Tải bản đầy đủ (.doc) (45 trang)

SKKN Một số dạng bài tập phần cơ sở lý thuyết các phản ứng hóa học dùng bồi dưỡng học sinh giỏi bậc THPT

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (292.31 KB, 45 trang )

SÁNG KIẾN KINH NGHIỆM
ĐỀ TÀI:
"MỘT SỐ DẠNG BÀI TẬP PHẦN CƠ SỞ LÝ THUYẾT CÁC
PHẢN ỨNG HÓA HỌC DÙNG BỒI DƯỠNG HỌC SINH GIỎI BẬC
THPT"
1
II.1. Hệ thống các câu hỏi và bài tập phần “cơ sở lý thuyết các phản ứng hóa học”
trong tài liệu giáo khoa chuyên Hoá học
II.1.1. Chương IV: Lý thuyết về phản ứng hóa học
a. Nội dung cơ bản
* Về mặt kiến thức: Giúp học sinh nắm được các kiến thức:
- Định nghĩa hiệu ứng nhiệt của một phản ứng.
- Định nghĩa: Năng lượng liên kết E, nhiệt tạo thành ∆H của hợp chất, nhiệt phân huỷ
(∆H’ = - ∆H), nhiệt hoà tan chất …
- Nội dung và hệ quả của định luật Hes (Hess).
- Nguyên lý I, II của nhiệt động học; năng lượng tự do Gip.
- Tốc độ phản ứng hóa học (định nghĩa, các yếu tố ảnh hưởng tới tốc độ phản ứng). Định
luật Gunbe – vagơ (định luật tác dụng khối lượng trong động hóa học).
- Khái niệm về năng lượng hoạt hoá, quy tắc Van hôp.
- Khái niệm phản ứng thuận nghịch – bất thuận nghịch, trạng thái cân bằng, hằng số cân bằng.
Định luật tác dụng khối lượng (đối với phản ứng thuận nghịch).
- Các yếu tố ảnh hưởng đến cân bằng hóa học, nguyên lý Lơ Satơliê về chuyển dịch cân
bằng.
* Về mặt kỹ năng: Giúp học sinh có được các kỹ năng sau:
- Cách xác định nhiệt phản ứng hóa học.
2
+ Dựa vào năng lượng liên kết.
+ Dựa vào nhiệt hình thành (nhiệt sinh, sinh nhiệt) của hợp chất.
+ Dựa vào định luật Hes (có 2 phương pháp là chu trình và tổ hợp các phương trình nhiệt
hóa học).
- Vận dụng 2 nguyên lý của nhiệt động học.


+ Tính biến thiên entanpi ∆H, biến thiên entropi ∆S, biến thiên năng lượng tự do Gip ∆G
với phản ứng hóa học.
Chú ý: Trong thực tế dùng ∆H
0
, ∆S
0
, ∆G
0
: Phản ứng xảy ra ở điều kiện tiêu chuẩn: ứng
với t
0
= 25
0
C hay 298K, p = 1atm. (Còn trạng thái chuẩn của chất hay điều kiện chuẩn:
khi p = 1atm, trạng thái bền nhất của chất ở điều kiện đó).
+ Từ ∆G
0
kết luận về khả năng tự diễn biến của phản ứng.
+ Từ năng lượng tự do tính hằng số cân bằng và ngược lại, của phản ứng xét ở điều kiện
chuẩn.
∆G
0
= - RTlnK (1)
hoặc ∆G
0
= - 2,303.RTlgK
- Viết được phương trình động học của phản ứng hóa học (nội dung của định luật Gunbe
– Vagơ) chú ý đến đơn vị tốc độ phản ứng.
- Vận dụng quy tắc Van Hôp xét xem tốc độ phản ứng tăng hay giảm ở 2 nhiệt độ T
1

, T
2
.
( )
10/
12
12
.
TT
TTT
kvv

=
(2)
k
T
(γ: gama): hệ số nhiệt độ của tốc độ phản ứng.
21
,
TT
vv
: Tốc độ phản ứng ở nhiệt độ T
1
, T
2
.
3
- Tính HSCB với phản ứng hóa học xảy ra ở điều kiện cụ thể:
* K
c

, K
p
, K
x

aA + bB + … cC + dung dịch + … (5)
+ Trong pha lỏng: K
c
(HSCB theo nồng độ).
+ Trong pha khí: K
p
(gần đúng ta dùng áp suất riêng phần p
i
).
+ Trong pha khí: K
x
(HSCB theo phân số mol).
* Biểu thức tổng quát và liên hệ giữa các HSCB.
[ ] [ ]
[ ] [ ]
ba
dc
c
BA
DC
K
.
.
=
[ ]: Nồng độ cân bằng của chất đang xét.

