Tải bản đầy đủ (.doc) (42 trang)

Đồ án thiết kế chuyển mạch burst quang

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.19 MB, 42 trang )

Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
MỤC LỤC
MỤC LỤC 1
DANH MỤC THUẬT NGỮ VÀ TỪ VIẾT TẮT 3
DANH MỤC HÌNH VẼ 4
LỜI MỞ ĐẦU 5
Chương 1: 7
Giới thiệu về chuyển mạch burst quang 7
1.1 Chuyển mạch kênh quang 7
1.2 Chuyển mạch gói quang 8
1.3 Chuyển mạch burst quang 10
1.4 So sánh các công nghệ chuyển mạch quang 11
Chương 2 : 12
Các khía cạnh cơ bản của chuyển mạch burst quang 12
2.1 Kiến trúc mạng OBS 12
2.1.1 Cấu tạo nút biên 14
2.1.2 Cấu tạo nút lõi 15
2.2 Tổ hợp burst 17
2.2.1 Tổ hợp burst dựa trên bộ định thời 17
2.2.2 Tổ hợp burst dựa trên mức ngưỡng 17
2.3 Các cơ chế báo hiệu 19
2.3.1 Cơ chế báo hiệu Just – Enough – Time (JET) 20
2.3.2 Cơ chế báo hiệu Just – In – Time (JIT) 23
2.3.3 Cơ chế báo hiệu Tell – And – Go (TAG) 25
2.3.4 Cơ chế báo hiệu Tell – And – Wait (TAW) 26
2.4 Các thuật toán sắp xếp kênh 27
2.4.1 Kênh rỗi phù hợp đầu tiên (FFUC) 28
2.4.2 Kênh rỗi với LAUT gần nhất (LAUC) 29
2.4.3 Kênh rỗi phù hợp đầu tiên – thực hiện lấp khoảng trống (FFUC-VF) 29
2.4.4 Kênh rỗi với LAUT gần nhất - thực hiện lấp khoảng trống (LAUC-VF) 30
2.4.5 Khoảng trống kết thúc tối thiểu (Min-EV) 31


2.5 Phân giải tranh chấp 31
2.5.1 Bộ đệm quang 31
2.5.2 Chuyển đổi bước sóng 32
Nhóm 10 – H09VT7
1
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
2.5.3 Định tuyến chuyển hướng 34
2.5.3.1 Giới thiệu 34
2.5.3.2 Phương pháp định tuyến chuyển hướng 35
2.5.4 Phân đoạn burst 36
KẾT LUẬN 40
TÀI LIỆU THAM KHẢO 42
Nhóm 10 – H09VT7
2
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
DANH MỤC THUẬT NGỮ VÀ TỪ VIẾT TẮT
Viết tắt Tiếng Anh Tiếng Việt
ACK Acknowledgement packet Gói tin báo nhận
BA Burst Assembler Bộ tổ hợp burst
ATM Asynchronous Transfer Mode Chế độ truyền tải không đồng bộ
BHP Burst Header Packet Gói tiêu đề burst
FDL Fiber Delay Line Đường dây trễ quang
FFUC First Fit Unscheduled Channel Kênh rỗi phù hợp đầu tiên
FFUC-VF First Fit Unscheduled Channel-
Void Filling
Kênh rỗi phù hợp đầu tiên-thực
hiện lấp khoảng trống
FIFO First In First Out Bộ đệm vào trước ra trước
IP Internet Protocol Giao thức Internet
JET Just – Enough – Time (Tên giao thức)

JIT Just – In – Time (Tên giao thức)
LAUC Latest Available Unscheduled
Channel
Kênh rỗi với LAUT gần nhất
LAUC- VF Latest Available Unscheduled
Channel – Void Filling
Kênh rỗi với LAUT gần nhất-thực
hiện lấp khoảng trống
MEMS Microelectromechanical System Hệ thống vi cơ điện
Min – EV Minimum End Void Khoảng trống kết thúc tối thiểu
NAK Negative Acknowledgment Bản tin báo nhận phủ định
OBS Optical Burst Switching Chuyển mạch burst quang
OCS Optical Circuit Switching Chuyển mạch kênh quang
OPS Optical Packet Switching Chuyển mạch gói quang
Nhóm 10 – H09VT7
3
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
OXC Optical Cross Connect Thiết bị nối chéo quang
REL Release packet Gói tin giải phóng kênh
RM Routing Module Bộ định tuyến
RWA Routing and Wavelength
Assignment
Định tuyến và gán bước sóng
S Scheduler Bộ lập lịch
SCU Switching Control Unit Đơn vị điều khiển chuyển mạch
SONET Synchronous Optical Network Mạng quang đồng bộ
TAG Tell – And – Go (Tên giao thức)
TAW Tell – And – Wait (Tên giao thức)
WDM Wavelength Division Multiplexing Ghép kênh phân chia bước sóng
DANH MỤC HÌNH VẼ

Hình 1.1: Mạng định tuyến bước sóng 8
Hình 1.2: Mạng chuyển mạch gói quang OPS 9
Hình 1.3: Nút chuyển mạch trong mạng chuyển mạch gói quang 10
Hình 1.4: Sử dụng thời gian offset trong OBS 10
Nhóm 10 – H09VT7
4
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Hình 2.1: Kiến trúc mạng OBS 13
Hình 2.2: Sơ đồ khối chức năng của mạng OBS 14
Hình 2.3: Cấu tạo nút biên 15
Hình 2.4: Cấu tạo nút lõi 16
Hình 2.5: Tổ hợp burst dựa trên bộ định thời 17
Hình 2.6: Tổ hợp burst dựa trên mức ngưỡng 18
Hình 2.7: Cơ chế báo hiệu Just – Enough – Time 21
Hình 2.8: Lợi ích của DR 23
Hình 2.9: Cơ chế báo hiệu Just – In – Time 24
Hình 2.10: So sánh cơ chế báo hiệu JET (trên) và JIT (dưới) 24
Hình 2.11: Cơ chế báo hiệu Tell-And-Go 26
Hình 2.12: Cơ chế báo hiệu Tell – And – Wait 27
Hình 2.13: Thuật toán FFUC và LAUC 29
Hình 2.14: Thuật toán FFUC-VF và LAUC-VF 30
Hình 2.15: Mô tả giải quyết xung đột bằng bộ đệm 32
Hình 2.16: Dây trễ FDL cùng với bộ khuếch đại và chuyển mạch tạo thành một
vòng lặp trễ 32
Hình 2.17: Giải quyết tranh chấp bằng bộ chuyển đổi bước sóng 33
Hình 2.18: Cấu trúc của mạng OBS với kỹ thuật làm lệch hướng đi 35
Hình 2.19: Phương pháp định tuyến chuyển hướng 36
Hình 2.20: Mô tả giải quyết xung đột bằng phân đoạn burst 37
Hình 2.21: Cấu trúc của burst được đóng kiểu phân đoạn 38
Hình 2.22: Xung đột làm chồng lấn các đoạn lên nhau 39

