện của cán bộ thuộc Phòng Đào tạo và
Khoa Toán - Tin đã để lại trong lòng mỗi chúng tôi những ấn tượng hết sức
tốt đẹp.
Tôi xin cảm ơn Sở Giáo dục và Đào tạo Hải Phòng và Trường trung học
phổ thông Hồng Bàng nơi tôi đang công tác đã tạo điều kiện cho tôi hoàn
thành khóa học này.
Tôi xin cảm ơn gia đình, bạn bè đồng nghiệp và các thành viên trong lớp
cao học Toán K6B (khóa 2012 - 2014) đã quan tâm, tạo điều kiện, động viên
cổ vũ để tôi có thể hoàn thành nhiệm vụ của mình.
Thái Nguyên, tháng 4 năm 2014
Tác giả
Vũ Thị Thùy Dung
iv
Bảng ký hiệu
f Hàm hữu tỷ
n(f, a) Hàm đếm của f tại điểm a
T (f) Hàm đặc trưng của f
K Trường đóng đại số, đặc trưng không.
v
Mở đầu
1. Lý do chọn đề tài
Năm 1983, R. C. Mason chứng minh định lý rất đẹp sau đây cho đa thức
(xem [2]):
Định lý A. Giả sử a(t), b(t), c(t) là các đa thức với hệ số phức, nguyên tố cùng
nhau từng cặp và thỏa mãn hệ thức a(t)+b(t) = c(t). Khi đó, nếu ký hiệu n
0
(f)
số nghiệm phân biệt của một đa thức f, thì ta có

max{dega, degb, degc}  n
0
(abc) −1.
Mặt khác, trong [5], Hà Huy Khoái và Mai Văn Tư đã chứng minh kết
quả sau đây:
Định lý B. Giả sử f là hàm phân hình trên C
p
, a
1
, . . . , a
q
∈ C
p
∪ {∞}. Khi
đó
(q − 2)T
f
(r) 
q

i=1
N
1,f
(a
i
, r) − log r + O(1).
Xét đa thức f(x) ∈ C
p
[x], degf = d. Viết f(x) = (x − z
1

)
m
1
. . . (x − z
k
)
m
k
. Ta
có T
f
(r) = d log r, N
1,f
(0, r) = k log r.
Từ đây và quan sát hai định lý trên, chúng ta thấy có sự tương tự giữa bậc
của đa thức f: degf với Hàm đặc trưng của hàm phân hình p-adic: T
f
(r); Số
nghiệm của đa thức f : n
0
(f) với Hàm đếm không điểm của f tính với bội 1:
N
1,f
(0, r).
Nhận xét này gợi ý cho việc tương tự Định lý B đối với Hàm hữu tỷ trên
trường đóng đại số, đặc trưng không. Từ đó nhận lại Định lý A và các hệ quả
của nó.
Theo hướng nghiên cứu này, chúng tôi xem xét
Vấn đề nhận giá trị của Hàm hữu tỷ trên trường đóng đại số,
đặc trưng không và áp dụng.

vi
2. Mục tiêu nghiên cứu.
2.1. Tổng hợp, trình bày các kết quả trong [1]. Các kết quả này là tương tự
các Định lý B cho hàm hữu tỷ trên trường đóng đại số, đặc trưng không
(Định lý 2.1.11, Định lý 2.1.12).
2.2. Trình bày lại áp dụng của Định lý 2.1.11, Định lý 2.1.12, trong đó có cách
chứng minh khác cho Định lý Mason(xem [1]).
3. Nội dung nghiên cứu
Vấn đề 1. Xét vấn đề nhận giá trị đối với hàm số thực trong toán học
trung học phổ thông. Xét vấn đề nhận giá trị đối với hàm phân hình p-adic.
Vấn đề 2. Xét vấn đề nhận giá trị đối với hàm hữu tỷ trên trường đóng
đại số, đặc trưng không.
4. Kết quả nghiên cứu
4.1. Tổng hợp và trình bày các ví dụ về vấn đề nhận giá trị đối với hàm số
thực trong toán học trung học phổ thông.Tổng hợp và trình bày tổng
quan một số kết quả chính có liên quan của Lý thuyết Nevanlinna p-adic.
4.2. Tổng hợp và trình bày lại các định lý nhận giá trị ở trong [1] và áp dụng
của nó.
Trong luận văn này, chúng tôi đã trình bày các kết quả trong [1], các kết quả
này tương tự hai định lý chính của Lý thuyết Nevalinna cho hàm hữu tỷ trên
trường đóng đại số, đặc trưng không. Từ đó trình bày lại hai áp dụng, trong
đó có một chứng minh khác Định lý Mason. Cụ thể là:
• Định lý 2.1.11, Định lý 2.1.12.
• Từ Định lý 2.1.11 nhận được Định lý 2.2.1. Định lý 2.2.1 là một điều kiện
đủ để xác định khi nào một hữu tỷ là hàm hằng.
• Từ Định lý 2.1.12 nhận được Định lý 2.2.2 - Định lý Mason.
vii
Luận văn là tài liệu tham khảo có ích cho giáo viên Toán trung học phổ
thông, học viên Cao học chuyên ngành Phương pháp toán sơ cấp.
5. Bố cục luận văn