b
B
a
A
d
D
c
C
p
PP
PP
K
.
.
=
P
i
: áp suất riêng phần.
b
B
a
A
d
D
c
C
x
xx
xx
K

.
.
=
n
n
x
i
i
=
=
K
p
= K
c
.(RT)

n

K
p
= K
x
.P

n
P: áp suất chung của phản ứng đang xét ở thời điểm cân bằng hóa học thiết
lập.
∆n = (c + d) – (a + b)
+ Cân bằng hóa học bao gồm cả chất rắn: dùng K
p

, K
c
.
b. Câu hỏi và bài tập
Trong khuôn khổ cho phép của đề tài, dưới đây chúng tôi chỉ phân tích các ví dụ
điển hình.
4
S mol ch t iố ấ
T ng s mol c a hổ ố ủ ệ
Ví dụ 1:
*Đề bài :Tính ∆H của phản ứng sau:
CH
4(k)
+ 4Cl
2(k)
→ CCl
4(k)
+ 4HCl
(k)
Biết các giá trị năng lượng liên kết:
C – Cl H – Cl C – H Cl – Cl
326,30 430,9 414,2 242,6 kJ
* Mục đích của đề:Yêu cầu học sinh dựa vào năng lượng liên kết để xác định ∆H phản
ứng.
* Hướng dẫn giải:
Ta có: ∆H = 4E
C – H
+ 4E
Cl – Cl
– (4E

C – Cl
+ 4E
H – Cl
) = - 401,6 kJ
Ví dụ 2:
* Học sinh cần dựa vào định luật Hes với phương pháp tổ hợp các phương trình nhiệt hóa
học để xác định nhiệt phản ứng.
Ví dụ 3: [40, tr 198, 200, 202]
* Đề bài yêu cầu vận dụng kiến thức, kỹ năng tính ∆H
0
, ∆S
0
, ∆G
0
của phản ứng, kết luận
về khả năng tự diễn biến của phản ứng.
Ví dụ 4:
* Đề bài: Tốc độ của phản ứng tạo thành SO
3
từ SO
2
và O
2
thay đổi như thế nào (tăng
hay giảm bao nhiêu lần) khi giảm thể tích hỗn hợp xuống 3 lần?
5
*Mục đích của đề:Yêu cầu học sinh vận dụng kiến thức về tốc độ phản ứng; kỹ năng viết
phương trình động học của phản ứng; thể tích hay nồng độ ảnh hưởng đến tốc độ phản
ứng.
* Hướng dẫn giải:

Ta có: 2SO
2
+ O
2
2SO
3

+ Trạng thái 1: v
1
= k.
[ ] [ ]
1
2
2
1
2
2

22
OSOkCC
OSO
=
(a)
+ Trạng thái 2: Khi giảm thể tích hỗn hợp xuống 3 lần nghĩa là nồng độ chất tăng 3 lần
[ ] [ ] [ ] [ ]
27 3 3.
1
2
2
1

2
2
2
2
2
22
OSOkOSOkv
==
(b)
+ Từ (a) và (b)
27
1
2
=⇔
v
v
lần
+ Kết luận: Tốc độ của phản ứng tạo SO
3
tăng 27 lần.
Ví dụ 5:
* Đề bài: Nếu ở 150
0
C, một phản ứng nào đó kết thúc sau 16 phút, thì ở 120
0
C và 200
0
C
phản ứng đó kết thúc sau bao nhiêu phút? Giả sử hệ số nhiệt độ của phản ứng trong
khoảng nhiệt độ đó là 2,0.

* Mục đích của bài: Yêu cầu học sinh vận dụng quy tắc Van Hôp, tính thời gian sau từng
nhiệt độ cho trước.
* Hướng dẫn giải:
+ ở 120
0
C: Ta có: v
150
= 120.2
(150 – 120)/10
= v
120
.2
3
Phản ứng kết thúc sau thời gian t
1
= 16.2
3
= 128 phút
+ ở 200
0
C: Ta có: v
200
= v
150
.2
5

6
t
0

, p, xt
Phản ứng kết thúc sau thời gian t
2
=
5,0
2
16
5
=
phút
*Vậy nhiệt độ tăng thì tốc độ phản ứng tăng nhanh còn thời gian kết thúc càng giảm.
Ví dụ 6:
Ví dụ 7:
*Đề bài: Cho phản ứng thuận nghịch
A + B C + D (*)
Khi cho 1 mol A tác dụng với 1 mol B thì hiệu suất cực đại của phản ứng là 66,67%.
a) Tính HSCB của phản ứng (*).
b) Nếu lượng A gấp 3 lần lượng B thì hiệu suất cực đại phản ứng bằng bao nhiêu?
c) Cân bằng bị dịch chuyển như thế nào khi tăng nhiệt độ, biết nhiệt phản ứng ∆H = 0?
* Mục đích của đề: Yêu cầu học sinh tính lượng chất sau phản ứng, tính hằng số cân
bằng, vận dụng nguyên lý Lơ Satơliê.
* Hướng dẫn giải:
a) Lúc cân bằng: số mol của A, B là: 0,3333 mol
C, D là: 0,6667 mol
Tổng số mol chất: 2 mol
+ ở đây ∆n = 0 ⇒ K
c
= K
p
= K

