NỘI DUNG BÀI TẬP VÀ ĐÁP ÁN MÔN TOÁN -LỚP 10
CHƯƠNG TRÌNH NÂNG CAO –THPT
Câu 1. (Mức độ: B; 1điểm ; Thời gian: 10 phút.)
Giải phương trình :
3x 4 2 3x+ = −
.
Đáp án Điểm
*
3x 4 2 3x (1)
Pt
3x 4 3x 2(2)
+ = −
⇔
+ = −
*
1
x
3
Vn
=
⇔
.
0.5đ
0.5đ
Câu 2 . ( Mức độ: C; 1,5 điểm ; Thời gian: 15 phút. )
Cho hệ phương trình :
mx 2y 1
(I)
x (m 1)y m
+ =
+ − =
.
Tìm tất cả các giá trị của m để hệ phương trình (I) có nghiệm duy nhất.Tìm các giá trị của m để
nghiệm duy nhất (x;y) là các số nguyên
Đáp án Điểm
Hệ phương trình có nghiệm duy nhất
* Điều kiện :
D 0≠
.
* Tính
2
D m m 2= − −
và giải được
m 1≠ −
và
m 2≠
.
Tìm m để nghiệm duy nhất là các số nguyên
* Khi
m 1≠ −
và
m 2≠
thì hệ phương trình (I) có nghiệm duy nhất (x ; y) với
1
x
m 2
−
=
−
và
m 1
y
m 2
−
=
−
.
* Nghiệm duy nhất nguyên khi và chỉ khi
m 2 1− = ±
m 1
m 3
=
⇔
=
0.25đ
0.25đ
0.25đ
0.5đ
Câu 3. ( Mức độ:B, C; 2 điểm ; Thời gian: 15 phút. )
Cho phương trình :
2
mx 2(m - 2)x m 3 0 (1).+ + − =
a/ Giải và biện luận phương trình (1) theo m.
b/ Tìm m để phương trình (1) có hai nghiệm
1 2
x ,x
sao cho :
1 2
2 1
x x
3
x x
+ =
.
Câu Đáp án Điểm
3a
* Khi m = 0 thì (1) trở thành :
3
4x 3 0 x
4
−
− − = ⇔ =
.
* Khi
m 0≠
thì (1) là phương trình bậc hai có
4 m∆ = −
.
+ Nếu m > 4 thì phương trình (1) vô nghiệm.
+ Nếu
m 4≤
thì phương trình (1) có hai nghiệm :
1 2
2 m 4 m
x
m
,
− ± −
=
.
Kết luận :
+ m = 0 :
3
S
4
−
=
.
+ m > 4 :
S
= ∅
.
+
m 4≤
và
m 0
≠
: Phương trình (1) có hai nghiệm :
1 2
2 m 4 m
x
m
,
− ± −
=
.
0.25đ
0.25đ
0.25đ
0.25đ
0.5đ
3b
* Khi
m 4≤
và
m 0
≠
thì phương trình (1) có hai nghiệm
1 2
x x,
.
*
( )
2
1 2
1 2 1 2
2 1
x x
3 x x 5x x 0
x x
+ = ⇔ + − =
.
0.25đ
THPT NGỌC HỒI
Tổ Toán
* Thay vào và tính được
1 65
m
2
− ±
=
: thoả mãn điều kiện
m 4≤
và
m 0
≠
.
0.25đ
Câu 4. ( Mức độ: C; 2,5 điểm ; Thời gian: 15 phút. )
Trong mặt phẳng toạ độ Oxy cho ∆ABC với
A(1; 2),B(5; 2),C(3;2)− −
. Tìm toạ độ trọng tâm
G, trực tâm H và tâm đường tròn ngoại tiếp I của ∆ABC.
Câu Đáp án Điểm
4
Toạ độ trọng tâm G :
9
G 1
2
;
−
÷
.
Toạ độ trực tâm H :
*
AH BC 0 2 x 1 4 y 2 0
2 x 5 4 y 2 0
BH AC 0
. ( ) ( )
( ) ( )
.
uuuur uuur
uuuur uuur
= − − + + =
⇔
− + + =
=
.
* H (3 ; - 1 ).