Luận văn được chia làm hai chương cùng với phần mở đầu, kết luận và
tài liệu tham khảo.
Chương 1. Trong chương này chúng tôi tổng hợp và trình bày các nội dung
về vấn đề nhận giá trị đối hàm số thực trong toán học trung học phổ thông và
vấn đề nhận giá trị đối hàm phân hình p-adic.
Chương 2. Trong chương này chúng tôi tổng hợp và trình bày lại vấn đề
nhận giá trị đối với hàm hữu tỷ trên trường đóng đại số, đặc trưng không và
áp dụng (xem [1]).
1
Chương 1
Về vấn đề nhận giá trị đối với hàm
phân hình p-adic
Trong chương 1, chúng tôi trình bày vấn đề nhận giá trị đối với hàm số
thực trong toán học phổ thông và hàm phân hình p-adic[5-6].
1.1 Về vấn đề nhận giá trị đối với hàm số thực trong
toán học trung học phổ thông
Vấn đề nhận giá trị đối với hàm số thực trong toán học trung học phổ
thông là như sau: Cho f là hàm số thực sơ cấp với tập xác định là D, a ∈
R ∪ {∞}. Hãy xét f có nhận a ?
Công cụ chính để giải quyết vấn đề này là các định lý về hàm liên tục và khả
vi [3], điều kiện có nghiệm của một số kiểu phương trình trong toán học trung
học phổ thông.
1.1.1 Các định lý xác định tập giá trị của hàm số liên tục
Ở đây chúng tôi trình bày lại các kiến thức trong [3].
Định nghĩa 1.1.1. Cho hàm f : A → R; x
0
∈ A. Nếu ∀ε > 0, ∃δ(ε) > 0 sao
cho ∀x ∈ A : |x − x
0
| < δ, |f (x) − f(x

0
)| < ε thì ta nói f liên tục tại điểm x
0
.
• Nếu f liên tục tại mọi điểm x
0
∈ A thì ta nói f liên tục trên A.
2
• Nếu f không liên tục tại điểm x
0
∈ A thì ta nói f gián đoạn tại điểm
x
0
∈ A.
Định lý 1.1.2. Nếu f liên tục trên [a, b] thì nó đạt cận trên đúng và cận dưới
đúng, tức là tồn tại hai số x
0
và x

0
thuộc [a, b] sao cho: f (x
0
) = max f(x) và
f(x

0
) = min f(x).
Định lý 1.1.3. (Định lý về không điểm)
Nếu f liên tục trên [a, b] và f (a)f(b) < 0 thì tồn tại ít nhất một điểm c ∈ [a, b]
sao cho f(c) = 0.

Định lý 1.1.4. (Định lý về quan hệ giữa tính đơn điệu và tính liên tục)
Cho f là một hàm đơn điệu. Điều kiện cần và đủ để f liên tục trên [a, b] là
miền giá trị của nó là một đoạn với hai đầu mút là f (a) và f (b).
Ví dụ 1.1.5.
Hàm số y = −x + 1 liên tục tại mọi điểm thuộc R.
Thật vậy, lấy x
0
∈ R bất kỳ, ∀ε > 0 chọn δ=ε thì khi |x − x
0
| < δ ta có
|f(x) − f(x
0
)| < ε.
Ví dụ 1.1.6.
Hàm số y=sin x liên tục trên R.
Thật vậy ta có:
|sin x − sin x

| = 2|cos
x + x

2
||sin
x − x

2
|  2|
x − x

2

| = |x − x

|.
Vì |sin t|  |t|, ∀0  t 
π
2
. Do đó ∀ε > 0, ∃δ = min(ε,
π
2
) nên |sin x −sin x

| <
ε.
1.1.2 Các phương pháp tìm tập giá trị
Các ví dụ sau đây là quen thuộc đối với giáo viên toán trung học phổ
thông.
3
Phương pháp 1: Dùng định nghĩa và điều kiện có nghiệm của phương trình
để tìm tập giá trị của hàm số thực trong toán học trung học phổ thông.
Vấn đề nhận giá trị đối với hàm số thực trong toán học trung học phổ
thông liên quan đến tập giá trị của hàm số thực và ứng dụng của nó. Trong
mục này, chúng tôi đưa ra các ví dụ tìm tập giá trị và ứng dụng của khái niệm
này vào phương trình, bất phương và bài toán tìm giá trị lớn nhất, giá trị nhỏ
nhất của hàm số thực trong toán học trung học phổ thông.
Ví dụ 1.1.7.
Cho y là hàm số thực xác định trên D. Xác định tập giá trị của y biết
y = f
i
(x), i = 1, . . . , 6, với :
f