LỜI MỞ ĐẦU
Những năm gần đây đã diễn ra sự bùng nổ lưu lượng thông tin trên toàn cầu. Yêu
cầu về băng thông đối với các dịch vụ viễn thông ngày càng gia tăng. Một trong
những xu hướng phát triển của mạng viễn thông hiện nay là quang hóa từ mạng lõi
cho đến tận mạng truy nhập của khách hàng. Công nghệ ghép kênh phân chia theo
bước sóng WDM đã và đang được triển khai trong các hệ thống thông tin quang
hiện tại cho phép tốc độ truyền dẫn cực lớn và khả năng hỗ trợ các lưu lượng khác
nhau như IP, Ethernet, SONET/SDH. Một vấn đề đặt ra cho mạng quang WDM là
Nhóm 10 – H09VT7
5
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
lựa chọn được công nghệ chuyển mạch thích hợp để có thể sử dụng một cách tối ưu
băng thông của sợi quang và giảm thiểu trễ xử lý tại các thiết bị chuyển mạch. Ba
công nghệ chuyển mạch quang được nghiên cứu để sử dụng trong mạng WDM là:
chuyển mạch kênh quang, chuyển mạch gói quang và chuyển mạch burst quang.
Trong ba công nghệ này, chuyển mạch burst quang ra đời nhằm đáp ứng sự bùng nổ
dữ liệu, giải quyết được nhược điểm của chuyển mạch kênh quang và là bước trung
gian trước khi tiến tới chuyển mạch gói quang trong khi công nghệ chưa cho phép
có mạng truyền tải toàn quang. Xuất phát từ thực tế trên nhóm chúng em đã chọn
hướng nghiên cứu về chuyển mạch burst quang. Chuyên đề “Chuyển mạch burst
quang” trình bày những vấn đề cơ bản nhất về chuyển mạch burst quang. Nội dung
chuyên đề bao gồm:
Chương 1: Giới thiệu về chuyển mạch burst quang. Chương này sẽ giới thiệu
về các công nghệ chuyển mạch quang chính là chuyển mạch kênh quang, chuyển
mạch burst quang và chuyển mạch gói quang.
Chương 2: Các khía cạnh cơ bản của chuyển mạch burst quang. Nội dung
chương 2 gồm có:
+Kiến trúc mạng OBS
+Tổ hợp burst: theo ngưỡng và dựa trên bộ định thời
+Các cơ chế báo hiệu: JET,JIT,TAG,TAW

+Các thuật toán sắp xếp kênh: với thuật toán hàng ngang (Hoziron) và lấp
khoảng trống (Void Filling)
+Các giải pháp giải quyết tranh chấp: bộ đệm quang, chuyển đổi bước sóng ,
định tuyến chuyển hướng, phân đoạn burst.
Do giới hạn về mặt thời gian và kiến thức nên chuyên đề không tránh khỏi thiếu
sót. Rất mong nhận được những đóng góp từ thầy cô và các bạn để chuyên đề của
nhóm được hoàn thiện hơn.
Nhóm 10 – H09VT7
6
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Chương 1:
Giới thiệu về chuyển mạch burst quang
Nội dung chính của chương sẽ đề cập đến ba loại chuyển mạch quang chính là :
chuyển mạch kênh quang, chuyển mạch gói quang và chuyển mạch burst quang.
1.1 Chuyển mạch kênh quang
Nhóm 10 – H09VT7
7
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Mạng WDM định tuyến bước sóng bao gồm các thiết bị nối chéo quang OXC
(Optical Cross Connect) được kết nối với nhau bằng các liên kết WDM trong một
tôpô mạng hình lưới tùy ý. Phương pháp chuyển mạch trong mạng định tuyến bước
sóng là chuyển mạch kênh quang. Chuyển mạch kênh quang là chuyển mạch hướng
kết nối (connection oriented). Kết nối từ một nút nguồn gửi thông tin đến một nút
đích nhận thông tin phải được thiết lập trước khi thông tin được truyền đi. Trong
mạng định tuyến bước sóng thì kết nối từ nguồn tới đích này được gọi là đường
quang (lightpath). Đường quang tương ứng với một tuyến và bước sóng được gán
cho tuyến đó. Sự thiết lập các đường quang bao gồm một số bước thực hiện. Những
bước này bao gồm tìm ra tài nguyên và tôpô mạng, định tuyến, gán bước sóng, báo
hiệu và dự trữ tài nguyên.
Hình 1.1: Mạng định tuyến bước sóng