x
= 4
b) Gọi x: lượng chất cực đại phản ứng (A)
+ Lúc cân bằng: số mol của A là (3 – x)
B là (1 – x)
7
C, D là x
+ Tìm ra x dựa vào K
c
= 4
x = 0,90 hay 90%.
c) Do ∆H = 0. Vậy khi tăng nhiệt độ cân bằng thực tế không bị dịch chuyển, nhưng tốc
độ phản ứng nhanh hơn, nghĩa là phản ứng đạt tới trạng thái cân bằng nhanh hơn.
Ví dụ 26:
* Đề bài: Trong công nghệ hoá dầu, các ankan được loại hiđro để chuyển thành
hiđrocacbon không no có nhiều ứng dụng hơn. Hãy tính nhiệt của mỗi phản ứng sau đây:
C
4
H
10
→ C
4
H
6
+ H
2
∆H
1
0
(1)

CH
4
→ C
6
H
6
+ H
2
∆H
2
0
(2)
Biết năng lượng liên kết E theo kJ. mol
-1
của các liên kết như sau:
E 435,9 416,3 409,1 587,3
Liên kết H – H C – H C – C C = C
(với các liên kết C – H, C – C, các trị số ở trên là trung bình trong các hợp chất hữu cơ
khác nhau).
* Mục đích của đề: Giúp học sinh vận dụng kỹ năng tính nhiệt phản ứng dựa theo năng
lượng liên kết, chú ý cân bằng phương trình phản ứng.
* Hướng dẫn giải:
với C
4
H
10
→ C
4
H
6

+ 2H
2
(1) tính được ∆H
1
0
= 437,6 kJ
6CH
4
→ C
6
H
6
+ 9H
2
(2) tính được ∆H
2
0
= 581,1 kJ
Ví dụ 27:
8
* Dạng đề giúp học sinh nắm vững lý thuyết về nguyên lý chuyển dịch cân bằng - các yếu tố
ảnh hưởng, kỹ năng tính HSCB và lượng chất trong hệ (cân bằng).
* Hướng dẫn giải:
1. Ví dụ phản ứng este hoá:
CH
3
COOH + C
2
H
5

OH CH
3
COOC
2
H
5
+ H
2
O
+ Để phản ứng nhanh đạt tới trạng thái cân bằng cần:
Dùng xúc tác là axit (HCl, H
2
SO
4
)
Tăng nhiệt độ vừa phải
+ Biện pháp chuyển dịch cân bằng về phía tạo thành este:
Tăng nồng độ của axit hoặc rượu
Giảm lượng chất sau phản ứng (lấy bớt sản phẩm ra)
2.Tính HSCB:
+
( ) ( )
6,3
.
2
=
−−
=
cbca
C

K
+ Lượng este tăng lên là ≈ 1,44 lần.
* Dạng đề thi với mục đích là : giúp học sinh nắm vững lý thuyết về hằng số cân bằng, sự
chuyển dịch cân bằng khi các yếu tố thay đổi. Mặt khác, tổng hợp các kỹ năng: tính hằng
số cân bằng theo độ điện li α, áp suất P và ngược lại ; tính năng lượng tự do ∆G
0
theo
∆H
0
, ∆S
0
;

áp dụng quan hệ K
p
và K
c
để tính lượng chất…
Ví dụ 28 :
* Đề bài : Sunfurylđiclorua SO
2
Cl
2
là hoá chất phổ biến trong phản ứng clo hoá. Tại
350
0
C, 2 atm phản ứng:
9
SO
2

Cl
2(k)
SO
2(k)
+ Cl
2(k)
(1) có Kp = 50
1. Hãy cho biết đơn vị của trị số đó và giải thích HSCB K
p
này phải có đơn vị như vậy.
2. Tính % theo thể tích SO
2
Cl
2(k)
còn lại khi (1) đạt tới trạng thái cân bằng ở điều kiện đã
cho.
3. Ban đầu dùng 150 mol SO
2
Cl
2(k)
, tính số mol Cl
2(k)
thu được khi (1) đạt tới cân bằng.
Các khí được coi là khí lí tưởng (k: khí)
*Mục đích của đề:Yêu cầu học sinh vận dụng kỹ năng tính HSCB của phản ứng từ đó
tính số mol,% theo thể tích của chất.
* Hướng dẫn giải:
1.
50
.