1
(x) =
sin x + cos x − 1
sin x − cos x + 3
; f
2
(x) =
cos x + 2 sin x + 3
2 cos x − sin x + 4
f
3
(x) =
cos x + sin x + 1
cos x − sin x − 2
; f
4
(x) =
sin x + 1
2 cos x − sin x − 3
f
5
(x) =
sin x + cos x
sin x − cos x − 2
; f
6
(x) =
cos x + 3
2 cos x − sin x + 3
Lời giải

a) f
1
(x) =
sin x + cos x − 1
sin x − cos x + 3
Đặt y =
sin x + cos x − 1
sin x − cos x + 3
Xét phương trình : y =
sin x + cos x − 1
sin x − cos x + 3
(1a)
y thuộc tập giá trị của hàm số khi và chỉ khi phương trình (1a) với ẩn x, tham
số y có nghiệm.
Ta có :
(1a) ⇔ sin x + cos x − 1 = y sin x − y cos x + 3y
⇔ (y − 1) sin x − (y + 1) cos x = −3y −1
⇒ (y − 1)
2
+ (y + 1)
2
≥ (3y + 1)
2
⇔ 7y
2
+ 6y − 1 ≤ 0
⇔ −1 ≤ y ≤
1
7
Tập giá trị G

1
=

− 1,
1
7


D.
4
b, f
2
(x) =
cos x + 2 sin x + 3
2 cos x − sin x + 4
.
Đặt y =
cos x + 2 sin x + 3
2 cos x − sin x + 4
Xét phương trình : y =
cos x + 2 sin x + 3
2 cos x − sin x + 4
(2b)
y thuộc tập giá trị của hàm số khi và chỉ khi phương trình (2b) với ẩn x, tham
số y có nghiệm.
Ta có :
(2b) ⇔ cos x + 2 sin x + 3 = 2y cos x − y sin x + 4y
⇔ (1 − 2y) cos x + (y + 2) sin x = 4y − 3
⇒ (4y − 3)
2

≤ (y + 2)
2
+ (1 − 2y)
2
⇔ 11y
2
− 24y + 4 ≤ 0

2
11
≤ y ≤ 2
Tập giá trị G
2
=

2
11
, 2


D.
c, f
3
(x) =
cos x + sin x + 1
cos x − sin x − 2
Đặt y =
cos x + sin x + 1
cos x − sin x − 2
Xét phương trình : y =

cos x + sin x + 1
cos x − sin x − 2
(3c)
y thuộc tập giá trị của hàm số khi và chỉ khi phương trình (3c) với ẩn x, tham
số y có nghiệm.
Ta có :
(3c) ⇔ cos x + sin x + 1 = y cos x − y sin x − 2y
⇔ (1 − y) cos x + (1 + y) sin x = −1 −2y
⇒ (1 + y)
2
+ (1 − y)
2
≥ (1 + 2y)
2
⇔ 2y
2
+ 4y − 1 ≤ 0
⇔ −1 −

3
2
≤ y ≤ −1 +

3
2
Tập giá trị G
3
=

− 1 −


3
2
, −1 +

3
2


D.
5
d, f
4
(x) =
sin x + 1
2 cos x − sin x − 3
Đặt y =
sin x + 1
2 cos x − sin x − 3
Xét phương trình : y =
sin x + 1
2 cos x − sin x − 3
(4d)
y thuộc tập giá trị của hàm số khi và chỉ khi phương trình (4d) với ẩn x, tham
số y có nghiệm.
Ta có :
(4d) ⇔ sin x + 1 = 2y cos x − y sin x −3y
⇔ (y + 1) sin x − 2y cos x = −1 −3y
⇒ (1 + y)
2

+ (2y)
2
≥ (1 + 3y)
2
⇔ 1 + 2y + y
2
+ 4y
2
≥ 1 + 6y + 9y
2
⇔ 4y
2
+ 4y ≤ 0
⇔ y
2
+ y ≤ 0
⇔ −1 ≤ y ≤ 0
Tập giá trị G
4
= [−1, 0]