1.2 Chuyển mạch gói quang
Nhóm 10 – H09VT7
8
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Hình 1.2: Mạng chuyển mạch gói quang OPS
Mạng chuyển mạch gói quang OPS bao gồm các OXC được nối với nhau bằng
các liên kết WDM trong một cấu hình mesh tùy ý. Mạng chuyển mạch gói quang
bao gồm phần lõi có khả năng truyền tải tốc độ cao và phần biên giao diện với phần
tử của các mạng IP, SONET/SDH, Ethernet.
Các gói tin truyền trong mạng chuyển mạch gói quang có phần tiêu đề và phần
tải tin. Tiêu đề có chứa thông tin định tuyến cũng như thông tin điều khiển và được
truyền trong băng cùng với tải tin. Khi gói tin truyền tới OXC, tiêu đề sẽ được tách
ra và được xử lý trong miền điện (sau khi biến đổi quang – điện – quang) còn tải tin
sẽ được chuyển mạch trong miền quang. Vì phần tiêu đề cần mất thời gian để xử lý
nên phần tải tin được làm trễ đi bằng cách lưu đệm bởi đường dây trễ quang. Về
nguyên lý, chuyển mạch gói quang mong muốn truyền thông tin và xử lý thông tin
điều khiển hoàn toàn trong miền quang. Nhưng do hạn chế về mặt công nghệ hiện
nay nên phần thông tin điều khiển chỉ có thể xử lý trong miền điện mà thôi. Trong
chuyển mạch gói quang, tiêu đề được so sánh với một bảng định tuyến, tải tin sẽ
được chuyển ra cổng đầu ra tương ứng trên một sợi quang và một bước sóng mới.
Nếu không có bước sóng mới nào khả dụng, gói tin sẽ bị hủy hoặc phải bị trễ đi để
chờ bước sóng khả dụng mới.
Thành phần chính của nút OXC là cơ cấu chuyển mạch quang và khối điều khiển
chuyển mạch. Khối điều khiển chuyển mạch duy trì thông tin về tô pô mạng, duy trì
bảng định tuyến, xử lý tiêu đề gói tin, điều khiển việc lưu đệm, lập lịch và chuyển
tiếp các gói tin, điều khiển cơ cấu chuyển mạch chuyển mạch gói tin đúng thời gian
đã định, phát hiện tranh chấp và phân giải khi tranh chấp xảy ra giữa các gói tin. Cơ
cấu chuyển mạch thực hiện tạo kết nối từ cổng đầu vào đến cổng đầu ra tương ứng
theo yêu cầu của khối điều khiển chuyển mạch.
Nhóm 10 – H09VT7

9
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Hình 1.3: Nút chuyển mạch trong mạng chuyển mạch gói quang
1.3 Chuyển mạch burst quang
Chuyển mạch burst quang ra đời nhằm đạt được sự cân bằng giữa chuyển mạch
kênh quang và chuyển mạch gói quang. Các gói tin ở lớp trên sẽ được tập hợp lại
thành các burst để truyền tải trong mạng OBS . Các burst có độ dài không cố định
gồm có hai phần: gói tin điều khiển (control packet) hay còn được gọi là gói tiêu đề
burst Burst Header Packet (BHP) và phần thông tin dữ liệu còn được gọi là data
burst. OBS thực hiện việc truyền độc lập gói tin điều khiển và burst dữ liệu trên
các kênh bước sóng khác nhau. Thông tin trong gói tin điều khiển gồm có chiều dài
burst, thời điểm phát burst, các thông tin định tuyến. Gói tin điều khiển được truyền
đi trước burst dữ liệu một khoảng thời gian được gọi là offset time để cấu hình các
chuyển mạch trong suốt đường đi từ nguồn tới đích. Thời gian offset time này bằng
trễ xử lý tổng cộng của gói tin điều khiển tại tất cả các nút trung gian.
Hình 1.4: Sử dụng thời gian offset trong OBS
Nhóm 10 – H09VT7
10
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Đây là một trong những khác biệt cơ bản giữa chuyển mạch burst quang so với
chuyển mạch gói quang. Khoảng thời gian này cho phép thông tin điều khiển được
xử lý tại mỗi nút chuyển mạch và các nút sắp xếp tài nguyên kênh bước sóng cho
việc truyền burst dữ liệu dựa trên thông tin trong gói tin điều khiển. Với OBS không
yêu cầu phải xử lý gói tin điều khiển trong miền quang. OBS sử dụng các mô hình
dự trữ kênh và báo hiệu để dự trữ tài nguyên kênh bước sóng.
1.4 So sánh các công nghệ chuyển mạch quang
Như đã nêu ở trên, ta có thể thấy chuyển mạch kênh quang chỉ chuyển mạch cho
một bước sóng trên một đường quang nên không còn thích hợp cho mạng WDM
hiện nay. Nhưng nó cũng có những ưu điểm riêng của nó, nổi bật nhất đó là độ tin
cậy. Bên cạnh đó nhược điểm chính là độ trễ lớn và lãng phí băng thông.

Chuyển mạch gói quang là loại chuyển mạch hướng tới trong mạng toàn quang
với tốc độ xử lý nhanh nhất trong các loại đã nêu. Nhưng giới hạn của nó là ở chỗ
sự hạn chế về công nghệ hiện tại không đáp ứng được các yêu cầu cho một mạng
toàn quang.
Trong khi đó lưu lượng càng ngày càng bùng nổ. Ta có thể thấy chuyển mạch
burst quang đáp ứng được sự bùng nổ đó như thế nào. Với việc tổ hợp các gói cùng
đích đến dùng chung một gói điều khiển làm giảm thiểu tối đa việc xử lý thông tin
điều khiển. Các burst dữ liệu hoàn toàn truyền đi trên miền quang. Về tốc độ và khả
năng sử dụng băng tần hơn hẳn chuyển mạch kênh quang. Trong thời điểm hiện tại
với công nghệ như hiện nay thì chuyển mạch từng gói một với việc xử lý từng ấy
tiêu đề trong chuyển mạch gói quang sẽ không thể đáp ứng được lưu lượng như
chuyển mạch burst quang. Tuy nhiên, cái gì cũng có hai mặt của nó, chuyển mạch
burst quang đáp ứng được yêu cầu về bùng nổ lưu lượng nhưng nó vẫn chưa phải là
chuyển mạch toàn quang, trễ tổ hợp burst, việc thay thế thiết bị hay chỉ là cần thay
thế module. Đó là vấn đề “trade off” trong viễn thông.
Nhóm 10 – H09VT7
11
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Công nghệ
chuyển mạch
quang
Hiệu quả sử
dụng băng
thông
Thời gian
chuyển mạch
yêu cầu
Xử lý header
Khả năng thích
ứng lưu lượng

