SỞ GD&ĐT HÀ NỘI
Đ THI TH THPT QUỐC GIA LẦN 2 NĂM 2015
Môn: TOÁN
Thời gian: 180 pht, không kể thời gian pht đề
Câu 1(2,0 điểm).
x
y
x
− +
=
−
!"
#!$%&'()*)+,,-./0 C!1# !"
(!23%&4)&01#m .5.67484
y x m
= − +
9./0 C!:)#).)5;<()="
Câu 2(1,0 điểm).)%)&;6>42
#!
? @) Ax x x
+ − =
(!
@ @" B A"
x x
+
− − =
Câu 3(1,0 điểm).
#!2;C%1#;Dz,()*
! ? "z i z i− + = −
(!EFGH;IJKI)#,@I)L"M)J(#)+
&INI).)G'O#4NI).6PIJ(:L,?(:#"
Câu 4(1,0 điểm).QQ;<
A
? "I x xdx= +
∫
Câu 5(1,0 điểm).4RS44)#,H)=I#.FOxyz.67484
?
x y z
− + −
∆ = =
−
TU
;84 P!
Ax y z
− + − =
"2I#.F4)#.)51#
∆
, P!"V)*;6>42.67484dW
4 P!./47)9,,S44J,H)
∆
"
Câu 6 (1,0 điểm).GX4Y
" Z Z ZABC A B C
J.&[ABCG#4)&,S4:)B,
·
A
KABAC
=
"2
)*,S44J1#
ZA
G+U;84 ABC!\4,H)I4<G 1##4)&ABC, 4J4)L#.674
84
ZAA
,U;84
!ABC
(W4
A
KA
,
]
?
a
AG
=
"Qa 5QR)GX4Y,)1#
4J4)L#.67484AC,U;84
Z Z!ABB A
"
Câu 7(1,0 điểm).4U;84I#.FOxy2(2ABCD. 674^ C!4:))*;#
4)&ABC J;6>42
! ?! N"x y
− + − =
<&.674,S44J:_B,C`4AC, AB
D'G
aA!TM
@aA!N
"2I#.F&.)5A, B, C, D ()*#4)&ABC I,.bAJ4.F
<"
Câu 8(1,0 điểm).)%)=;6>42
@
@ c K c
@ @ c N c @
x x y y y x
x x x y y x x y
+ + − + = + − +
+ + − + + + − − =
Câu 9 (1,0 điểm).a, b, x, y G&6>4M#d
N N
a T @"a b x y+ = ≤
24)&0M
31#()5D
@
!
x y
P
xy a b
+ +
=
+
"
eeeeeeeeeeeeeeeeee*eeeeeeeeeeeeeeeeeeee
Q)RS4.6PfY4)G)=T&(F))RS44)%)Q42+"
I,+Q)"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""g(&#""""""""""""""""""""""""""""""""""""""
SỞ GD&ĐT HÀ NỘI
Đ THI TH THPT QUỐC GIA LẦN 2 NĂM 2015
Môn: TOÁN
hijkE
!6H4l3b+F&4)%),H)L4m>(%T*Q)G()RS4&
+46H4l364,l.n42.1.)5_4;C6#4.)5o[.0"
!V)=))*.)5 *J!46H4l3;%).%(%RS4G#)G=
6H4l3,;%).6P43')=,H)3%4)&R%"
?!)5()Q.*0,25.)5"g#R)F4.)5()Tgiữ nguyên kết quả (không làm tròn).
@!VH)&()2I Câu 6,Câu 7!*I)không vẽ hình;C2không.)5
;C.J"
Câu Nội dung Điểm
"#
eO;`&.0
pqrD
=
¡
"
e)H):T)=O
G) G)
x x
y y y
→+∞ →−∞
= = − ⇒ = −
G.674)=O4#41#./0"
G) aG)
x x
y y x
+ −
→ →
= +∞ = −∞ ⇒ =
G.674)=O.D41#./0"
A"N
#J
Z AT
!
y x D
x
= − < ∀ ∈ ⇒
−
40()*+&R%4
a!−∞
,
a !+∞
A"N
s%4()*)+
A"N
/0
4
2
-2
-4
-5
5
y
x
h
y
( )
= 1
g
x
( )
= -1
f
x
( )
=
-x+2
x-1
O
1
-1
2
A"N
"(
6>42.F4)#.)51#.67484
d y x m
= − +
,./0 C!G
x
x m
x
− +
− + =
−
A"N
! A !
x x
x x mx m x x m x m
≠ ≠
⇔ ⇔
− + + − = − + − + + + =
A"N
d9 C!:)#).)5;<()=R),bR) !J#)4)=;<()=R&T#[
A
! ! A
! @ ! A
m m
m m
m m
− − + + ≠
⇔ + − >
+ − + >
A"N
"
m
m
>
⇔
< −
A"N
"#
? @) A ) ) @) A ) ) ! Ax x x x x x x x
+ − = ⇔ − + = ⇔ − =
A"N
) A !x x k k
π
= ⇔ = ∈¢
A"N
"(
!