D.
e, f
5
(x) =
sin x + cos x
sin x − cos x − 2
Đặt y =
sin x + cos x
sin x − cos x − 2

Xét phương trình : y =
sin x + cos x
sin x − cos x − 2
(5e)
y thuộc tập giá trị của hàm số khi và chỉ khi phương trình (5e) với ẩn x, tham
số y có nghiệm.
Ta có :
(5e) ⇔ sin x + cos x = y sin x − y cos x −2y
⇔ (1 + y) cos x + (1 −y) sin x = −2y
⇒ (1 − y)
2
+ (1 + y)
2
≥ (2y)
2
⇔ 2y
2
≤ 2
⇔ y
2
≤ 1
⇔ −1 ≤ y ≤ 1
6
Tập giá trị G
5
= [−1, 1]

D.
f, f
6

(x) =
cos x + 3
2 cos x − sin x + 3
Đặt y =
cos x + 3
2 cos x − sin x + 3
Xét phương trình : y =
cos x + 3
2 cos x − sin x + 3
(6f)
y thuộc tập giá trị của hàm số khi và chỉ khi phương trình (6f) với ẩn x, tham
số y có nghiệm.
Ta có :
(6f) ⇔ cos x + 3 = 2y cos x − y sin x + 4y
⇔ (1 − 2y) cos x + y sin x = 3y − 3
⇒ (1 − 2y)
2
+ y
2
≥ (3y − 3)
2
⇔ 1 − 4y + 4y
2
+ y
2
≥ 9y
2
− 18y + 9
⇔ 2y
2

− 7y + 4 ≤ 0

7 −

17
4
≤ y ≤
7 +

17
4
Tập giá trị G
6
=

7 −

17
4
,
7 +

17
4


D.
Ví dụ 1.1.8. Tìm m để phương trình có nghiệm:
a,
sin x + cos x − 1

sin x − cos x + 3
= m.
b,
cos x + 2 sin x + 3
2 cos x − sin x + 4
= m.
c,
cos x + sin x + 1
cos x − sin x − 2
= m.
d,
sin x + 1
2 cos x − sin x − 3
= m.
e,
sin x + cos x
sin x − cos x − 2
= m.
f,
cos x + 3
2 cos x − sin x + 3
= m.
Dựa vào ví dụ 1.1.7 ta được các đáp số là:
7
a, m ∈

− 1,
1
7


.
b, m ∈

2
11
, 2

.
c, m ∈

− 1 −

3
2
, −1 +

3
2

.
d, m ∈ [−1, 0].
e, m ∈ [−1, 1].
f, m ∈

7 −

17
4
,
7 +


17
4

.
Ví dụ 1.1.9. Tìm m để mỗi bất phương trình sau có nghiệm: f
i
(x) ≥ m với
i = 1, 2, 6. Với f
i
(x) xác định trong ví dụ 1.1.7.
Dựa vào ví dụ 1.1.7, ta có kết quả như sau:
1. f
1
(x) ≥ m có nghiệm khi m ≤
1
7
.
2. f
2
(x) ≥ m có nghiệm khi m ≤ 2.
3. f
3
(x) ≥ m có nghiệm khi m ≤ −1 +

3
2
.
4. f
4

(x) ≥ m có nghiệm khi m ≤ 0.
5. f
5
(x) ≥ m có nghiệm khi m ≤ 1.
6. f
6
(x) ≥ m có nghiệm khi m ≤
7 +

17
4
.
Ví dụ 1.1.10. Tìm m để mỗi bất phương trình sau nghiệm đúng với mọi x:
f
i
(x) ≤ m với i = 1, 2, 6. Với f
i
(x) xác định trong ví dụ 1.1.7.
Dựa vào ví dụ 1 ta có kết quả như sau:
1. f
1
(x) ≤ m có nghiệm khi m ≥ −1.
2. f
2
(x) ≤ m có nghiệm khi m ≥
2
11
.
3. f
3

(x) ≤ m có nghiệm khi m ≥ −1 −

3
2
.
8
4. f
4
(x) ≤ m có nghiệm khi m ≥ −1.
5. f
5
(x) ≤ m có nghiệm khi m ≥ −1.
6. f
6
(x) ≤ m có nghiệm khi m ≥
7 −

17
4
.
Ví dụ 1.1.11. Tìm m để mỗi bất phương trình sau có nghiệm: f
i
(x) ≤ m với
i = 1, 2, , 6.
Dựa vào ví dụ 1.1.7 ta có kết quả như sau:
1. Bất phương trình f
1
(x) ≤ m có nghiệm khi m ≥ −1.
2. Bất phương trình f
2

(x) ≤ m có nghiệm khi m ≥
2
11
.
3. Bất phương trình f
3
(x) ≤ m có nghiệm khi m ≥ −1 −