Chuyển mạch
kênh quang
Thấp Chậm Thấp Thấp
Chuyển mạch
gói quang
Cao Nhanh Cao Cao
Chuyển mạch
burst quang
Cao Trung bình Thấp Cao
Bảng 1.1 So sánh các công nghệ chuyển mạch quang khác nhau
Chương 2 :
Các khía cạnh cơ bản của chuyển mạch burst
quang
2.1 Kiến trúc mạng OBS
Như đã đề cập ở chương 1, ý tưởng của chuyển mạch burst quang là phân chia
mặt bằng dữ liệu và mặt bằng điều khiển và thực hiện báo hiệu ngoài băng để cho
phép truyền tải dữ liệu trong miền quang một cách hiệu quả hơn. Đơn vị dữ liệu
truyền tải trong mạng OBS là các burst gồm có gói tin điều khiển và burst dữ liệu.
Mạng OBS thực hiện việc báo hiệu ngoài băng: gói tin điều khiển được truyền trên
một kênh bước sóng khác với burst dữ liệu để cấu hình các chuyển mạch từ nguồn
Nhóm 10 – H09VT7
12
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
tới đích. Gói tin điều khiển mang thông tin về chiều dài burst, thời điểm burst
truyền cũng như các thông tin định tuyến khác. Một khi tài nguyên đã được dự trữ
các burst sẽ được phát đi. Để làm được điều đó người ta đề xuất xây dựng một
mạng OBS với kiến trúc như hình 2.1
Hình 2.1: Kiến trúc mạng OBS
Mạng OBS về bản chất là một mạng WDM trên đó nó thực hiện công nghệ
chuyển mạch OBS. Mạng OBS bao gồm các nút biên (edge node) và các nút lõi

(core node) được kết nối với nhau bằng các liên kết WDM.
Nút biên mạng OBS thực hiện giao diện với mạng khác như mạng IP,
SONET/SDH hay Ethernet. Nút biên vì thế có khả năng giao tiếp cả trong miền
điện và miền quang và có khả năng biến đổi điện quang cũng như chuyển đổi bước
sóng để tương thích với tín hiệu truyền trên các liên kết quang WDM. Nút biên trên
cơ sở truyền tải burst có thể phân thành nút biên đầu vào và nút biên đầu ra. Nút
đầu vào ở phía phát vào thực hiện tổ hợp các gói tin từ các đầu cuối thành các burst
và tạo các gói tin điều khiển, định tuyến và sắp xếp bước sóng để truyền các burst
dữ liệu vào mạng lõi OBS. Nút đầu ra ở phía thu thực hiện giải tổ hợp các burst
thành các gói tin và gửi tới các mạng đích. Nếu một nút biên thực hiện thông tin hai
chiều thì nó sẽ đóng vai trò vừa là nút đầu vào vừa là nút đầu ra.
Nút lõi có nhiệm vụ cơ bản là chuyển tiếp burst từ các cổng đầu vào tới các
cổng đầu ra tương ứng, dự trữ các kênh bước sóng cho các burst dữ liệu dựa trên
thông tin trong các gói tin điều khiển và giải quyết tranh chấp. Hình 2.2 mô tả các
thành phần của mạng OBS với các chức năng khác nhau.
Nhóm 10 – H09VT7
13
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Hình 2.2: Sơ đồ khối chức năng của mạng OBS
2.1.1 Cấu tạo nút biên
Các nút biên là các router biên có khả năng giao diện điện và quang, thực hiện
chức năng phân loại gói tin, lưu đệm các gói tin, tổ hợp các gói tin thành các burst
và giải tổ hợp burst thành các gói tin cấu thành. Các phương pháp tổ hợp burst khác
nhau như dựa trên thời gian của bộ định thời hoặc dựa trên kích thước các gói tin có
thể được sử dụng để tổ hợp các gói tin dữ liệu thành các burst và gửi vào trong
mạng lõi OBS. Cấu tạo của một router biên bao gồm một bộ định tuyến RM
(Routing Module), các bộ tổ hợp burst BA (Burst Assembler) và các bộ lập lịch
kênh S (Scheduler).
Nhóm 10 – H09VT7
14

Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Hình 2.3: Cấu tạo nút biên
Bộ định tuyến kiểm tra thông tin định tuyến của từng gói tin, chọn lựa các cổng
ra thích hợp cho từng gói tin và gửi nó đến bộ tổ hợp burst thích hợp. Mỗi bộ tổ
hợp burst tạo ra các burst chứa các gói dữ liệu đến cùng một đích tới (cùng một
router biên đầu ra). Trong mỗi bộ tổ hợp burst còn có hàng đợi khác nhau cho các
loại gói tin ứng với các dịch vụ khác nhau. Bộ lập lịch kênh dự trữ kênh bước sóng
cho các burst dữ liệu và chuyển các burst dữ liệu tới các cổng đầu ra tương ứng. Ở
nút biên đầu ra, bộ giải tổ hợp burst sẽ tiến hành tách các gói tin từ các burst này và
chuyển tiếp lên các lớp trên.
2.1.2 Cấu tạo nút lõi
Nút lõi gồm có OXC và một đơn vị điều khiển chuyển mạch SCU (Switching
Control Unit), các bộ chuyển đổi quang – điện – quang, các bộ ghép kênh, phân
kênh. Ta xét hai phẩn tử chính là OXC và SCU. SCU tạo và duy trì một bảng
chuyển tiếp và chịu trách nhiệm cấu hình cho OXC. Khi gói tin điều khiển tới nút
lõi nó sẽ được biến đổi từ miền quang vào miền điện và đi đến SCU. SCU đọc
thông tin trong gói xác định đích đến của gói này và burst dữ liệu theo sau, kế đó tra
cứu thông tin trong bảng chuyển tiếp để đưa đến quyết định chuyển tiếp dữ liệu đến
cổng ra nào của OXC. Đồng thời SCU cũng chịu trách nhiệm dự trữ kênh bước
sóng cho burst dữ liệu ở đầu ra. Gói tin điều khiển sau đó sẽ được cập nhật thêm
thông tin điều khiển nếu như nút hiện tại chưa phải là đích cuối cùng của nó và
được biến đổi điện quang và truyền ra kênh bước sóng đầu ra tương ứng. Trước khi
burst dữ liệu đi đến router lõi, SCU sẽ điều khiển OXC thiết lập kết nối từ cổng đầu
Nhóm 10 – H09VT7
15
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
vào đến đầu ra tương ứng cho burst dữ liệu đó. Tại nút lõi có nhiều kịch bản có thể
xảy ra. Nếu gói tin điều khiển không thành công trong việc dự trữ tài nguyên cho
burst dữ liệu thì cả gói tin điều khiển và burst dữ liệu sẽ bị hủy bỏ. Hoặc khi các
burst dữ liệu tại các đầu vào cùng muốn đến một cổng đầu ra của OXC, khi đó