@ @" B A @ c" B A
B
x
x x x x
x
loai
+
= −
− − = ⇔ − − = ⇔
=
A"N
VH)
B G4 B"
x
x= ⇒ =
A"N
?"#
)%f
T !"z a bi a b= + ∈¡
_4)%)*[#
?
! ! ? ?
?
a b
a bi i a bi i a bi a bi ai b i
b a
+ = −
+ − + − = − ⇔ + − + − − = − ⇔
− = −
A"N
N ]
a
@ @
b a= − = −
"VO[;C%1#zG
N
"
@
−
A"N
?"(
g&I(:LG
@
C
T&I?(:#G
?
K
C
"
A"N
VO[&I.6PN(:M#d()&G
?
@ K
" N@NKAC C =
&!"
A"N
@"
U
? ? ?t x t x tdt dx
= + ⇒ = + ⇒ =
A"N
A a x t x t
= ⇒ = = ⇒ =
A"N
g[#
"
? ?
t t dt
I
−
=
∫
A"N
N ?
@
K
! "
B B N ? ?N
t t
t t dt
= − = − =
÷
∫
A"N
N"
I)MG4)#.)51#
∆
, P!T[#I#.F1#M G4)=1#=
?
A
x y z
x y z
− + −
= =
−
− + − =
A"N
?
?aa!"
x
y M
z
=
⇔ = ⇒
=
A"N
P!JV
a a!n −
r
T
∆
JV
aa !u −
r
"_4)%)*[#dJFVG
T a?a@!
d
u n u
= =
uur r r
"
A"N
d W4 P!,9
∆
+d.)o#M [#;6>42.67484dG
?
"
? @
x y z
− − −
= =
A"N
K"
G
M
A
C
B
B'
C'
A'
H
N
E
F
I)M G4.)5BC, 4J4)L#AA’,U;84 ABC!G
·
A
Z KAA AG
=
T[#)t
#1#GX4YG
Z "# KA "
?
o
a
A G AG
= =
A"N
U
T A! T ? "AB x x AC x BC x
= > ⇒ = =
u;Y4.0GQ)#4#4)&,S4
ABM #J
? ] ? ?
@ @
ABC
a x a
AM AG x x a S
= = = + ⇒ = ⇒ =
÷
"_.J5
Q1#GX4Y.dG
?
]
Z "
ABC
a
V A G S
= =
.,!"
A"N
$v)CG9AB:)NTRwGE,S44J,H)AB EFAB!T:GF,S44J,H)A’E
FFA’E!"#J
Z
Z ! Z Z!
AB A G
AB A GE AB GF GF ABB A
AB GE
⊥
⇒ ⊥ ⇒ ⊥ ⇒ ⊥
⊥
"
x#CRw.6748444,H)GF9)#NF:)H,[#HG2)*,S44J
1#C+ ABB’A’!"#[4J4)L#AC,U;84 ABB’A’!G
·
"HAC
A"N
iy3[
? ? @ ]
?
? K
Z ] ]
a a
GE BM GF
GF GE GA a a a
= = ⇒ = + = + = ⇒ =
g[#
? ]
? "
K
a
CH GF
= =
zv#4)&AHC,S4:)H, J
·
)
@
CH
HAC
AC
= =
_.J
·
"
c
HAC
=
A"N
]"
A"N
$w )*; [* ,H) .674 ^ C! :) A. # J D 4)& BCMN F) )*; + 4J
·
·
ABC AMN
=
\4(\,H)4J
·
NMC
!"
{:)J
·
·
»
ABC MAt sd AC
= =
T[#
·
·
MAt AMN
=
"En4|,0QG4+
MN//At,#[IA,S44J,H)MN
IG<.674^ C!!"
#J
?aA!T a?! "MN I AI x
⇒ =
uuuur
A G4)#1#IA , C!+I#.F.)5A G4)=
1#=
( )
a c
a
! ? N
x
x y
x y
x y
=
= =
⇔
= = −
− + − =
"A J4.F<+A ae!"