22
22
==
ClSO
ClSO
P
P
PP
K
atm
2. Cách 1:+ Gọi số mol SO
2
Cl
2(k)
ban đầu là 1 mol
có độ phân li là α
+ Dựa vào biểu thức
50
1
.
2
2
=

=
α
α
P
K
P

tính được α = 0,9806
+ Số mol SO
2
Cl
2(k)
còn lại là 1 - α = 0,0194 mol. Do vậy % theo thể tích SO
2
Cl
2(k)
còn lại là 0,98%.
Cách 2: SO
2
Cl
2(k)
SO
2(k)
+ Cl
2(k)
(1) K
p
= 50 atm
+ Dựa vào biểu thức tính
50
22
2
=

=
P
P

K
P
tính được P = 0,9902 atm
+ áp suất lúc cân bằng:
0196,0
)(22
=
k
ClSO
P
atm
10
Do vậy, số mol SO
2
Cl
2(k)
= 0,0098 hay 0,98%. (trong cùng nhiệt độ, áp suất: % theo số
mol cũng như % theo thể tích)
3. Ban đầu dùng 150 mol SO
2
Cl
2(k)
, số mol Cl
2(k)
lúc cân bằng
09,1479806,0150
2222
=×=×==
α
ClSOSOCl

nnn
mol.
Ví dụ 29: [12, đề 2002 – 2003]
* Đề bài:
Khi nung nóng đến nhiệt độ cao PCl
5
bị phân li theo phương trình:
PCl
5(k)
PCl
3(k)
+ Cl
2(k)

1. Cho m gam PCl
5
vào một bình dung tích V, đun nóng bình đến nhiệt độ T (K) để xảy
ra phản ứng phân li PCl
5
. Sau khi đạt tới cân bằng áp suất khí trong bình bằng P.
a) Hãy thiết lập biểu thức của K
P
theo độ phân li α và áp suất P.
b) Thiết lập biểu thức của K
C
theo α, m, V.
2. Trong thí nghiệm 1 thực hiện ở nhiệt độ T
1
người ta cho 83,300 gam PCl
5

vào bình
dung tích V
1
. Sau khi đạt tới cân bằng đo được P
1
= 2,700 atm. Hỗn hợp khí trong bình có
tỉ khối so với H
2
bằng 68,862. Tính α và K
p
.
3. Trong thí nghiệm 2 giữ nguyên lượng PCl
5
và nhiệt độ như ở thí nghiệm 1 nhưng thay
dung tích là V
2
thì đo được áp suất cân bằng là 0,500 atm. Tính tỉ số
1
2
V
V
.
4. Trong thí nghiệm 3 giữ nguyên lượng PCl
5
và dung tích bình V
1
như thí nghiệm 1
nhưng hạ nhiệt độ của bình đến T
3
= 0,9T

1
thì đo được áp suất cân bằng là 1,944 atm.
Tính K
p
và α. Từ đó cho biết phản ứng phân li PCl
5
thu nhiệt hay phát nhiệt.
11
Cho: Cl = 35,453; P = 30,974; H = 1,008. các khí đều là khí lý tưởng.
*Mục đích của đề:Yêu cầu học sinh thiết lập biểu thức liên hệ hằng số cân bằng theo độ
phân li, áp suất, thể tích, khối lượng.Từ đó tính các đại lượng liên quan.
* Hướng dẫn giải:
1. Thiết lập biểu thức của K
P
, K
C
:
Phương trình: PCl
5(k)
PCl
3(k)
+ Cl
2(k)

Ban đầu: a
Cân bằng: a – x x x mol
+ Tổng số mol khí lúc cân bằng: n = a + x
Trong đó:
;
239,208

m
a =
a
x
=
α
* Tính K
P
+ áp suất riêng phần lúc cân bằng của mỗi khí
;.
5
P
xa
xa
P
PCl
+

=
P
xa
x
PP
ClPCl
.
23
+
==
+ HSCB K
P

=
P
P
PP
PCl
ClPCl
.
1
.
2
2
5
23
α
α

=
* Tính K
C
(có 2 cách)
Cách 1: + Tính nồng độ cân bằng của mỗi khí
[ ]
( )
;
1
5
V
a
PCl
α


=
[ ] [ ]
V
a
ClPCl
α
.
23
==
+ HSCB
[ ][ ]
[ ]
( ) ( )
α
α
α
α

=

==
1239,2081
22
5
23
V
m
V
a

PCl
ClPCl
K
C
12
Cách 2: + Ta biết: K
P
= K
C
.(RT)
∆ν
∆ν
khí
= 1
+
( ) ( )
α
α
α
α