Toạ độ tâm đường trong ngoại tiếp I :
*
2 2
2 2
AI BI 8x 24
4x 8y 8
AI CI
= =
⇔
+ =
=
.
*
1
I 3
2
;
÷
.
0.75đ
0.75đ
0.25đ
0.5đ
0.25đ
Câu 5. ( Mức độ:B, C; 3 điểm ; Thời gian: 15 phút. )
1.(Mức độ:B-1điểm) Cho hai tập hợp: A=[1; 4);
{ }
/ 3B x R x= ∈ ≤
.Hãy xác định các tập
hợp:
, \A B A B∩
?
2.(Mức độ:C-2điểm) Tìm hàm số bậc hai y = ax
2
+ bx +6 biết đồ thị của nó có đỉnh I(2,-2)
và trục đối xứng là x= 2.
Câu Đáp án Điểm
5.1
(1.0
đ)
A=[1; 4);
{ }
/ 3B x R x= ∈ ≤
= [-3,3]
1;3A B
∩ =
\ (3;4)A B =
0.5đ
0.5đ
5.2
(2.0
đ)
-Thay tọa độ đỉnh I(2;-2), ta có hệ phương trình:
4a 2 4
2
2a
b
b
+ = −
−
=
4a 2 4
4a 0
b
b
+ = −
⇔
+ =
Giải hệ ta được:
1
4
a
b
=
= −
.
Vậy hàm số cần tìm là y = x
2
– 4x +6 .
0.5đ
0.5đ
0.5đ
0.5đ
Câu 6. ( Mức độ: C; 3 điểm ; Thời gian: 15 phút. )
1. (Mức độ: C-1,5đ điểm) Cho hệ phương trình:
x 2 1
( 1)
m y
x m y m
+ =
+ − =
. Hãy xác định các
tham số thực m để hệ phương trình có nghiệm duy nhất.
2. (Mức độ: C-1,5đ điểm)Cho phương trình:
2 2
2 x+m -m=0x m−
. Tìm tham số thực m
để phương trình có hai nghiệm phân biệt x
1
, x
2
thỏa mãn
1 2
2 1
3
x x
x x
+ =
.
Câ
u
Đáp án
Điểm
6.1
(1.5
đ)
Hệ phương trình có nghiệm duy nhất
* Điều kiện :
D 0≠
.
* Tính
2
D m m 2= − −
và giải được
m 1≠ −
và
m 2≠
.
Vậy với
m 1≠ −
và
m 2≠
thì hệ phương trình (I) có nghiệm duy nhất
(x ; y) với
1
x
m 2
−
=
−
và
m 1
y
m 2
−
=
−
.
0.75đ
0.25đ
0.5đ
6.2
(1.5
đ)
Phương trình:
2 2
2 x+m -m=0x m−
có hai ngiệm phân biệt khi
' 0∆ >
0m
⇔ >
TheoYCBT thì:
+
+ = ⇔ =
⇔ + − =
2 2
1 2 1 2
2 1 1 2
2
1 2 1 2
3 3
.x
( ) 5x x 0
x x x x
x x x
x x
2 2 2
(2 ) 5( ) 0 5 0
0( )
5
m m m m m
m L
m
⇔ − − = ⇔ − + =
=
⇔
=
Vậy với m=5 thì thỏa YCBT
0.25đ
0.25đ
0.25đ
0.25đ
0.25đ
0.25đ
Câu 7. ( Mức độ: B; 1điểm ; Thời gian: 10 phút. )
Chứng minh rằng nếu x,y,z là số dương thì
1 1 1
( )( ) 9x y z
x y z
+ + + + ≥
.
Câ
u
Đáp án
Điểm
7
(1.0
đ)
, , 0x y z∀ >
. Áp dụng BĐT Cô si cho ba số, ta được:
3
3 . .x y z x y z+ + ≥
(1)
1 1 1
, , 0 ; ; 0x y z
x y z
∀ > ⇒ >
. Áp dụng BĐT Cô si cho ba số, ta được:
3
1 1 1 1 1 1
3 . .
x y z x y z
+ + ≥
(2)
Nhân BĐT (1) & (2) vế theo vế, ta được:
1 1 1
( )( ) 9x y z
x y z
+ + + + ≥
. đpcm
0.25đ
0.25đ
0.25đ
0.25đ
Câu 8. (Mức độ: C; 2điểm ; Thời gian: 15 phút. )
1. (Mức độ: C-1điểm)Trong mặt phẳng Oxy, cho các vectơ:
2 , 5 , 3 2 .OA i j OB i j OC i j= − = − = +
uuur r r uuur r r uuur r r
Tìm tọa độ trọng tâm, trực tâm của tam giác ABC.