A"N
eAN
@ A"x y− − =
B G4)#.)5 R&A!1#AN , C![#I#.F1#B ]a?!"
eAM
A"x y+ − =
C G4)#.)5 R&A!1#AM , C![#I#.F1#C eaK!"
e#J
]a!
A C B D
A C B D
x x x x
D
y y y y
+ = +
⇒ −
+ = +
"
A"N
$)5#.)tR)=
∆
ABCIM#dT,O[.JG&.)5C2"
Nếu không kiểm tra điều kiện này, trừ 0.25 điểm!"
A"N
c"
$
a Aa@ c N Aa c @ Ay x x x y y x x≥ ≥ + − + ≥ + − − ≥
" !6>4.6>4,H)
@ @
@
@ c c K @ K @ ?
x y
x x x y y y x x y y
−
+ − = − + − − − ⇔ + − = + − − −
zv
! @ ?
t
f t t t= + −
+R%4
}Aa !+∞
"
A"N
#J
Z ! ?T A"f t t t
t
= + − ∀ >
sS)T#J
?
Z ! ? ? " " ? Af t t t
t t t t
= + + − ≥ − =
T[#
!f t
./4()*+
}Aa !+∞
"VO[; !
6>4.6>4,H)
( )
! @ f x f y x y y x= − ⇔ = − ⇔ = +
"
A"N
*, !#.6P
c @ c !x x x+ + − = −
?!"#J
?
A ! @"
x x x≤ ≤ ⇒ − ≤ − ≤ ⇒ − ≤
A"N
{:)J
( )
c @ c K " c @" c K c @ c @x x x x x x+ + − = + + − ≥ ⇒ + + − ≥
VO[
?
?! @ A"
VT VP x y⇔ = = ⇔ = ⇒ =
${=J4)=
( )
?
a aA "
x y
=
÷
A"N
B" u;Y4(3.84DS)T#J A"N
N
N N A
NN N A
N N
N N
a a a a
b b b b
+ + + + ≥ =
+ + + + ≥ =
g[#
N N
K N ! "a b a b a b+ + ≥ + ⇔ + ≤
i.J
@
"
x y x y
P
xy y x xy
+ +
≥ = + +
zv
! T
x y
P x
y x xy
= + +
,H)
Aa@~x∈
,yG#"#J
@ @ "A @ c
Z ! AT Aa@~
x y
P x x
x y x y x y
− − − −
= ≤ = − < ∀ ∈
T,O[
!P x
40()*
+ Aa@~T[#
N
! @!
@
y
P x P
y
≥ = +
"
A"N
zv
N
! T
@
y
g y
y
= +
+ Aa@~T#J
N N
Z ! A
@ K @ K
g y
y
= − + ≤ − + = − <
T[
#
!g y
40()*+ Aa@~+
B
! @! "
@
g y g≥ =
A"N
VO[4)&0M31#()5DP(W4
B
@
T.:.6PR)
T @a b x y= = = =
"
A"N
HẾT
g•i€•
TRƯỜNG THPT THANH CHƯƠNG III
Đ THI TH THPT QUỐC GIA NĂM 2015
Môn: TOÁN
Thời gian làm bài: 180 pht ,không kể thời gian giao đề
Câu 1 (2,0 điểm).
?
? y x mx= − + +
!"
#!$%&'()*)+,,-./01# !R)‚"
(!2.5./01# !J.)5'0Ts##4)&ƒs,S4:)ƒ ,H)ƒG4
I#.F!"
Câu 2(1,0 điểm).)%);6>42
) K) x x x
+ = +
"
Câu 3 1,0 điểm). QQ;<
?
Gx x
I dx
x
−
=
∫
"
Câu 4(1,0 điểm).
#!)%);6>42
N K"N A
x x+
− + =
"
(!EF„JNI)#,KI)L")&,)+I4l)+?I).5G'O"Q
`&3.5?I).6PIJ%#,L"
Câu 5 1,0 điểm). 4 RS4 4)# ,H) = : .F
Oxyz
T .)5
( )
@aa?A −
, .674 84
?