=

==
1239,2081
22
V
m
V
a

RT
K
K
P
C
ở đó PV = nRT = (a + x)RT = a (1+ α)RT
hay RT =
( )
α
+1a
PV
2. Thí nghiệm 1:
* Tính α
1
+ Số mol PCl
5
ban đầu: a =
400,0
239,208
30,83
=
mol
+ Khối lượng trung bình
M
của hỗn hợp lúc cân bằng
62,826 x 2,016 = 138,753 g/mol
+ Tổng số mol khí lúc cân bằng
( )
M
molan

30,83
600,01
11
==+=
α
tính được α
1
= 0,500.
* Tìm K
P
tại nhiệt độ T
1

( )
( )
900,070,2.
5,01
5,0
.
1
2
2
1
2
1
2
1
1
=


=

=
PK
T
P
α
α
3. Thí nghiệm 2 :
- giữ nguyên nhiệt độ : K
P
không đổi
- Giữ nguyên số mol PCl
5
a = 0,400 mol
- áp suất cân bằng P
2
= 0,500 atm
13
* Ta có:
900,050,0
1
.
1
2
2
2
2
2
2

2
2
2
2


=

=
α
α
α
α
PK
T
P
tính được α
2
= 0,802
+ Tổng số mol lúc cân bằng
n
2
= a (1 + α
2
) = 0,4 (1 + 0,802) = 0,721 mol
* Tìm quan hệ giữa V
1
, V
2
, P

1
, P
2
, n
1
, n
2
+ Thể tích bình trong thí nghiệm 2
2
22
2
P
RTn
V =
so với
1
1
1
P
RTn
V
=
489,6
2
1
1
2
1
2
=×=⇔

P
P
n
n
V
V
lần
4. Thí nghiệm 3:
- Thay đổi nhiệt độ: K
P
thay đổi (T
3
= 0,9T
1
)
- Giữ nguyên số mol PCl
5
a = 0,400 và V
1

- áp suất cân bằng P
3
= 1,944 atm (do nhiệt độ giảm, tổng số mol khí n
3
thay đổi, n
3
≠ n
1
)
* Tìm α

3
+ n
3
= a (1 + α
3
) = 0,4 (1 + α
3
)
+ Ta có: P
1
V
1
= nRT
1

P
3
.V
1
= n
3
.RT
3
= n
3
.R.0,9T
1
( )
6,0
9,0.14,0

7,2
944,1
9,0.
3
1
3
1
3
α
+
=⇔=⇔
n
n
P
P
14
Tính được



=
=
moln 48,0
2,0
3
3
α
* Tính
3
T

P
K
081,0.
1
3
2
3
3
3
3
=

=
PK
T
P
α
α
* Nhận xét: Khi hạ nhiệt độ, K
P
giảm làm cân bằng chuyển dịch theo chiều nghịch – là
chiều phát nhiệt. Chiều thuận là chiều thu nhiệt.
Ví dụ 30: [12, đề 2001 – 2002]
* Đề bài: Tại 25
0
C phản ứng: 2N
2
O
5(k)
→ 4NO

2(k)
+ O
2(k)
có hằng số tốc độ k = 1,8.10
-5
.s
-1
;
biểu thức tính tốc độ phản ứng v = k.
52
ON
C
. Phản ứng trên xảy ra trong bình kín thể tích 20,0
lít không đổi. Ban đầu lượng N
2
O
5
cho vừa đầy bình. ở thời điểm khảo sát, áp suất riêng phần
N
2
O
5
là 0,070 atm. Các khí đều là lí tưởng.
1. Tính tốc độ:
a) Tiêu thụ N
2
O
5
.
b) Hình thành NO

2
, O
2.
2. Tính số phân tử N
2
O
5
đã bị phân tích sau 30 s.
3. Nếu phản ứng trên có phương trình 2N
2
O
5(k)
→ 2NO
2(k)
+ 1/2 O
2(k)
thì trị số tốc độ phản
ứng, hằng số tốc độ phản ứng có thay đổi không? Giải thích?
* Mục đích của đề: Giúp học sinh củng cố kiến thức về tốc độ phản ứng; kỹ năng: viết
phương trình động học của phản ứng, biểu thị và tính tốc độ hình thành, tốc độ tiêu thụ,
tính số phân tử bị phân tích, mặt khác tại nhiệt độ T xác định: tốc độ phản ứng v


hằng số tốc độ phản ứng k đều không đổi.
15
* Hướng dẫn giải:
1.a) - Tính tốc độ của phản ứng theo biểu thức
+ v

= k.