3
2
.
4. Bất phương trình f
4
(x) ≤ m có nghiệm khi m ≥ −1.
5. Bất phương trình f
5
(x) ≤ m có nghiệm khi m ≥ −1.
6. Bất phương trình f
6
(x) ≤ m có nghiệm khi m ≥
7−

17
4
.
Phương pháp 2: Dùng bảng biến thiên để tìm tập giá trị của hàm
Ví dụ 1.1.12. Cho các hàm số:
f
1
(x) = x

4
− 2x
2
+ 1,
f
2
(x) = 2x
3
− 3x
2
− 1,
f
3
(x) = x
3
− 3x + 2,
f
4
(x) =
2x − 1
x + 1
.
Các tập A
1
= [0; 1], A
2
= [2; 3], A
3
= [−1; 1].
1.Khảo sát sự biến thiên của các hàm số trên.

2.Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số đã cho trên A
i
; i = 1, 2, 3.
3.Tìm tập giá trị của các hàm số trên A
i
; i = 1, 2, 3.
4.Tìm m để mỗi phương trình trong các bất phương trình sau có nghiệm trên
A
i
; i = 1, 2, 3 : f
j
(x) = m; j = 1, 2, 3, 4.
9
5.Tìm m để mỗi bất phương trình trong các bất phương trình sau có nghiệm
trên A
i
; i = 1, 2, 3 : f
j
(x) ≥ m, j = 1, 2, 3, 4.
6.Tìm m để mỗi bất phương trình trong các bất phương trình sau có nghiệm
trên A
i
; i = 1, 2, 3 : f
j
(x)  m; j = 1, 2, 3, 4.
7.Tìm m để mỗi bất phương trình trong các bất phương trình sau : f
j
(x) ≥
m; j = 1, 2, 3, 4 nghiệm đúng với mọi x thuộc một tập hợp bất kỳ trong các
tập hợp A

i
; i = 1, 2, 3.
8.Tìm m để mỗi bất phương trình trong các bất phương trình sau f
i
(x) 
m; i = 1, 2, 3, 4 nghiệm đúng với mọi x thuộc một tập hợp bất kỳ trong các tập
hợp A
i
; i = 1, 2, 3.
Lời giải
1. Khảo sát sự biến thiên của các hàm số trên.
* Xét hàm f
1
(x) = x
4
− 2x
2
+ 1
+ TXĐ: D = R
+ SBT: f

1
(x) = 4x
3
− 4x
f

1
(x) = 0 ⇔ x = 0 hoặc x = 1 hoặc x = −1.
+ Hàm số nghịch biến trên mỗi khoảng: (−∞; −1) và (0; 1).

Hàm số đồng biến trên mỗi khoảng: (−1; 0) và (1; +∞).
+ Điểm cực đại của đồ thị là: (0; 1).
Điểm cực tiểu của đồ thị là: (1; 0) và (−1; 0).
+ Giới hạn: lim
x→+∞
f
1
(x) = +∞; lim
x→−∞
f
1
(x) = +∞.
+ Bảng biến thiên:
x
f

1
(x)
f
1
(x)
−∞ +∞-1 0 1
- + - +0 0 0
+∞ +∞1
0 0




✟✯





✟✯




❍❥




❍❥
* Xét f
2
(x) = 2x
3
− 3x
2
− 1
+ TXĐ: D = R.
+ Giới hạn: lim
x→+∞
f
2
(x) = +∞; lim
x→−∞
f

2
(x) = −∞.
10
+ SBT: f

2
(x) = 6x
2
− 6x
f

2
(x) = 0 ↔ x = 0 hoặc x = 1
+ Hàm số nghịch biến trên khoảng (0; 1).
Hàm số đồng biến trên khoảng (−∞; 0) và (1; +∞).
+ Điểm cực đại của đồ thị là: (0; −1). Điểm là cực tiểu là: (1; −2).
+ Bảng biến thiên:
x
f

2
(x)
f
2
(x)
−∞ +∞0 1
+ - +0 0
-2










✏✶





❍❥





✟✯
-1
−∞
+∞
* Xét hàm f
3
(x) = x
3
− 3x + 2
+ TXĐ: D = R.
+ Giới hạn:

lim
x→+∞
f
3
(x) = +∞; lim
x→−∞
f
3
(x) = −∞.
+ SBT: f

3
(x) = 3x
2
− 3,
f

3
(x) = 0 ↔ x = 1 hoặc x = −1.
+ Hàm số đồng biến trên mỗi khoảng: (−∞; −1) và (1; +∞).
Hàm số nghịch biến trên khoảng: (−1; 1).
+ Điểm cực đại của đồ thị là (−1; 4).
Điểm cực tiểu của đồ thị là (1; 0).
+ Bảng biến thiên:
x
f