tranh chấp sẽ xảy ra và SCU sẽ có nhiệm vụ phát hiện và giải quyết tranh chấp này
theo các chính sách giải quyết tranh chấp mà mạng sử dụng. Có hai phương pháp
giải quyết tranh chấp mà phần 2.5 của chuyên đề đề cập đến là sử dụng các đường
dây trễ quang và chuyển đổi bước sóng. Để thực hiện được các phương pháp này
đòi hỏi nút lõi mạng OBS phải trang bị thêm đường dây trễ quang và các bộ chuyển
đổi bước sóng.
Hình 2.4: Cấu tạo nút lõi
Ta có thể thấy các gói tin khi đi vào các node biên sẽ được định tuyến để chuyển
rồi mới chuyển đến các bộ tổ hợp và sau đó được lập lịch và sắp xếp trên bước sóng
đầu ra tương ứng. Tại các node lõi sẽ chỉ có trách nhiệm chuyển tiếp gói tin đi nhờ
xử lý các thông tin báo hiệu và lập lịch. Tại node biên đầu ra sẽ burst sẽ được giải tổ
hợp và phân phối đến địa chỉ.Trong mạng OBS xử dụng các giao thức định tuyến
OSPF và GMPLS. Có thể thấy tuyến đã được lựa chọn tại node biên, các node đích
chỉ việc chuyển tiếp. Nếu đi thêm về các giao thức trên thì chuyên đề sẽ quá dài và
không tập trung vào đặc điểm riêng chính của OBS nên nhóm sẽ không trình bày cụ
thể về các giao thức định tuyến trên. Mục tiếp theo sẽ đề cập đến quá trình tổ hợp
burst là một trong những đặc điểm nổi bật của OBS.
Nhóm 10 – H09VT7
16
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
2.2 Tổ hợp burst
Tổ hợp burst là tiến trình tập hợp và đóng các gói ở router nút biên đầu vào từ
các lớp cao hơn thành các burst để truyền tải vào mạng OBS. Khi các gói tin đi đến
từ lớp cao hơn, chúng được lưu đệm trong các bộ nhớ đệm điện và được phân loại
theo địa chỉ và loại dịch vụ. Việc tổ hợp burst sẽ quyết định khi nào tạo ra một burst
và gửi burst đó vào mạng OBS. Hai phương pháp tổ hợp burst phổ biến nhất là tổ
hợp burst dựa trên bộ định thời và tổ hợp burst dựa trên mức ngưỡng.
2.2.1 Tổ hợp burst dựa trên bộ định thời
Như đã trình bày trong phần 2.1.1, các router biên có cấu tạo gồm có bộ định
tuyến, các bộ tổ hợp burst và các bộ lập lịch kênh. Khi các gói tin đến router biên,

bộ định tuyến sẽ căn cứ vào địa chỉ đích của các gói tin để chuyển các gói tin này
đến bộ tổ hợp burst thích hợp. Các gói tin này sẽ được lưu đệm tạm thời trong các
hàng đợi khác nhau nằm trong bộ tổ hợp burst. Trong phương pháp tổ hợp burst dựa
trên bộ định thời, mỗi bộ tổ hợp burt sẽ tham chiếu thời gian của một bộ định thời
cục bộ nằm trên một hàng đợi để quyết định việc tổ hợp các gói tin thành các burst.
Thời điểm bộ định thời bắt đầu đếm thời gian có thể là ngay sau khi một burst trước
đó được lập lịch để truyền đi hoặc ngay sau khi gói tin đầu tiên đến hàng đợi sau
khi hàng đợi trống. Sau một khoảng thời gian T

được cấu hình từ trước, các gói tin
trong hàng đợi đó sẽ được tổ hợp thành một burst và lập lịch để truyền đi. Phương
pháp tổ hợp burst này sẽ tạo ra các burst có chiều dài ngẫu nhiên. Lưu lượng vào
mạng thay đổi phần lớn sẽ quyết định chiều dài của burst. Lưu lượng vào mạng lớn,
burst sẽ có kích thước lớn, lưu lượng vào mạng nhỏ, burst sẽ có kích thước nhỏ.
Tuy nhiên, thời gian của bộ định thời cũng là một nhân tố quyết định kích thước các
burst.
Hình 2.5: Tổ hợp burst dựa trên bộ định thời
2.2.2 Tổ hợp burst dựa trên mức ngưỡng
Nhóm 10 – H09VT7
17
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Trong phương pháp tổ hợp burst dựa trên mức ngưỡng, số lượng các burst bị
giới hạn hay chiều dài của các burst là bằng nhau. Cụ thể là khi khi kích thước của
các gói tin trong hàng đợi đạt đến một giá trị ngưỡng L, các gói tin được tổ hợp
thành burst và lập lịch để truyền đi. Phương pháp tổ hợp burst này không đảm bảo
về thời gian trễ tổ hợp burst.
Hình 2.6: Tổ hợp burst dựa trên mức ngưỡng
Một vấn đề đặt ra cho việc tổ hợp burst là làm sao tìm ra giá trị của bộ định thời
và kích thước ngưỡng để tối thiểu hóa xác suất mất gói trong mạng OBS. Nếu như
mức ngưỡng quá thấp dẫn đến kích thước burst nhỏ, số lượng burst truyền trong