?
x y z
d
+ − +
= =
−
"V)*;6>42U;84
!P
.)o#
A
,,S44J,H).67484
d
"2
I#.F.)5
B
F
d
#
]AB =
"
Câu 6 1,0 điểm).2J;
"S ABC
J#4)&
ABC
,S4:)
A
T
AB AC a
= =
T
I
G4.)5
1#gT2)*,S44J1#
S
G+U;84
( )
ABC
G4.)5
H
1#sTU;84 gs!:
,H).&[4J(W4
KA
o
"Q5QR)J;
"S ABC
,QR%4&_.)5
I
.*U;84
( )
SAB
a
"
Câu 7 1,0 điểm).4U;84,H)=:.F
Oxy
#4)&
s
J
( )
a@A
T)*;[*:)
A
1#
.674^4:))*;#4)&
s
9
BC
:)
D
T.674;<4)&41#
·
ADB
J;6>42
Ax y− + =
T.)5
( )
@aM −
F:
AC
"V)*;6>42.67484
AB
"
Câu 8 1,0 điểm).)%)=;6>42
? N @
@
x xy x y y y
y x y x
+ + − − = +
− − + − = −
Câu 9 (1,0 điểm).
T Ta b c
G&6>4,
?a b c
+ + =
"24)&0GH31#()5D
? ? ?
bc ca ab
a bc b ca c ab
P + +
+ + +
=
…….Hết……….
uu
Câu Nội dung Điểm
1 a. (1,0 điểm)
VH)‚|
?
? y x x= − + +
z
D R
=
Z ? ?y x
= − +
T
Z A y x= ⇔ = ±
0.25
40()*+&R%4
( )
a
−∞ −
,
( )
a
+∞
T./4()*+R%4
( )
a
−
.:'.:):)
x
=
T
?
CD
y =
T.:')5:)
x
= −
T
CT
y = −
G)
x
y
→+∞
= −∞
T
G)
x
y
→−∞
= +∞
0.25
…s%4()*)+
` †
∞
e‡
∞
[ˆ ‡A†A‡
[
‡
∞
?
ee
∞
0.25
/0
0.25
4
2
2
4
B. (1,0 điểm)
( )
Z ? ? ?y x m x m
= − + = − −
( )
Z A A …y x m
= ⇔ − =
0.25
/0 !J.)5'0
⇔
…!J4)=;<()=
( )
A ……m⇔ >
0.25
$).J.)5'0
( )
a A m m m− −
T
( )
a B m m m+
0.25
#4)&ƒs,S4:)ƒ
" AOAOB⇔ =
uuur uuur
?
@ A
m m m⇔ + − = ⇔ =
E ……!!
VO[
m =
0,25
2.
(1,0 điểm)
) K) x x x+ = +
⇔
) K) ! ! Ax x x
− + − =
0.25
⇔
( )
) ? ) Ax x x
− + =
⇔
( )
) ? ) Ax x x
− + =
0. 25
) A
) ? !
x
x x Vn
=
⇔
+ =
0. 25
⇔
x k
π
=
"VO[4)=1#G
Tx k k Z
π
= ∈
0.25
3
(1,0 điểm)
G G ? G
x x x x
I xdx dx dx dx
x x x
= − = − = −
∫ ∫ ∫ ∫
0.25
Q
G x
J dx
x
=
∫
U
G Tu x dv dx
x
= =
"$).J
Tdu dx v
x x
= = −
i.J
GJ x dx
x x
= − +
∫
0.25
G G
J
x
= − − = − +
0.25
VO[
G
I = +
0.25
4. (1,0 điểm)
a,(0,5điểm)
N K"N A
x x+
− + =
N
N"N K"N A
N
N
x
x x
x
=
⇔ − + = ⇔
=
0.25
A
x
x
=
⇔
= −
VO[4)=1#G
Ax
=
,
x
= −
0.25
b,(0,5điểm)
( )
?
KNn CΩ = =
0.25
g&I?I)J%#,LG
N K N K
" " ?NC C C C+ =
i.J`&3.5?I).6PIJ%#,LG
?N B
KN
=
0.25
5. (1,0 điểm)
67484JVG
( )
aa?
d
u = −
uur
V2
( )
P d⊥
+
( )
P
O
( )
aa?
d
u = −
uur
GV
0.25
VO[U;84
( )
P
G
( ) ( ) ( )
@ ? ? Ax y z− + + − + − =
? c Ax y z⇔ − + + − =
0.25
V2
B d
∈
+
( )
a a ? ?B t t t− − + − +
]AB =
( ) ( )
] ? K ? ]AB t t t⇔ = ⇔ − + + − + =
] @ B At t⇔ − + =
0.25
?
?
]
t
t
=
⇔
=
VO[
( )
]a@aKB −
U
? A
a a
] ] ]
B
− −
÷
0.25
(1,0 điểm)
6.
j
C
B
A
S
H
K
M
I)$G4.)51#s
HK AB
⇒ ⊥
!
