SỞ GIÁO DỤC VÀ ĐÀO TẠO
THANH HOÁ
Đề chính thức
KỲ THI CHỌN HỌC SINH GIỎI TỈNH
Năm học: 2010 – 2011
Môn Toán, Lớp 12 THPT
Thời gian làm bài 180 phút, không kể thời gian giao đề.
CâuI (4,0 điểm) Cho hàm số
3 2 2
( 1) (4 ) 1 2
y x m x m x m
= - + - - - -
( )
m
C
1. Khảo sát sự biến thiên và vẽ đồ thị khi
1
m
= -
.
2. Tìm các giá trị của
m
để đồ thị
( )
m
C
có hai tiếp tuyến vuông góc với nhau.
Câu II (6,0 điểm)
1. Giải phương trình :
cos2 cos3 sin cos4 sin 6
x x x x x
+ - - =
.
2. Giải bất phương trình:
2 4 2
6( 3 1) 1 0
x x x x
- + + + + £
.
3. Tìm số thực
a
để phương trình
9 9 3 cos( )
x x
a x
p
+ = có nghiệm thực duy nhất.
Câu III (2,0 điểm) Tính tích phân:
2
3
0
sin
(sin 3cos )
x
dx
x x
p
+
ò
.
Câu IV. (6,0 điểm)
1. Cho tứ diện đều
ABCD
có độ dài các cạnh bằng 1. Gọi M, N lần lượt là hai điểm
thuộc các cạnh AB, AC sao cho mặt phẳng (DMN) vuông góc với mặt phẳng
(ABC). Đặt
,
AM x AN y
= =
. Tìm
,
x y
để diện tích toàn phần của tứ diện DAMN
nhỏ nhất.
2. Trên mặt phẳng toạ độ
Oxy
cho đường thẳng
: 5 0
x y
D - + =
và hai elíp
2 2 2 2
1 2
2 2
( ): 1, ( ): 1 ( 0)
25 16
x y x y
E E a b
a b
+ = + = > >
có cùng tiêu điểm. Biết rằng
2
( )
E
đi
qua điểm M thuộc đường thẳng
D
. Tìm toạ độ điểm M sao cho
2
( )
E
có độ dài trục
lớn nhỏ nhất.
3. Trong không gian
Oxyz
cho điểm M(0;2;0) và hai đường thẳng
1 2
1 2 3 2
: 2 2 : 1 2 ( , )
1
x t x s
y t y s t s
z t z s
= + = +
ì ì
ï ï
D = - D = - - Î
í í
ï ï
= - + =
î î
¡
. Viết phương trình mặt phẳng (P) đi
qua M song song với trục
Ox
, sao cho (P) cắt hai đường thẳng
1
D
và
2
D
tại lần lượt
A, B thoả mãn AB = 1.
Câu V. (2,0 điểm) Cho các số thực
, ,
a b c
thoả mãn
2 2 2
6
3
a b c
ab bc ca
ì
+ + =
í
+ + = -
î
.
Tìm giá trị lớn nhất của biểu thức
6 6 6
P a b c
= + +
.
Hết
Thí sinh không được sử dụng tài liệu
Cán bộ coi thi không giải thích gì thêm.