mạng sẽ nhiều dẫn đến xác suất xảy ra xung đột ở các router lõi cao, nhưng số
lượng gói trung bình bị mất do xung đột lại nhỏ. Tuy nhiên, số lượng burst nhiều sẽ
làm tăng áp lực lên mặt bằng điều khiển do phải xử lý nhiều các gói tin điều khiển
của mỗi burst dữ liệu. Nếu thời gian cấu hình cho mỗi nút chuyển mạch không được
bỏ qua, các burst ngắn sẽ khiến cho việc sử dụng tài nguyên một cách kém hiệu quả
do phải mất nhiều thời gian chuyển mạch. Ngược lại, khi mức ngưỡng lớn dẫn đến
kích thước burt lớn, số lượng burst vào mạng sẽ nhỏ, do đó xác suất xảy ra xung đột
sẽ nhỏ nhưng số lượng gói trung bình bị mất do xung đột sẽ lớn.
Vì thế, cần có một sự cân bằng giữa số lượng xung đột và số lượng gói mất
trung bình tại mỗi lần xung đột. Do đó, hoạt động của mạng OBS sẽ được cải thiện
khi các gói đến được tổ hợp thành burst với một kích thước tối ưu. Tương tự,
phương pháp tổ hợp burst dựa trên bộ định thời cũng cần giá trị tối ưu về mặt thời
gian.
Việc lựa chọn phương pháp tổ hợp burst tùy thuộc vào loại lưu lượng được
truyền đi. Phương pháp tổ hợp burst dựa trên bộ định thời thích hợp với các lưu
lượng bị giới hạn về mặt thời gian như các dịch vụ thời gian thực như thoại, truyền
tải video vì thời gian trễ tổ hợp burst bị giới hạn. Nếu không có giới hạn về độ trễ,
phương pháp tổ hợp burst dựa trên mức ngưỡng phù hợp cho các dịch vụ không yêu
cầu thời gian thực như truyền số liệu, và cho phép điều khiển được số lượng gói bị
mất trong mỗi lần xung đột.
Nhóm 10 – H09VT7
18
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Việc sử dụng cả hai loại phương pháp dựa trên bộ định thời và dựa trên mức
ngưỡng là lựa chọn tốt nhất và việc tổ hợp burst sẽ linh hoạt hơn là chỉ dùng một
trong hai phương pháp kể trên. Bằng cách tính toán giá trị mức ngưỡng tối ưu và sử
dụng giá trị của bộ định thời dựa trên độ trễ gói cho phép, ta có thể chắc rằng số
lượng mất gói là nhỏ nhất trong khi vẫn đảm bảo độ trễ cho phép.
Sau khi một burst được tạo ra sử dụng các phương pháp được nói ở trên, burt
được lưu đệm trong hàng đợi trong một khoảng thời gian trước khi truyền đi sao

cho gói tin điều khiển của burst đó có đủ thời gian để dự trữ tài nguyên. Trong thời
gian này, các gói tin khác có thể tiếp tục đến router nút biên. Việc thêm các gói tin
này vào burst là không chấp nhận được vì tài nguyên cho burst lúc đầu được dự trữ
căn cứ vào chiều dài của burst có trong gói tin điều khiển. Để các gói tin này cho
các burst ở đằng sau có khả năng tăng trễ trung bình trong trường hợp lưu lượng
lớn. Trong [4], theo Yang Chen, Chunming Quiao và Xiang Yu, một cách để giảm
thiểu trễ là thực hiện dự đoán chiều dài burst: Gói tin điều khiển sẽ mang thông tin
về chiều dài burst là L + f(t) thay vì là L với L là chiều dài chính xác của burst khi
gói tin điều khiển được gửi đi, f(t) là chiều dài dự đoán của các gói tin đi đến trong
khoảng thời gian offset và được tính toán dựa trên tốc độ trung bình của lưu lượng
tới. Giả sử chiều dài thực sự của các gói tin đi đến là l(t). Nếu f(t) > l(t), chiều dài
của burst khi truyền vào nút lõi là L + l(t), tài nguyên dự trữ cho burst sẽ bị lãng
phí. Nếu f(t) < l(t), chiều dài của burst khi truyền vào nút lõi là L + f(t). Một phần
gói tin có chiều dài l(t) – f(t) sẽ được ghép vào để truyền trên các burst phía sau.
Nếu f(t) = l(t) là trường hợp lý tưởng nhất khi đó việc dự trữ tài nguyên cho burst sẽ
là tối ưu và không tăng trễ.
2.3 Các cơ chế báo hiệu
Khi burst được truyền vào mạng lõi OBS, một cơ chế báo hiệu phải được thực
hiện nhằm mục đích phân bổ tài nguyên và cấu hình trường chuyển mạch cho từng
burst tại mỗi nút thông qua các gói tin tiêu đề burst BHP hay gói tin điều khiển.
OBS sử dụng báo hiệu ngoài băng: Gói tin BHP được truyền trên một bước sóng
khác với burst dữ liệu. Tuy nhiên, BHP được truyền trên cùng một đường đi từ
nguồn tới đích như burst dữ liệu để thông báo cho các nút chuyển mạch dự trữ tài
nguyên và cấu hình trường chuyển mạch cho burst dữ liệu tương ứng.
Nhóm 10 – H09VT7
19
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Dưới đây ta xét bốn cơ chế báo hiệu cơ bản trong OBS là Just – Enough – Time,
Just – In – Time, Tell – And – Go và Tell – And – Wait. Trong đó ba cơ chế báo
hiệu đầu là ba cơ chế báo hiệu một chiều: Nút nguồn gửi gói tin điều khiển để dự