V2
( )
SH ABC⊥
+
SH AB
⊥
!
_ !, ![#
AB SK
⇒ ⊥
i.J4J4)L#
( )
SAB
,H).&[(W44J
4)L#g$,$,(W4
·
KASKH =
o
#J
·
?
#
a
SH HK SKH= =
0.25
VO[
?
"
?
" " " "
? ?
S ABC ABC
a
V S SH AB AC SH= = =
0.25
V2
‰ ‰IH SB
+
( )
‰ ‰IH SAB
"i.J
( )
( )
( )
( )
T Td I SAB d H SAB=
_Rw
HM SK
⊥
:)E
( )
HM SAB⇒ ⊥
⇒
( )
( )
Td H SAB HM=
0.25
#J
K
?HM HK SH a
= + =
?
@
a
HM⇒ =
"VO[
( )
( )
?
T
@
a
d I SAB =
0,25
7.
(1,0 điểm)
K
C
A
D
B
I
M
M'
E
I)ŠG;#4)&41#
·
BAC
#J
·
·
·
AID ABC BAI= +
·
·
·
IAD CAD CAI= +
E
· ·
BAI CAI=
T
·
·
ABC CAD=
+
·
·
AID IAD=
⇒
DAI∆
<:)i
⇒
DE AI⊥
0,25
.67484ŠG
N Ax y+ − =
0,25
0EˆG.)5.)`D41#Eo#Š
⇒
.67484EEˆ
N Ax y− + =
I)
ZK AI MM= ∩
⇒
$ AaN!
⇒
Eˆ @aB!
0,25
V1#.67484sG
( )
Z ?aNAM =
uuuuur
⇒
V1#.67484sG
( )
Na ?n = −
r
VO[.67484sG
( ) ( )
N ? @ Ax y− − − =
N ? ] Ax y⇔ − + =
0,25
8.
(1,0 điểm).
? N @ !
@ !
x xy x y y y
y x y x
+ + − − = +
− − + − = −
R
A
@ A
A
xy x y y
y x
y
+ − − ≥
− − ≥
− ≥
#J !
( ) ( )
? @ ! Ax y x y y y⇔ − + − + − + =
U
T u x y v y= − = +
AT Au v≥ ≥
!
$).J !|
? @ Au uv v+ − =
@ !
u v
u v vn
=
⇔
= −
0.25
VH)
u v=
#J
x y= +
T#[, !#.6P
@ ? y y y y− − + − =
( )
( )
@ ? Ay y y y⇔ − − − − + − − =
0.25
( )
A
@ ?
y
y
y
y y y
−
−
+ =
− +
− − + −
( )
A
@ ?
y
y
y y y
÷
⇔ − + =
÷
− +
− − + −
0.25
y⇔ =
,2
A
@ ?
y
y
y y y
⇔ + > ∀ ≥
− +
− − + −
!
VH)
y =
2
Nx
=
"))*R#.6P4)=1#=G
( )
Na
0.25
9.
(1,0 điểm) .
V2#‡(‡‚?#J
? ! ! !
bc bc bc
a bc a a b c bc a b a c
= =
+ + + + + +
bc
a b a c
≤ +
÷
+ +
V2sSeg)
! !
a b a c
a b a c
+ ≥
+ +
+ +
T3.84D`%[#
⇔
(‚
0,25
6>4'
?
ca ca
b a b c
b ca
≤ +
÷
+ +
+
,
?
ab ab
c a c b
c ab
≤ +
÷
+ +
+
0,25
g[#
?
! ! !
bc ca ab bc ab ca a b c
a b c a b c
+ + + + +
≤ + + = =
+ + +
T
0,25
84D`%[#R),bR)#‚(‚‚"VO[#`‚
?
R)#‚(‚‚"
0,25
SỞ GD - ĐT TP. ĐÀ NẴNG
TRƯỜNG THPT NGUYỄN HIN
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
(Ngày thi: 12/5/2015)
Đ THI TH - KỲ THI THPT QUỐC GIA NĂM 2015
Môn: TOÁN
Thời gian làm bài: 180 pht (không tính thời gian pht đề)
Câu 1. (2,0 điểm)
?
! ? y f x x x
= = − +
"
1)$%&'()*)+,,-./0(C)1#.d"
2)V)*;6>42)*;[*1#./0(C):).)5J.F
A
x
T()*
( )
A
ZZ ?f x
= −
"
Câu 2. (1,0 điểm)
1))%);6>42
( )
cosx sinx cosx sinx
+ − = +
"
2)2;Dz#
!i z+
GC%,
" ?z z− =
"
Câu 3. (0,5 điểm))%);6>42
( )
?