52
ON
C
(1)
trong đó:
3
10.8646,2
298.082,0
070,0
5252
52

====
RT
P
V
n
C
ONON
ON
mol.l
-1
(2)
+ v

= 2,8646.10
-3
x 1,8.10
-5
= 5,16.10

-8
mol.l
-1
.s
-1

- Tính tốc độ tiêu thụ N
2
O
5
:
52
OttN
v
+ 2N
2
O
5(k)
→ 4NO
2(k)
+ O
2(k)

+
.2
52
52
−=−=
dt
dC

v
ON
OttN
v

= - 2.5,16.10
-8
= -1,032.10
-7
mol.l
-1
.s
-1
(3)
- Tính tốc độ hình thành NO
2
, O
2
:
22
,
htOhtNO
vv
+
4
2
2
==
dt
dC

v
NO
htNO
.v

= 2,046.10
-7
mol.l
-1
.s
-1

+
==
dt
dC
v
O
htO
2
2
v

= 5,16.10
-8
mol.l
-1
.s
-1
2. Tính số phân tử N

2
O
5
bị phân tích sau thời gian t:
52
ON
N
×==
5252
OttNON
vNN
V
bình
x t x N
0

= 1,032.10
-7
x 20 x 30 x 6,023.10
23
= 3,729.10
19
phân tử
3. Phương trình N
2
O
5(k)
→ 2NO
2(k)
+ 1/2O

2(k)

Tại nhiệt độ T xác định, tốc độ phản ứng v

và k đều không đổi vì :
+ k chỉ phụ thuộc vào nhiệt độ
16
+ Theo (1), khi k = const,
52
ON
C
= const thì v = const
P
C
– P
0
(Torr) 0 13,5 47,8 85,2 122,7 157,4
2P
C
– P
0
(Torr) 632 605 536,4 461,6 386,6 317,2
k (mol
-1
.l.phút
-
1
)
0,811 0,864 0,888 0,882 0,861
* Nhận xét: Các giá trị k xấp xỉ nhau nên phản ứng (1) thuộc bậc 2.

b) Hằng số tốc độ phản ứng
k
.
8612,0
5
1
==

=
n
ki
k
i
mol
-1
.l.phút
-1
Bài 8:
1. Phản ứng tự oxi hoá - khử trong môi trường kiềm:
3BrO
-
→ BrO
3
-
+ 2Br
-
(1)
xảy ra theo quy luật động học bậc 2. Nồng độ ban đầu của BrO
-
là 0,1 kmol.m

-3
; hằng số
tốc độ k = 9,3.10
-4
m
3
(kmol.s)
-1
a) Sau bao lâu thì 30%, 99% BrO
-
bị chuyển hoá?
b) Tính chu kỳ bán huỷ t
1/2
của phản ứng (1).
2. Chứng minh rằng đối với phản ứng một chiều bậc 2
2A → sản phẩm có t
1/2
=
ak.
1
Trong đó: a là nồng độ ban đầu của A (ở t = 0).
17
Mục đích của bài: Yêu cầu học sinh viết được phương trình động học của phản ứng, tính
nồng độ và thời gian của chất bị chuyển hoá, tính thời gian nửa phản ứng; chứng minh
biểu thức tính t
1/2
của phản ứng.
Hướng dẫn giải:
1. a) Gọi thời gian để 30% BrO
-

bị chuyển hoá là t
1
.
99% BrO
-
bị chuyển hoá là t
2
.
+ Biểu thức tốc độ phản ứng :
[ ]
[ ]
2
.
3
1


=−= BrOk
dt
BrOd
v
.
Nồng độ ban đầu a = 0,1 ; lượng chuyển hoá x
1
= 0,03
x
2
= 0,099.
+ Lượng còn lại: a – x
1

= 0,07
a – x
2
= 0,001
+ Theo quy luật động học bậc 2 ta có biểu thức:








=
axak
t
111
Thay các giá trị a, a – x, k tìm được: t
1
= 4608,3 s (76,8 phút)
t
2
= 106,45.10
4
s (1,77.10
4
phút)
b) Chu kỳ bán huỷ : t
1/2
=

ak.
1
+ Tính được t
1/2
= 10753 s (179,2 phút)
2. Chứng minh :
+ Gọi x là lượng A phản ứng.
18
2A → sản phẩm.
t = 0 a 0
t = ∞ a – x x
+ Biểu thức tốc độ phản ứng : v =
2
.
A
C
Ck
dt
d
A
=−
⇔ v =
( )
( )
2
. xak
dt
xad
−=



hay
( )
2
xak
dt
dx
−=
(*) Phương trình tốc độ dạng vi phân.
+ Lấy tích phân của (*):
( )
∫ ∫
=

dtk
xa
dx
.
2
Ckt
xa
+=


1
Khi t = 0 → x = 0 → C =
a
1
axa
kt

11


=⇔
hay








=
axat
k
111
(**) Phươngtrình tốc độ dạng tích phân.
+ Khi x =
2
a
thì k =
at .
1
21
hay t
1/2
=
ak.
1

(Điều phải chứng minh)
Bài 9: Cho phản ứng “khí nước”
CO
2
+ H
2
CO + H
2
O
19
a) Tính
0
G∆
của phản ứng ở 1000 K, biết
0
H∆