trữ tài nguyên và thực hiện truyền burst dữ liệu mà không cần đợi nút đích thông
báo việc dự trữ tài nguyên từ nguồn tới đích có thành công hay không. Cơ chế báo
hiệu Tell – And – Wait là cơ chế báo hiệu hai chiều: nút nguồn sẽ chỉ truyền burst
dữ liệu khi được xác nhận kênh truyền đã được thiết lập hoàn toàn từ nguồn tới
đích.
2.3.1 Cơ chế báo hiệu Just – Enough – Time (JET)
Trong phương thức JET, có một độ trễ giữa việc truyền dẫn gói tiêu đề burst và
burst dữ liệu. Độ trễ này lớn hơn tổng thời gian xử lý gói điều khiển dọc theo tuyến.
Mục đích là sao cho khi burst đến mỗi nút chuyển mạch trung gian thì gói tiêu đề
burst đã được xử lý xong và một kênh trên cổng đầu ra đã được chỉ định. Do đó
không cần đường dây trễ quang để làm trễ burst dữ liệu ở mỗi nút. Đây là một đặc
tính quan trọng của JET vì đường dây trễ quang tốn kém và có nhiều hạn chế (ví dụ
như chỉ cho độ trễ cố định, chiều dài lớn). Cơ chế báo hiệu Just – Enough – Time
được mô tả trên hình 2.7, node nguồn đầu tiên gửi một gói tiêu đề bust (Burst
Header Packet – BHP) trên một kênh điều khiển tới node đích. BHP được xử lý tại
mỗi node tiếp theo với yêu cầu thiết lập đường dữ liệu toàn quang cho burst dữ liệu
tương ứng. Nếu quá trình dự trữ tài nguyên thành công, chuyển mạch sẽ được cấu
hình cho burst dữ liệu đi qua. Trong lúc đó, burst sẽ đợi tại nguồn trong miền điện.
Sau một khoảng thời gian offsetime xác định trước, burst được gửi trong miền
quang trên bước sóng được chọn.
Nhóm 10 – H09VT7
20
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Hình 2.7: Cơ chế báo hiệu Just – Enough – Time
Offset time được tính toán cơ bản dựa trên số nút chuyển mạch trung gian từ
nguồn tới đích và thời gian chuyển mạch của node đích. Offset time được tính là
[1]:
OT = h.δ + ST
Ở đây: h là số nút chuyển mạch trung gian giữa nguồn và đích.
δ là thời gian xử lý tiêu đề burst trên một nút trung gian.

ST là thời gian cấu hình lại chuyển mạch ở nút đích.
Gói tiêu đề burst chứa thông tin về offset time và chiều dài burst. Và khi qua một
nút trung gian thì giá trị offset time sẽ phải được cập nhật lại vì giá trị offset time sẽ
giảm đi một lượng đúng bằng thời gian xử lý gói tin tiêu đề burst. Khi quá trình dự
trữ tài nguyên thành công, kênh bước sóng tại một nút sẽ chỉ được ấn định hoàn
toàn cho burst khi bit đầu tiên của burst dữ liệu truyền tới nút. Tức là trong khoảng
thời gian offset time, kênh không bị chiếm hay rỗi cho dù đã đăng ký tài nguyên
thành công. Kênh có thể gán cho burst dữ liệu khác miễn sao cho việc truyền các
burst dữ liệu không bị chồng lên nhau. Kiểu dự trữ tài nguyên của JET gọi là dự trữ
tài nguyên trễ (Delayed Reservation). Sau khi truyền xong burst dữ liệu kênh bước
Nhóm 10 – H09VT7
21
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
sóng sẽ tự động được giải phóng mà không cần phải có bản tin giải phóng kênh
được gửi từ nguồn tới đích. Vì thế một đặc điểm khác của JET là giải phóng tài
nguyên không rõ ràng (Implicit Release).
Nếu tại nút trung gian nào đó, quá trình dự trữ không thành công, burst sẽ bị loại
bỏ.
Một vấn đề nảy sinh trong việc tính toán giá trị offset cho JET là phải xác định
được số nút chuyển mạch trung gian giữa nguồn và đích. Trong mạng OBS, thông
tin về số lượng các nút chuyển mạch trung gian trên một đường đi từ nguồn tới
đích thông thường là không sẵn có. Thậm chí khi những thông tin này bằng cách
nào đó được biết thì do ảnh hưởng của lộ trình thay đổi, nó cũng không đảm bảo
tính hợp lệ khi sử dụng [5].
Như vậy, cần một giá trị offset time mà không phụ thuộc vào đường truyền sử
dụng và không yêu cầu trao đổi thông tin giữa các node mạng với nhau. Hiện nay
với những tiến bộ trong chế tạo phần cứng cho các giao thức truyền thông, trễ xử lý
tại các node trung gian là rất ngắn trong hầu hết các chức năng chung của giao thức
báo hiệu. Trong trường hợp này, các dây trễ quang có thể được sử dụng một cách
hợp lý tại các node trung gian làm trễ mỗi burst đầu vào một lượng thời gian cân

bằng với trễ xử lý tiêu đề. Ta có thể bỏ qua các trễ này trong tính toán. Sơ đồ mới
này được gọi là giao thức chỉ có trễ đích (Only Destination Delay – ODD) và giá trị
trong biểu thức là [5]:
OT = δ + ST
δ,ST là các giá trị trễ tại đích.
*Dự trữ trễ (DR) trong việc sử dụng hiệu quả băng thông:
Dự trữ trễ sẽ đem lại hiệu quả cao trong việc sử dụng băng thông. Hình 2.8 minh
hoạ tại sao dự trữ trễ tạo nên sử dụng hiệu quả băng thông.
Giả sử xét tại node X, một gói điều khiển tới và thực hiện dành trước tài nguyên
tại thời điểm t1' và thời điểm bít đầu tiên của burst thứ nhất đến là t1, với t1> t1' .Ta
có khoảng thời gian offset time của burst thứ nhất là: offset time = t1 - t1'.
Cũng giả sử có một gói điều khiển khác (gói điều khiển thứ 2) đến node đang xét
thời điểm t2', tương tự t2 là thời điểm bít đầu tiên của burst thứ 2 đến. Ta có thời
gian trễ của burst này là: offset = t2 - t2'.
Nhóm 10 – H09VT7
22
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Hình 2.8: Lợi ích của DR
Để xác định thời điểm đến của Burst thứ nhất (t1) , khi thời gian xử lý gói điều
khiển có thể thay đổi từ node này đến node khác, trong gói điều khiển sẽ cho biết
giá trị thời gian trễ được sử dụng tại node kế tiếp. Giá trị này có thể được cập nhật
dựa trên thời gian xử lý gói điều khiển tại node hiện tại.
Trong chuyển mạch burst quang dựa trên giao thức JET , việc xác định thời điểm
đến của burst t1 là rất quan trọng. Trong giao thức JET độ rộng băng được đăng ký
tới thời điểm t1 +l1, l1 là khoảng thời gian tồn tại của burst thứ 1 , thay vì đến vô
hạn. Điều này sẽ làm tăng hiệu quả sử dụng băng thông và giảm xác suất loại bỏ
burst .
Như hình ở trên, trong cả hai trường hợp, chúng ta sử dụng giao thức JET và dự
trữ trễ thì burst thứ 2 đến vẫn được phục vụ nếu t1' < t2' < t2+l2 < t1 (trường hợp 1)
hay t1' < t2' < t1+l1 < t2 (trường hợp 2).