2. (Mức độ: C-1điểm)
Cho
4
sin (0 )
5 2
π
α α
= < <
. Tính giá trị biểu thức:
1 tan
1 tan
P
α
α
+
=
−
.
Câ
u
Đáp án
Điểm
8.1
(1.0
đ)
Tọa độ các điểm A(1;-2), B(5;-1), C(3;2).
Toạ độ trọng tâm G :
1
G 3
3
−
÷
;
.
Toạ độ trực tâm H : Gọi (x;y) là tọa độ của H.
0.25đ
0.25đ
0.25đ
*
AH BC 0 2 x 1 3 y 2 0
2 x 5 4 y 1 0
BH AC 0
= − − + + =
⇔
− + + =
=
. ( ) ( )
( ) ( )
.
uuuur uuur
uuuur uuur
.
*
25 2
( ; )
7 7
H −
.
0.25đ
8.2
(1.0
đ)
Ta có:
4
sin
5
α
=
. Tìm được
3 4
cos ; tan
5 3
α α
= =
Thay vào biểu thức:
4
1
1 tan
3
7
4
1 tan
1
3
P
α
α
+
+
= = = −
−
−
.
0.5đ
0.5đ
Câu 9. (Mức độ: D ; 1điểm ; Thời gian: 10 phút. )
Cho tam giác ABC có ba cạnh là a, b,c. Chứng minh rằng:
c
C
b
B
a
A
abc
cba coscoscos
2
222
++=
++
.
Câu Đáp án Điểm
9
(1.0
đ)
Ta có
( )
CABCCAABBCABCABCAB
CABCAB
.2.2.2
222
2
+++++=
++
0.5đ
c
C
b
B
a
A
abc
cba
CabAcbBaccba
CABCCAABBCABcba
coscoscos
2
cos.2cos2cos.2
.2.2.2
222
222
222
++=
++
⇔
++=++⇔
++=++⇔
0.5đ
Câu 10. (Mức độ: C ; 2điểm ; Thời gian: 15 phút. )
a)(Mức độ: C -1điểm)Khảo sát sự biến thiên và vẽ đồ thị hàm số: y = x
2
- 2x – 3.
b)(Mức độ: C -1điểm)Tìm m để phương trình: x
2
-
2x
- m + 1 = 0 có bốn nghiệm phân biệt
Câ
u
Đáp án
Điểm
10a, Khảo sát sự biến thiên và vẽ đồ thị hàm số: y = x
2
- 2x – 3
*Tập xác định : D =
¡
*Đồ thị là parabol có đỉnh I:
2
1
2 2.1
1 2.1 3 4
4
I
I
b
x
a
y
a
−
= − = − =
∆
= − = − − = −
, nhận đường thẳng
x = 1 làm trục đối xứng.
*Vì a = 1 > 0 nên hàm số nghịch biến trong (-∞;1),đồng biến trong (1;+∞)
0,5đ
0,5đ
10b,
BBT x -∞ 1 +∞
+∞ +∞
y
- 4
*Đồ thị (C ) đi qua các điểm: (-1;0),(0;- 3), (2;-3),(3;0)
(Đồ thị vẽ đúng 0,5 đ)
Tìm m để phương trình: x
2
-
2x
- m + 1 = 0 có bốn nghiệm phân biệt
Ta có: x
2
-
2x
- m + 1 = 0 ⇔ x
2
-2
x
-3 = m – 4 (1)
*Số nghiệm của pt (1) bằng số giao điểm của đồ thị (C
1
) : y = x
2
-2
x
-3 với đường thẳng d: y = m- 4
*Vì hàm số y = x
2
-2
x
-3 là hàm số chẵn nên nên đồ thị (C
1
) được suy ra từ đồ thị (C ) bằng cách
giữ nguyên phần đồ thị (C ) ứng với x≥ 0 và lấy đối xứng phần đồ thị này qua trục Oy
* Để pt (1) có bốn nghiệm phân biệt thì: - 4< m – 4< -3 ⇔ 0 < m< 1
0,25đ
0,25đ
0,25đ
0,25đ
•Đồ thị (C ) : y = x
2
- 2x- 3
(Đồ thị vẽ đúng 0,5 đ)
•Đồ thị (C
1
)
y
x
y =
x
2
-2x-3
O
1
-1
3
-4
I
-3
2
x
x
d: y = m - 4
m -1
O
1
-1
3
-4
I
-3
2
-3
-2
Câu 11.(Mức độ: D ; 2điểm ; Thời gian: 15 phút. )
Tìm m để hệ phương trình :
2 2
2 ( 1) 1
2
x m y m
x m y m m
− + = − +
− = − −
có nghiệm duy nhất là nghiệm
nguyên.