1
(x)
f

3
(x)
−∞ +∞-1 1 4
+ - +0 0
0









✏✶





❍❥





✟✯
4
−∞
+∞

11
* Xét hàm f
4
(x) =
2x − 1
x + 1
+ TXĐ : D = R\{−1}.
+ Sự biến thiên:
f

4
(x) =
3
(x − 1)
2
> 0 , với ∀x ∈ D
⇒ Hàm số đồng biến trên mỗi khoảng (−∞; −1) và (−1; +∞).
+ Hàm số không có cực trị.
+ Giới hạn: lim
x→+∞
f
4
(x) = 2; lim
x→−∞
f
4
(x) = 2
⇒ Đồ thị có tiệm cận ngang y = 2
lim
x→(−1)


f
4
(x) = +∞; lim
x→(−1)
+
f
4
(x) = −∞.
⇒ Đồ thị có tiệm cận đứng x = −1
+ Bảng biến thiên:
x
f

4
(x)
f
4
(x)
−∞ +∞-1
+ +
+∞ 2
2 −∞




✟✯





✟✯
2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm đã cho trênA
i
với i = 1, 2, 3.
* Xét với hàm f
1
(x) = x
4
− 2x
2
+ 1
Dựa vào bảng biến thiên ta có các kết luận sau:
+ Trên tập A
1
= [0; 1]: max f
1
(x) = 1; min f
1
(x) = −0.
+ Trên tập A
2
= [2; 3]: max f
1
(x) = 64; min f
1
(x) = 9.
+ Trên tập A
3

= [−1; 1]: max f
1
(x) = 1; min f
1
(x) = 0.
* Xét với hàm f
2
(x) = 2x
3
− 3x
2
− 1
Dựa vào bảng biến thiên ta có các kết luận sau:
+ Trên tập A
1
= [0; 1]: max f
2
(x) = −1; min f
2
(x) = −2.
+ Trên tập A
2
= [2; 3]: max f
2
(x) = 26; min f
2
(x) = 3.
12
+ Trên tập A
3

= [−1; 1]: max f
2
(x) = −1; min f
2
(x) = −6.
* Xét với hàm f
3
(x) = x
3
− 3x + 2.
Dựa vào bảng biến thiên ta có các kết luận sau:
+ Trên tập A
1
= [0; 1] :max f
3
(x) = 2; min f
3
(x) = 0.
+ Trên tập A
2
= [2; 3] :max f
3
(x) = 20; min f
3
(x) = 4.
+ Trên tập A
3
= [−1; 1]:max f
3
(x) = 4; min f

3
(x) = 0.
* Xét với hàm f
4
(x) =
2x − 1
x + 1
Dựa vào bảng biến thiên ta có các kết luận sau:
+ Trên tập A
1
= [0; 1] :max f
4
(x) =
1
2
; min f
4
(x) = −1.
+ Trên tập A
2
= [2; 3] :max f
4
(x) =
5
4
; min f
4
(x) = 1.
3. Tìm tập giá trị của hàm số trên A
i

, i = 1, 2, 3.
* Xét hàm f
1
(x) = x
4
− 2x
2
+ 1
+ Trên tập A
1
= [0; 1]. Tập giá trị là :[0; 1].
+ Trên tập A
2
= [2; 3]. Tập giá trị là :[9; 64].
+ Trên tập A
3
= [−1; 1]. Tập giá trị là :[0; 1].
* Xét hàm f
2
(x) = 2x
3
− 3x
2
− 1.
+ Trên tập A
1
= [0; 1]. Tập giá trị là :[−2; −1].
+ Trên tập A
2
= [2; 3]. Tập giá trị là :[3; 26].

+ Trên tập A
3
= [−1; 1]. Tập giá trị là :[−6; −1].
* Xét hàm f
3
(x) = x
3
− 3x + 2.
+ Trên tập A
1
= [0; 1]. Tập giá trị là :[0; 2].
+ Trên tập A
2
= [2; 3]. Tập giá trị là :[4; 20].
+ Trên tập A
3
= [−1; 1]. Tập giá trị là :[0; 4].
* Xét hàm f
4
(x) =
2x − 1
x + 1
.
+ Trên tập A
1
= [0; 1]. Tập giá trị là :[−1;
1
2
].
+ Trên tập A