?
G4 N ?! G4 Ax x− + + =
.
Câu 4. (1,0 điểm) )%)(3;6>42
?
x
x
x
− <
−
−
.
Câu 5. (1,0 điểm) QQ;<
( )
@
!I x ln x dx= + +
∫
"
Câu 6. (1,0 điểm) 2J;S.ABCDJ.&[ABCDGF2LO,SA = AB = 2a"
2)*,S44J1#S+U;84(ABCD)G4.)5M1#:ABTU(+(SCD)
P;,H).&[F4J
A
KA
"#).67484MC,BD9#:)I.Qa5QR)J;
S.ABCD ,R%4&_ I .*U;84 (SCD).
Câu 7. (1,0 điểm)4U;84Oxy#4)&ABCJ.b
a !A −
,I4<
( )
AaG
,
'<
a
H
÷
"2I#.F1#&.bB,C ,Q(&RQ1#.674^4:))*;#
4)&ABC.
Câu 8. (1,0 điểm) 4RS44)#,H)=I#.F Oxyz .)5
a a ?!A −
T.67484
?
x y z
d
− − −
= =
,U;84
! @ AP x y z− + + =
"I)H G2)*,S44J1#A
+U;84I#.F(Oyz) , B G4)#.)51#.67484 d ,H)U;84 (P). V)*;6>4
2U;84
!Q
.)o#H ,,S44J,H).67484d"Q)=QUC.674RQ
AB"
Câu 9. (0,5 điểm)EFF;JN,)+().MT],)+(),4,c,)+()`#"\4
FGCG3[4l)+?,)+()"2`&3#4?,)+()G3[#RS4J,)+()G
.M"
Câu 10. (1,0 điểm) x, y, zG(#'6>4M#d
Axy yz zx xyz+ + − =
"24)&0M
31#()5D
x y y z
z x
F
xy yz zx
+ +
+
= + +
"
HẾT
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
I,+Q)""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""(&#""""""""""""""""""""""""""""""""""""""""""""
HƯỚNG DẪN CHẤM Đ THI TH TỐT NGHIỆP THPT QUỐC GIA 2015
(GỒM 4 TRANG)
Câu 1. (2,0 điểm)
?
! ? y f x x x= = − +
"
1)$%&'()*)+,,-./0(C)1#.d"(1 điểm)
?
! ? y f x x x= = − +
.
• O;`&.0R
• g'()*)+
‡)t()*)+
[Z Z `! ?` K`T [Z A ` Aa ` = = − = ⇔ = =
0,25
./4()*+&R%4
( )
aA−∞
,
( )
a+∞
a40()*+R%4
( )
Aa
‡'0.:'.:):)`‚AT
i
[ =
T.:')5:)`‚
T [ =−
‡)H):
G) a G)
x x
y y
→−∞ →+∞
= −∞ = +∞
0,25
‡s%4()*)+ .C[.1T.n4! 0,25
• /0
0,25
2)Viết phương trình tiếp tuyến của đồ thị (C)"""""""""""""""""""""""""""(1 điểm)
I)E
A A
a !x y
G)*;.)5"
A A A
ZZ ! K K" ZZ ! ? K K ?
f x x f x x x= − = − ⇔ − = − ⇔ =
0,25
A
c
y f
= =
÷
a
B
Z
@
f
−
=
÷
0,25
6>42)*;[*1# !:)E
B
@ c
y x
−
= − +
÷
a
0,25
#[G
B N
@
y x= − +
0,25
Câu 2. (1,0 điểm) 1))%);6>42
( )
cosx sinx cosx sinx
+ − = +
.(0,5 điểm)
( )
A ! ! A …!PT cosx sinx cos x cosx sinx cosx sin x⇔ + + − − − = ⇔ − + =
0,25
i
Acosx
− ≠
+
…! A "
@
sin x sin x x k
π
π
⇔ + = ⇔ = − ⇔ = − +
0,25
2)2;Dz#
!i z+
GC%,
" ?z z− =
(0,5 điểm)
)%f
T !z a bi a b R= + ∈
TR).J
! ! ! ! !i z i a bi a b a b i+ = + + = − + +
!i z+
GC%
A a b a b
⇔ − = ⇔ =
0,25
" ? ? ? ? z z a bi b bi b b− = + = + = = ⇔ = ±
J#);DM#d.t()
z i
= +
a
z i
= − −
0,25
Câu 3. (0,5 điểm))%);6>42
( )
?