Đáp án Điểm
Tìm m để hệ phương trình :
2 2
2 ( 1) 1
2
x m y m
x m y m m
− + = − +
− = − −
có nghiệm duy nhất là nghiệm nguyên.
* D =
2
2
2 -m-1
2 1 ( 1)(2 1)
1 -m
m m m m= − + + = − − +
D
x
=
3 2 3 2
2 2
1 -m-1
3 2 2 (2 1)
2 -m
m
m m m m m m m
m m
− +
= − − − − = − +
− −
D
y
=
2
2
2 -m+1
2 4 1 ( 1)(2 1)
1 -m 2
m m m m m
m
= − − + − = + +
−
*D = -(m-1)(2m+1) ≠ 0⇔ m≠ 1 và m ≠ -
1
2
thì hệ pt có nghiệm (x;y) duy nhất:
x =
2 2
2
1 1
x
D
m
D m m
= = +
− −
y =
1 2
1
( 1) 1
y
D
m
D m m
+
= = − −
− − −
* Để x
∈¢
,y
∈¢
thì : m- 1 = ± 1, m- 1= ± 2.Suy ra : x∈ { 2;0;3;- 1}
0,5đ
0,25đ
0,25đ
0,5đ
0,5đ
Câu 12. (Mức độ: C ; 1điểm ; Thời gian: 10 phút. )
Bằng cách đặt ẩn phụ,giải phương trình sau: (x-1)(x-2)(x-3)(x-4) = 3
Đáp án Điểm
Bằng cách đặt ẩn phụ,giải phương trình sau: (x-1)(x-2)(x-3)(x-4) = 3
* Ta có: (x-1)(x-2)(x-3)(x-4) = 3⇔(x-1)(x – 4)(x-2)(x-3) – 3 = 0
⇔(x
2
- 4x +4)(x
2
- 4x +6) – 3 = 0 (1)
*Đặt t = x
2
- 4x +4.Pt (1)⇔ t(t+2) – 3 = 0 ⇔ t
2
+2t – 3 = 0
1
3
t
t
=
⇔
= −
*t = 1: x
2
- 4x +4 = 1 ⇔ x
2
– 4x + 3 = 0
5 13
2
x
±
⇔ =
*t = - 3: x
2
- 4x +4 = - 3 ⇔ x
2
– 4x + 7 = 0.Phương trình này vô nghiệm
Vậy nghiêm của pt (1):
5 13
2
x
±
=
0,25đ
0,25đ
0,25đ
0,25đ
Câu 13.(Mức độ: B,C ; 2điểm ; Thời gian: 15 phút. )
Trong mặt phẳng tọa độ Oxy,cho :A(2;6),B(-3;4),C(5;0)
a)(Mức độ: B-0,75điểm) Chứng minh A,B,C là ba đỉnh của một tam giác.
b)(Mức độ: C-1,25điểm ) Tìm tọa độ điểm D sao cho
2AD BC= −
uuur uuur
Câu Đáp án Điểm
18a
18b
∆ABC có:A(2;6),B(-3;4),C(5;0)
Chứng minh rằng A,B,C là ba đỉnh của một tam giác.
*
AB
uuur
= (-5;-2)
AC
uuur
= (3;-6)
* Vì
5 2
3 6
− −
≠
−
nên
AB
uuur
và
AC
uuur
không cùng phương nên A,B,C không thẳng hàng, hay A,B,C là ba
đỉnh của một tam giác.