0
S∆
ở 1000 K lần lượt là: 35040 J.mol
-1
;
32,11 J. mol
-1
.K
-1
.
b) Tính HSCB K
C
, K

P
của phản ứng ở 1000K.
c) Một hỗn hợp khí chứa 35% thể tích H
2
, 45% thể tích CO và 20% thể tích hơi nước
được nung nóng tới 1000 K.
Xác định thành phần hỗn hợp (theo % thể tích) ở trạng thái cân bằng.
Mục đích của bài: Yêu cầu học sinh tính
0
G∆
, HSCB K
C
, K
P
của phản ứng ở 1000 K từ
đó xác định thành phần hỗn hợp theo % thể tích của chất trong hỗn hợp.
Hướng dẫn giải:
a) áp dụng biểu thức:
000
STHG ∆−∆=∆
Thay giá trị
0
S∆
,
0
H∆
, T tính được
JG 2930
0
1000

=∆
b) HSCB: K
P
= K
C
= 0,703.
c) Thành phần hỗn hợp (theo % thể tích) của:
CO: 34,6%; CO
2
: 10,4%; H
2
O: 9,6%; H
2
: 45,4%
Bài 10: Cho biết phản ứng:
CH
4(k)
C
(gr)
+ 2H
2(k)
;
kJG 85,74
0
298
=∆

0
298
S

(J.K
-1
.mol
-1
) của CH
4(k)
là 186,19; của C
(gr)
là 5,69; của H
2(k)
là 130,59.
a) Tính
0
G∆
của phản ứng ở nhiệt độ 298 K.
b) Phản ứng có lnK
p
= - 15,17 – 7905,73 T
-1
+ 3,68 lnT.
Tính K
p
của phản ứng, so sánh các giá trị K
p
ở 500K và 1000K. Kết quả đó có phù hợp
với nguyên lý Lơ Satơliê không?
20
Mục đích của bài: Yêu cầu học sinh tính
0
G∆

của phản ứng, tính K
P
ở 2 nhiệt độ bất kỳ,
vận dụng nguyên lý Lơ Satơliê để giải thích kết quả.
Hướng dẫn giải:
a) Tính:
0
298
0
298
0
298
STHG
∆−∆=∆
= 50807 J (T = 298 K).
b) ở 500 K, tính K
P
≈ 3.10
-4

ở 1000 K, tính K
P
≈ 10,43.
KK
PP
KK
1000500
<
Phản ứng thu nhiệt, khi nhiệt độ tăng thì K
P

tăng. Vậy kết quả trên phù hợp với nguyên lý
Lơ Satơliê.
Bài 11: Cân bằng: N
2
O
4(k)
2NO
2(k)

nhận được xuất phát từ a mol N
2
O
4
tinh khiết.
a) Gọi α là độ phân li của N
2
O
4
: α =
Tính số mol NO
2
, N
2
O
4
và tổng số mol của hệ khi cân bằng theo a và α.
b) Tính áp suất riêng phần của NO
2
, N
2

O
4
theo α và áp suất tổng cộng P của hệ khi cân
bằng.
c) Thiết lập biểu thức sự phụ thuộc của HSCB K
p
vào P và α.
d) Nếu ban đầu có 1,588 g N
2
O
4
trong bình dung tích 0,5 lít, ở 25
0
C và áp suất P lúc cân
bằng là 760 mmHg thì α, K
P
, áp suất riêng phần của NO
2
, N
2
O
4
là bao nhiêu?
21
S mol Nố
2
O
4
b phân liị
S mol Nố

2
O
4
ban uđầ
Mục đích của bài: Yêu cầu học sinh thiết lập và tính số mol, áp suất riêng phần của chất,
tính HSCB K
P
ở điều kiện cụ thể.
Hướng dẫn giải:
a) Xét cân bằng: N
2
O
4(k)
2NO
2(k)

Ban đầu: a
Cân bằng: a (1 - α) 2aα
+ Số mol NO
2
: 2aα
N
2
O
4
: a (1 - α)
Tổng số mol của hệ: a (1 + α)
b) áp suất riêng phần của N
2
O

4
, NO
2
:
PP
ON
.
1
1
42
α
α
+

=
PP
NO
.
1
2
2
α
α
+
=
c) Ta biết:
42
2
2
ON

NO
P
P
P
K =
Thay các biểu thức
242
,
NOON
PP
rồi biến đổi ta được:
PK
P
.
1
4
2
2
α
α

=
d) + Đã biết: a = 0,01726 mol; V = 0,5 lít; P = 1 atm.
Tính số mol của hệ lúc cân bằng:
02046,0
.
≈=
TR
PV
n