?
G4 N ?! G4 Ax x− + + =
.
)tR)=
?
N
x >
, ()*.„) .6P
( ) ( )
?
?
G4 G4 x x+ = − +
0,25
VH).)tR)=+T.d6>4.6>4,H);6>42
( )
? ?
G4 G4 N ?!x x+ = −
N ?x x⇔ + = − ⇔
N @ A a @x x x x− + = ⇔ = =
M#d.)tR)=!"VO[;6>42J#)4)=G`‚a`‚@
0,25
Câu 4. (1,0 điểm) )%)(3;6>42
?
x
x
x
− <
−
−
.
)tR)=
x <
"s3;6>42.d6>4.6>4,H)
? ?
A !
x x x x x
x x
x x
− +
> − ⇔ − + >
− −
− −
0,25
U
x
t
x
=
−
TR).J(3;6>42 !|
? A
t
t t
t
<
− + > ⇔
>
0,25
VH)‹2
!
x
x x
x
< ⇔ < −
−
•
Ax
− < ≤
(3;6>42 !.n4
•
A x
< <
(3;6>42
! A
x x x⇔ < − ⇔ < <
• O;4)=1#(3;6>42 !G
a
S
= −
÷
÷
0,25
VH)Œ2
?!
x
x x
x
> ⇔ > −
−
• s3;6>42 ?!
A
N
N
@ !
x
x
x x
>
⇔ ⇔ >
> −
0,25
• O;4)=1#(3;6>42 ?!G
N
a
N
S
=
÷
÷
VO[O;4)=1#(3;6>42G
N
a a
N
S S S
= ∪ = − ∪
÷ ÷
÷ ÷
Câu 5. (1,0 điểm) QQ;<
( )
@
!I x ln x dx= + +
∫
"
•
@ @
" !"I x dx ln x dx= + +
∫ ∫
"
0,25
•
@ @
@
@
" " !
? ?
I x dx x dx x x= = = =
∫ ∫
0,25
•
[ ]
@ @
@
!" ! ! NGN G ?
I ln x dx x ln x dx= + = + + − = − −
∫ ∫
"
N
NGN G
?
I = + −
0,50
Câu 6. (1,0 điểm) 2J;S.ABCDJ.&[ABCDGF2LO,SA = AB = 2a"2)*
,S44J1#S+U;84(ABCD)G4.)5M1#:ABTU(+(SCD)P;,H).&[F4J
A
KA
"#).67484MC,BD9#:)I.Qa5QR)J;S.ABCD ,R%4&_ I
.*U;84 (SCD).
_4)%)*J
SAB
G#4)&.t:#T
gEG.674#T
( )
= =
3
SM 2a . a 3
2
0,25
I)G4.)51#i2J
( )
·
·
A
a !T ! KAMN CD SN CD SCD ABCD MNS⊥ ⊥ ⇒ = =
A
# KA
SM
BC MN a= = =
5QR)J;g"si
?
?
" " " " !" !" ?!
?
"
? ? ?
ABCD
a
AB BC SM a a aV S SM = == =
0,25
I)G2)*,S44J1#E+g2
! T !!MH SCD MH d M SCD⊥ ⇒ =
" " ? ?
MN MS MN SM a a
MH
SN a
MN SM
= = = =
+
0,25
_4)%)*[#ŠGI4<1##4)&s"
$wIK‰‰MH2
T T !
?
K CH IK MH IK SCD∈ = ⊥
?
T !! " T !!
? ? ?
a
d K SCD IK MH d M SCD⇒ = = = =
0,25
Câu 7.(1,0 điểm)4U;84Oxy#4)&ABCJ.b
a !A −
,I4<
( )
AaG
,'<
a
H
÷
"2I#.F1#BTC , Q(&RQ1#.674^4:))*;#4)&ABC.
60
0
K
N
I
A
B
C
D
M
H
S
C
(C)
K
M
H
C
B
A
I
I)EG4.)5:sT#J
? N
" a
AM AG M
= ⇒ −
÷
uuuur uuur
?
a?