2
= [2; 3]. Tập giá trị là :[1;
5
4
].
+ Trên tập A
3
= [−1; 1]. Tập giá trị là :(−∞;
1
2
].
4. Tìm m để mỗi phương trình sau có nghiệm trên A
i
; i = 1, 2, 3,
f
j
(x) = m; j = 1, 2, 3, 4.
13
* Xét phương trình f
1
(x) = m.
Dựa vào bảng biến thiên ta có các kết luận sau:
+ Phương trình có nghiệm trên A
1
= [0; 1] khi m ∈ [0; 1].
+ Phương trình có nghiệm trên A
2
= [2; 3] khi m ∈ [9; 64].
+ Phương trình có nghiệm trên A
3

= [−1; 1] khi m ∈ [0; 1].
* Xét phương trình f
2
(x) = m.
Dựa vào bảng biến thiên ta có các kết luận sau:
+ Phương trình có nghiệm trên A
1
= [0; 1] khi m ∈ [−2; −1].
+ Phương trình có nghiệm trên A
2
= [2; 3] khi m ∈ [3; 26].
+ Phương trình có nghiệm trên A
3
= [−1; 1] khi m ∈ [−6; −1].
* Xét phương trình f
3
(x) = m
Dựa vào bảng biến thiên ta có các kết luận sau :
+ Phương trình có nghiệm trên A
1
= [0; 1] khi m ∈ [0; 2].
+ Phương trình có nghiệm trên A
2
= [2; 3] khi m ∈ [4; 20].
+ Phương trình có nghiệm trên A
3
= [−1; 1] khi m ∈ [0; 4].
* Xét phương trình f
4
(x) = m

Dựa vào bảng biến thiên ta có các kết luận sau:
+ Phương trình có nghiệm trên A
1
= [0; 1] khi m ∈ [−1;
1
2
].
+ Phương trình có nghiệm trên A
2
= [2; 3] khi m ∈ [1;
5
4
].
+ Phương trình có nghiệm trên A
3
= [−1; 1] khi m ∈ (−∞;
1
2
].
5. Tìm m để mỗi bất phương trình sau có nghiệm trên A
i
; i = 1, 2, 3,
f
j
(x) ≥ m; j = 1, 2, 3, 4.
* Xét bất phương trình f
1
(x) ≥ m
+ Bất phương trình có nghiệm trên A
1

= [0; 1] khi m ≤ 1.
+ Bất phương trình có nghiệm trên A
2
= [2; 3] khi m ≤ 64.
+ Bất phương trình có nghiệm trên A
3
= [−1; 1] khi m ≤ 1.
* Xét bất phương trình f
2
(x) ≥ m
+ Bất phương trình có nghiệm trên A
1
= [0; 1] khi m ≤ −1.
+ Bất phương trình có nghiệm trên A
2
= [2; 3] khi m ≤ 26.
14
+ Bất phương trình có nghiệm trên A
3
= [−1; 1] khi m ≤ −1.
* Xét bất phương trình f
3
(x) ≥ m
+ Bất phương trình có nghiệm trên A
1
= [0; 1] khi m ≤ 2.
+ Bất phương trình có nghiệm trên A
2
= [2; 3] khi m ≤ 20.
+ Bất phương trình có nghiệm trên A

3
= [−1; 1] khi m ≤ 4.
* Xét bất phương trình f
4
(x) ≥ m
+ Bất phương trình có nghiệm trên A
1
= [0; 1] khi m ≤
1
2
.
+ Bất phương trình có nghiệm trên A
2
= [2; 3] khi m ≤
5
4
.
+ Bất phương trình có nghiệm trên A
3
= [−1; 1] khi m ≤
1
2
.
6. Tìm m để mỗi bất phương trình sau có nghiệm trên A
i
, i = 1, 2, 3 ,
f
j
(x) ≤ m, j = 1, 2, 3, 4.
* Xét bất phương trình f

1
(x) ≤ m
+ Bất phương trình có nghiệm trên A
1
= [0; 1] khi m ≥ 0.
+ Bất phương trình có nghiệm trên A
2
= [2; 3] khi m ≥ 9.
+ Bất phương trình có nghiệm trên A
3
= [−1; 1] khi m ≥ 0.
* Xét bất phương trình f
2
(x) ≤ m
+ Bất phương trình có nghiệm trên A
1
= [0; 1] khi m ≥ −2.
+ Bất phương trình có nghiệm trên A
2
= [2; 3] khi m ≥ 3.
+ Bất phương trình có nghiệm trên A
3
= [−1; 1] khi m ≥ −6.
* Xét bất phương trình f
3
(x) ≤ m
+ Bất phương trình có nghiệm trên A
1
= [0; 1] khi m ≥ 0.
+ Bất phương trình có nghiệm trên A