+ Ta có: a (1 + α) = n hay α = 0,1854
22
+ Tính K
P
= 0,1424
+
687,0
42
=
ON
P
atm ;
313,0
2
=
NO
P
atm
Bài 12 : ở nhiệt độ T, áp suất 1 atm có cân bằng sau :
N
2
O
4(k)
2NO
2(k)
(1)
Giả thiết các khí đều là khí lí tưởng.
a) Thiết lập biểu thức HSCB K
P
là dạng một hàm của độ phân li α và áp suất chung P.

b) Xác định K
P
, K
C
,
0
G∆
của phản ứng (1) ở 333 K, α = 0,525.
c) Xác định ∆H, ∆S của phản ứng (1) ở 333 K. Cho biết ở 373 K có K
P
= 14,97.
d) Tính K
P
của phản ứng (1) khi α = 11%. Độ phân li α thay đổi như thế nào khi P từ 1
atm giảm còn 0,8 atm ?
e) Để α đạt tới 8% thì phải nén hỗn hợp khí tới áp suất nào ? Nhận xét về chiều của phản
ứng (1).
Mục đích của bài : Yêu cầu học sinh thiết lập biểu thức tính K
P
theo α, P ; xác định K
P
,
K
C
,
0
G∆
, ∆H, ∆S của phản ứng ở điều kiện cụ thể, áp dụng nguyên lí Lơ Satơliê để xác
định chiều phản ứng.
Hướng dẫn giải:

a)
PK
P
.
1
4
2
2
α
α

=
b) K
P
= 1,52 ; K
C
= 0,0557 mol.l
-1
;
0
G∆
= - 1,16 kJ.mol
-1
c) ∆H = 59,103 kJ.mol
-1
; ∆S = 181 J.mol
-1
.K
-1
23

d) Thay α = 0,11 vào tính được K
P
= 0,049.
Khi P từ 1 atm giảm còn 0,8 atm, độ phân li α tăng cân bằng (1) chuyển dịch theo chiều
từ trái sang phải.
e) α = 0,08 ; K
P
= 0,049 ta tính được P = 1,9 atm.
Vậy khi α giảm cân bằng (1) chuyển dịch theo chiều từ phải sang trái.
Bài 13:
1. Thực hiện tổng hợp NH
3
theo phản ứng:
N
2(k)
+ 3H
2(k)
2NH
3(k)
(1)
a) Chứng minh rằng ở nhiệt độ, áp suất xác định, hiệu suất phản ứng sẽ cực đại nếu thành
phần mol của hỗn hợp các chất tác dụng lấy đúng theo hệ số tỷ lượng của chúng.
b) ở 723 K phản ứng (1) có
4
10.2
1

=
P
K

ở 850 K phản ứng (1) có
4
10.2,0
2

=
P
K
Tìm nhiệt độ của sự chuyển hoá (ở khoảng nhiệt độ) trên.
2. Phản ứng (1) có
kJH 5,92
0
−=∆
. Khi phản ứng đạt cân bằng thu được 36% NH
3
dưới
áp suất 300 atm, 450
0
C.
a) Tính HSCB K
P
.
b) ở 450
0
C phải dùng áp suất bao nhiêu để đạt 50% NH
3
.
c) Dưới áp suất 300 atm thì ở nhiệt độ nào để đạt 50% NH
3
. Cho biết chiều của cân bằng

(1).
24
Mục đích của bài: Giúp cho học sinh có kĩ năng tổng hợp: chứng minh giả thiết là đúng,
tính HSCB K
P
, tính số mol, nhiệt độ (áp dụng biểu thức của định luật KiecHoff), tìm áp
suất, và xét chiều phản ứng.
Hướng dẫn giải:
1.a) Phản ứng: N
2(k)
+ 3H
2(k)
2NH
3(k)
(1)
+ Giả thiết:
atmPPPP
NHHN
1
322
==++
2
43
22
3
2

.
.
22

3
22
3

=== PK
Pxx
Px
PP
P
K
x
HN
NH
HN
NH
P
(2)
+ Lấy Nêpe 2 vế của (2):
ln K
x
= ln K
P
+ 2ln P
223
ln3lnln2ln
HNNHx
xxxK
=−=⇔

2

2
2
2
3
3
3
.2
H
H
N
N
NH
NH
x
dx
x
dx
x
dx
−−=
(3)
+ Hiệu suất phản ứng sẽ cực đại khi ln K
x
= 0
Ta có:






=
=++
=++
atmP
dxdxdx
xxx
HNNH
HNNH
1
0
1
223
223
Khi





−=⇔=+
=
⇔=
2222
3
3
0
0
1
HNHN
NH

NH
dxdxdxdx
dx
x
(a)
+ Thay (a) vào (3) được:
22
3
NH
xx
=
Do vậy tỉ lệ phần mol của N
2
: H
2
là 1 : 3
25

×