DR luôn sử dụng thời gian trễ. Để tăng hiệu quả sử dụng thời gian trễ trong JET
và giảm độ trễ khi phải truyền lại burst, gói điều khiển sẽ được truyền đi tại thời
điểm sớm nhất có thể được bằng cách ước lượng độ dài burst. Nếu độ dài burst lớn
hơn độ dài ước lượng thì một gói điều khiển khác sẽ được gửi đi để xoá độ rộng
băng đã đăng ký. Nếu độ dài burst nhỏ hơn độ dài ước lượng thì phần dữ liệu còn
lại được gửi đi như một hay nhiều burst bổ sung.
2.3.2 Cơ chế báo hiệu Just – In – Time (JIT)
Cơ chế báo hiệu Just-In-Time (JIT) tương tự như cơ chế báo hiệu JET, nhưng cơ
chế này sử dụng phương thức dự trữ tài nguyên tức thời (Immediate Reservation) và
giải phóng tài nguyên rõ ràng (Explicit Release). Giữa burst dữ liệu và gói tiêu đề
Nhóm 10 – H09VT7
23
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
burst có khoảng thời gian offset time do đó JIT không yêu cầu phải sử dụng đường
dây trễ quang tại các nút chuyển mạch trung gian.
Hình 2.9: Cơ chế báo hiệu Just – In – Time
Khi gói tiêu đề burst được gửi đi để dự trữ tài nguyên, tại một nút chuyển mạch
trung gian, một bước sóng khả dụng sẽ được ấn định cho burst dữ liệu ngay sau khi
gói tiêu đề burst được xử lý. Bước sóng này sẽ dành riêng cho burst dữ liệu cho đến
khi có một bản tin giải phóng được gửi đi từ node nguồn để giải phóng kết nối. Gói
tiêu đề burst không cần phải mang thông tin về thời điểm đến của burst dữ liệu và
độ dài của burst [3]. Nếu quá trình dự trữ tài nguyên thất bại, burst dữ liệu sẽ bị loại
bỏ.
Hình 2.10: So sánh cơ chế báo hiệu JET (trên) và JIT (dưới)
Nhóm 10 – H09VT7
24
Chuyên đề thông tin quang CHUYỂN MẠCH BURST QUANG
Hình 2.10, so sánh cơ chế báo hiệu JET và JIT. Trong cơ chế báo hiệu JET sử
dụng phương thức dự trữ tài nguyên trễ (Delayed Reservation), nghĩa là bước sóng
khả dụng chỉ được ấn định khi burst dữ liệu “0” tới được nút nên trong khoảng thời

gian offset time có thể truyền burst dữ liệu “1” trên cùng một bước sóng mà không
xảy ra tranh chấp. Khi burst dữ liệu “0” kết thúc truyền, kênh truyền sẽ được giải
phóng ngay vì vậy burst dữ liệu “2” có thể được gửi vào mạng OBS ngay khi burst
“0” kết thúc. Trong cơ chế báo hiệu JIT, do sử dụng phương thức dự trữ tài nguyên
tức thì nên trong khoảng thời gian offset time, burst dữ liệu “1” không thể truyền
qua mạng OBS trên cùng bước sóng với burst dữ liệu “0”. Và khi burst dữ liệu “0”
truyền kết thúc thì bản tin giải phóng sẽ được gửi đi từ node nguồn để giải phóng
kênh, trong thời gian giải phóng kênh thì burst dữ liệu “2” không thể truyền qua
mạng OBS được. Như vậy cơ chế báo hiệu Just – In – Time sử dụng băng thông
không hiệu quả như Just – Enough – Time. Trong [4], Jing Teng và George N.
Roukas đã tiến hành mô phỏng và kết quả cho thấy cơ chế báo hiệu JIT cho tỷ lệ
mất burst cao hơn cơ chế báo hiệu JET.
2.3.3 Cơ chế báo hiệu Tell – And – Go (TAG)
Đây là cơ chế báo hiệu dự trữ tài nguyên tức thì và giải phóng tài nguyên rõ ràng.
Trong TAG, gói điều khiển được truyền dẫn trên một kênh điều khiển được theo
sau bởi một burst, trên một kênh dữ liệu với độ lệch bằng không hoặc không đáng
kể. Burst được đệm bằng cách sử dụng đường dây trễ quang (Fiber Delay Line –
FDL) trong khi gói tin điều khiển được xử lý tại mỗi node trung gian. Đặc điểm này
của Tell – And – Go giống với chuyển mạch gói quang. Nếu việc chiếm dụng bước
sóng thành công thì burst được truyền dẫn dọc theo kênh đã chiếm trái lại burst sẽ
bị loại bỏ và một bản tin phủ định báo nhận (NAK – Negative Acknowledgment)
được gửi trở lại nguồn. Node nguồn sẽ gửi một gói điều khiển sau khi truyền dẫn
burst để giải phóng tài nguyên bị chiếm dọc theo tuyến [2].
Nhược điểm cơ bản của phương pháp này là giới hạn về mặt công nghệ của
đường dây trễ quang FDL. FDL có thể làm trễ burst trong một khoảng thời gian cố
định và không thể thích nghi với kích thước burst dữ liệu thay đổi. Cũng như cơ chế
báo hiệu Just – In – Time, TAG không tận dụng tài nguyên hiệu quả do sử dụng dự
trữ tức thì và giải phóng tài nguyên rõ ràng. Khi chưa có bản tin Release, kênh sẽ
không được giải phóng và trong khoảng thời gian giải phóng kênh, kênh sẽ không
được gán cho bất cứ burst nào khác.

Nhóm 10 – H09VT7
25

×