AH
−
=
÷
uuur
#[
( )
a n = −
r
G;&;,>1#.674
84s"
0,25
6>42
K A KBC x y x y− + = ⇔ = −
V2B ,C.)`D4,H)#o#M+4I)
Ka !B m m−
2J
@ a N !C m m− −
0,25
( )
ca AB m m= − +
uuur
a
]
a @
HC m m
= − −
÷
uuur
"#J
" AAB HC =
uuur uuur
@! N N ! A @a m m m m⇒ − − = ⇔ = =
"VO[J
a@!T @a!B C −
U
@a!T a@!B C−
0,25
$w.674RQAK1#.674^ !4:))*;#4)&ABC
D4)&BHCKJBH//KC,BK//HC+BHCKG2(2"g[#HK,BC9
#:)MG4.)51#BC,M•4G4.)51#HK"
#J
a
H
÷
T
N
a
M
−
÷
N
a@
K
⇒ −
÷
"s&RQ
N
@
R AK= =
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
…Ghi chúJ52I#.F<I1#.674^(C)(W4hệ thức Ơ-le
GH GI= −
uuur uur
Q
);%)2([D4)=D[!"g#.JQ
R IA=
0,25
Câu 8.(1,0 điểm) 4 RS4 4)# ,H) = I# .F Oxyz .)5
a a ?!A −
T .674 84
?
x y z
d
− − −
= =
,U;84
! @ AP x y z− + + =
"I)H G2)*,S44J1#A+
U;84I#.F(Oyz) , B G4)#.)51#.67484 d ,H)U;84 (P). V)*;6>42U
;84
!Q
.)o#H ,,S44J,H).67484d"Q)=QUC.674RQAB"
2)*1#A+;(Oyz)GH(0; -2; 3). 67484J,>b;6>4
aa!u =
r
0,25
EU;84 (Q).)o#H.V2
!Q d⊥
+
!Q
O
aa!u =
r
G,>;&;[*"
6>421# x!
A! ! ?! A Ax y z x y z
− + + + − = ⇔ + + − =
0,25
a a ? !B d B t t t∈ ⇒ + + +
"I#.F1#sD4,H)4)&01#M#d
! ! ? ! @ A t t t t+ − + + + + = ⇔ = −
"_.JJ
?aAa!B −
U4)%)=
N ?
?
A
@ A
N! ! @ A
x z x
x y z
y z y
x y z
z z z z
= − = −
− − −
= =
⇔ = − ⇔ =
− + + =
− − − + + = =
!
0,25
EUC.674RQsJ(&RQ
K
R AB= =
"
i)=Q1#UC
!
@ @ K! @
mc
S R
π π π
= = =
.,!
0,25
Câu 9.(0,5 điểm)EFF;JN,)+().MT],)+(),4,c,)+()`#"\4FGC
G3[4l)+?,)+()"2`&3#4?,)+()G3[#RS4J,)+()G.M"
g;Cf1#RS44)#l
?
A
@A=C
;Cf
I)G()*Ž4?,)+()G3[#RS4J,)+()G.MŽT4•#G4?,)+
()G3[#UG(),4TUG()`#TUGJ%()`#,(),4
0,25
#J
?
]
C =
?N&G3[?,)+(),4TJ
?
c
NK=C
&G3[?,)+()`#TJ
] c ] c
" "C C C C+ =
?K@&G3[?,)+J%,4,`#"
i.J
? ?
] c ] c ] c
" "
@NN B
!
@A @A c
C C C C C C
P A
+ + +
= = =
0,25
Cách khác gọn hơnI)G()*Ž4?,)+()G3[#RS4J,)+()G.MŽT
4•#G?,)+().6PG3[#_N,)+() ,4,`#!"g&I
?
N
@NNC =
@NN B
!
@A c
P A = =
0,25
Câu 10.(1,0 điểm) x, y, zG(#'6>4M#d
Axy yz zx xyz+ + − =
"24)&0M31#
()5D
x y y z
z x
F
xy yz zx
+ +
+
= + +
"
s)*.„)
"
x y
x y
xy x y y x
+
+
= = +
"U
T Ta b c
x y z
= = =
")%)*.t()
T T A T T A
A
x y z a b c
xy yz zx xzy a b c
> >
⇔
+ + − = + + =
a,
F b a c b a c= + + + + +
0,25
u;Y4(3.84D)5)+
( )
( )
"u v u v≥
r r r r
T,H)
aa!T a a !u v b b a= =
r r
#J
? ! ? ! ! !b a b b a b b a b a+ = + + ≥ + + = +
! !
?
b a b a⇒ + ≥ +
0,25
6>4'T#J
! !a ! ?!
? ?
c b c b a c a c+ ≥ + + ≥ +
0,25
F4 !T !T ?!,*,*#J
? ? ? ! ?
?
F b a c b a c a b c= + + + + + ≥ + + =
84D`%[#
?
?
a b c x y z⇔ = = = ⇔ = = =
$*GO•J4)&0M3(W4
?
0,25
HẾT