Tìm tọa độ điểm D sao cho
2AD BC= −
uuur uuur
Giả sử D(x;y)
*
AD
uuur
= (x-2;y-6)
(8;4)BC =
uuur
⇒ -2
BC
uuur
= (-16;-8)
*
2AD BC= −
uuur uuur
⇔
2 16
6 8
x
y
− = −
− = −
⇔
14
2
x
y
= −
= −
0,25đ
0,25đ
0,25đ
0,25đ
0,5đ
0,25đ
0,25đ
Câu14.(Mức độ: C ; 1điểm ; Thời gian: 10 phút. )
Cho ∆ABC có trọng tâm G.Đặt
a
r
=
GB
uuur
,
b GC=
r uuur
.Hãy biểu thị mỗi vectơ
, , ,CB GA AC BA
uuur uuur uuur uuur
qua
các vectơ
a
r
và
b
r
.
Đáp án Điểm
a
r
=
GB
uuur
,
b GC=
r uuur
.Hãy biểu thị mỗi vectơ
, , ,CB GA AC BA
uuur uuur uuur uuur
qua các vectơ
a
r
và
b
r
.
CB GB GC a b= − = −
uuur uuur uuur r r
GA GB GC a b= − − = − −
uuur uuur uuur r r
2AC AG GC GA GC a b= + = − + = +
uuur uuur uuur uuur uuur r r
2BA BG GA GB GA a b= + = − + = − −
uuur uuur uuur uuur uuur r r
0,25đ
0,25đ
0,25đ
0,25đ
Câu 15.(Mức độ: C ; 2điểm ; Thời gian: 15 phút. )
Giải phương trình:
a)(Mức độ: C -1điểm)
4 7 2 3x x+ = −
(1)
b)(Mức độ: C -1điểm)
2 3 1x x+ = −
(2)
Câu Đáp án Điểm
20
a(1điểm)
Điều kiện
7
4
x ≥ −
Pt(1)
2
4 7 4 12 9x x x⇒ + = − +
0,25đ
0,25đ
⇒
4x
2
-16x+2=0.
⇒
x
1,2
=
4 14
2
±
Cả hai giá trị đều thoã mãn điều kiện nhưng khi thay vào phương trình thì x
2
=
4 14
2
−
không thoã mãn.
Vậy phương trình có một nghiệm là x=
4 14
2
+
0,25đ
0,25đ
20b
(1điểm)
+)Với x
≥
3
2
−
phương trình trở thành 2x+3=x-1 hay x=-4 (không thoã mãn đk x
≥
3
2
−
n ên
bị loại)
+) V ới x<
3
2
−
phương trình trở thành -2x-3=x-1 Hay x=
2
3
−
(lo ại)
V ậy : Phương trình vô nghiệm.
0,5đ
0,5đ
Câu 16.(Mức độ: D ; 1điểm ; Thời gian: 10 phút. )
Cho a,b,c>0. Chứng minh rằng:
8
a b b c c a
b c c a a b
+ + + ≥
÷ ÷ ÷
Đáp án Điểm
Áp dụng bất đ ẳng th ức Côsi cho hai số dương ,ta được
( )
( )
( )
2 0 1
2 0 2
2 0 3
a b a
b c c
b c b
c a a
c a c
a b b
+ ≥ >
+ ≥ >
+ ≥ >
Nh ân c ác b ất đ ẳng th ức (1);(2);(3) theo từng vế ta được:
8 . .