2
= [2; 3] khi m ≥ 4.
+ Bất phương trình có nghiệm trên A
3
= [−1; 1] khi m ≥ 0.
* Xét bất phương trình f
4
(x) ≤ m
+ Bất phương trình có nghiệm trên A
1
= [0; 1] khi m ≥ −1.
+ Bất phương trình có nghiệm trên A
2
= [2; 3] khi m ≥ 1.
+ Bất phương trình có nghiệm trên A
3
= [−1; 1] với mọi giá trị của m.
7. Tìm m để mỗi bất phương trình trong các bất phương trình sau
f
j
(x) ≥ m; j = 1, 2, 3, 4 nghiệm đúng với mọi x thuộc một tập hợp bất
kỳ trong các tập A
i
; i = 1, 2, 3.
15
* Xét bất phương trình f
1
(x) ≥ m
+ Bất phương trình nghiệm đúng với ∀x ∈ A
1

khi m ≤ 0.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
2
khi m ≤ 9.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
3
khi m ≤ 0.
* Xét bất phương trình f
2
(x) ≥ m
+ Bất phương trình nghiệm đúng với ∀x ∈ A
1
khi m ≤ −2.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
2
khi m ≤ 3.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
3
khi m ≤ −6.
* Xét bất phương trình f
3
(x) ≥ m
+ Bất phương trình nghiệm đúng với ∀x ∈ A
1
khi m ≤ 0.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
2
khi m ≤ 4.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
3

khi m ≤ 0.
* Xét bất phương trình f
4
(x) ≥ m
+ Bất phương trình nghiệm đúng với ∀x ∈ A
1
khi m ≤ −1.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
2
khi m ≤ 1.
+ Không có giá trị nào của m để bất phương trình f
4
(x) ≥ m nghiệm
đúng với ∀x ∈ A
3
.
8. Tìm m để mỗi bất phương trình trong các bất phương trình sau
f
j
(x) ≤ m; j = 1, 2, 3, 4 nghiệm đúng với mọi x thuộc một tập hợp bất
kỳ trong các tập A
i
; i = 1, 2, 3.
* Xét bất phương trình f
1
(x) ≤ m
+ Bất phương trình nghiệm đúng với ∀x ∈ A
1
khi m ≥ 1.
+ Bất phương trình nghiệm đúng với ∀x ∈ A

2
khi m ≥ 64.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
3
khi m ≥ 1.
* Xét bất phương trình f
2
(x) ≤ m
+ Bất phương trình nghiệm đúng với ∀x ∈ A
1
khi m ≥ −1.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
2
khi m ≥ 26.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
3
khi m ≥ −1.
* Xét bất phương trình f
3
(x) ≤ m
16
+ Bất phương trình nghiệm đúng với ∀x ∈ A
1
khi m ≥ 2.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
2
khi m ≥ 20.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
3
khi m ≥ 4.

* Xét bất phương trình f
4
(x) ≤ m
+ Bất phương trình nghiệm đúng với ∀x ∈ A
1
khi m ≥
1
2
.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
2
khi m ≥
5
4
.
+ Bất phương trình nghiệm đúng với ∀x ∈ A
3
khi m ≥
1
2
.
Ví dụ 1.1.13. Cho hàm số
f
1
(x) = x
3
− 3x
2
+ 2,
f

2
(x) =
x
2
+ 2x + 2
x + 1
,
f
3
(x) = x
4
− 2x
2
− 3,
A
1
= {x ∈ R| 0 ≤ x ≤ 3},
A
2
= {x ∈ R : 0 ≤ x ≤ 2},
A
3
= {x ∈ R : −2 ≤ x ≤ 1}.
a, Tìm f
1
(A
1
) = {f
1
(x)| x ∈ A

1
} = {x
3
− 3x
2
+ 2| 0 ≤ x ≤ 3}.
b, Tìm f
2
(A
2
) = {f
2
(x)| x ∈ A
2
} =

x
2
+ 2x + 2
x + 1


0 ≤ x ≤ 2

.
c, Tìm f
3
(A
3
) = {f

3
(x)| x ∈ A
3
} = {x
4
− 2x
2
− 3| − 2 ≤ x ≤ 1}.
Lời giải
a, Tìm f
1
(A
1
) = {f
1
(x)| x ∈ A
1
} = {x
3
− 3x
2
+ 2| 0 ≤ x ≤ 3}. Ta có:
f

1
(x) = 3x
2
− 6x
f


1
(x) = 0 ⇔ 3x
2
− 6x = 0 ⇔ x = 0 hoặc x = 2.
Bảng biến thiên:
x
f

1
(x)
f
1
(x)
−∞ +∞0 2 3
+ - +0 0









✏✶






❍❥





✟✯
-2
2
2
−∞
+∞

×