a b b c c a a b c
b c c a a b c c a
+ + + ≥
÷ ÷ ÷
=8
Dấu “=” xảy ra khi a=b=c
0,25đ
0,25đ
0,25đ
0,25đ
Câu 17.(Mức độ: C ; 1điểm ; Thời gian: 10 phút. )
Tìm giá trị lớn nhất của hàm số y=(-2x+3)(x-1), với
3
1
2
x≤ ≤
Đáp án Điểm
Ta c ó y=(-2x+3)(x-1)=
1
2
(-2x+3)(2x-2),
Với
3
1
2
x≤ ≤
. Ta có 2x-2>0 và -2x+3>0. Áp dụng bất đẳng thức côsi cho 2 số dương là 2x-2>0 và
-2x+3>0. ta được:
0,25đ
0,25đ
( ) ( )
( ) ( )
( ) ( )
2
(2x-2)+(-2x+3) 2 2 2 2 3
1
( ) 2 2 2 3
2
1 1
2 2 2 3
2 8
x x
x x
x x
≥ − − +
⇔ ≥ − − +
⇔ − − + ≤
Hay y
≤
1
8
.Vậy giá trị lớn nhất của y là
1
8
, đạt tại x=
5
2
0,25đ
0,25đ
Câu 18.(Mức độ:B,B, C ; 3điểm ; Thời gian: 15 phút. )
Cho A(-4;2);B(2;6);C(0;-2)
a)(Mức độ:B-1điểm)Hãy tìm toạ độ điểm D sao cho tứ giác ABCD là hình bình hành
b)(Mức độ:B-0,5điểm) Xác định toạ độ trọng tâm G của tam giác ABC
c)(Mức độ:C-1,5điểm) Xác định toạ độ trực tâm H của tam giác ABC
Câu Đáp án Điểm
Câu 18a
Tứ giác ABCD là hình bình hành nên
AB DC=
uuur uuur
(1)
Mà
(6;4)AB =
uuur
;
( ;2 )DC x y= − −
uuur
Từ (1) ta có
6 6
2 4 2
x x
y y
− = = −
⇔
− = = −
Vậy D(-6;-2)
0,25đ
0,25đ
0,25đ
0,25đ
Câu 18b Gọi G là trọng tâm của tam giác.Khi đó
;
3 3
A B C A B C
x x x y y y
G
+ + + +
÷
hay
2
( ;2)
3
G −
0,25đ
0,25đ
Câu 18c Gọi H là trực tâm của tam giác ABC.Khi đó:
( ) ( ) ( ) ( )
4; 2 ; 2; 6 ; 2; 8 ; 4; 4AH x y BH x y BC AC= + − = − − = − − = −
uuur uuur uuur uuur
Ta có
( ) ( )
( ) ( )
2 4 8 2 0
. 0
4 2 4 6 0
. 0
4 4 0
4 0
12
12 8
5
; ( ; )
8
5 5
5
x y
AH BC AH BC
BH AC
x y
BH AC
x y
x y
x
H
y
− + − − =
⊥ =
⇔ ⇔
⊥
− − − =
=
− − + =
⇔
− + =
= −
−
⇔
=
uuur uuur
uuur uuur
0,25đ
0,75đ
0,25đ
0,25đ
Câu19. (Mức độ: C ; 2điểm ; Thời gian: 15 phút. )
Giải các phương trình sau :
a) (Mức độ: C - 1 điểm)
1243 −=− xx
b) (Mức độ: C -1 điểm)
1262
2
−=+− xxx
Câu Đáp án Điểm
19a Tùy theo cách cách giải khác nhau để cho điểm sau đây là một cách cụ thể
Đặt đk:
2
1
012 ≥⇔≥− xx
0,5đ
0,5đ
19b
Pt
0,25
1x
3x
0,25
2143
1243
=
=
⇔
−=−
−=−
⇔
xx
xx
So sánh điều kiện kết luận pt có nghiệm x = 3 và x =1
Đặt đk:
0,25
012
062
2
≥−
≥+−
x
xx
{ Không nhất thiết phải giải điều kiện}
Pt
0,25
3
5
x
1x
0,25 14462
22
=
−=
⇔+−=+−⇔ xxxx
So sánh điềm kiện kết luận: Pt có nghiệm x =
3
5
0,5đ
0,5đ
Câu20.(Mức độ: C ; 1điểm ; Thời gian: 10 phút. )
Cho 3 số dương a, b, c. Chứng minh rằng :
cbaab
c
ac
b
bc
a 111
++≥++
Đáp án Điểm
Dùng bất đẳng thức cô si ta có:
bbc
a
ab
c
aab
c
ac
b
cac
b
bc
a
2
2
2
≥+
≥+
≥+
aab
c
ac
b
bc
a 1
≥++⇔
+
cb
11
+
( đpcm)
0,25đ
0,25đ
0,25đ
0,25đ
Hết.
GV.Đặng Ngọc Liên