Tải bản đầy đủ (.pdf) (40 trang)

về một phương pháp chỉnh hóa cho phương trình parabolic tuyến tính ngược thời gian với hệ số phụ thuộc thời gian trong không gian banach

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (577.73 KB, 40 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC VINH





NGUYỄN VĂN TÁM






VỀ MỘT PHƯƠNG PHÁP CHỈNH HÓA
CHO PHƯƠNG TRÌNH PARABOLIC TUYẾN TÍNH
NGƯỢC THỜI GIAN VỚI HỆ SỐ PHỤ THUỘC
THỜI GIAN TRONG KHÔNG GIAN BANACH




LUẬN VĂN THẠC SĨ TOÁN HỌC







NGHỆ AN - 2014


BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC VINH






NGUYỄN VĂN TÁM




VỀ MỘT PHƯƠNG PHÁP CHỈNH HÓA
CHO PHƯƠNG TRÌNH PARABOLIC TUYẾN TÍNH
NGƯỢC THỜI GIAN VỚI HỆ SỐ PHỤ THUỘC
THỜI GIAN TRONG KHÔNG GIAN BANACH


CHUYÊN NGÀNH: TOÁN GIẢI TÍCH
MÃ SỐ: 60.46.01.02


LUẬN VĂN THẠC SĨ TOÁN HỌC



Người hướng dẫn khoa học:
TS. NGUYỄN VĂN ĐỨC




NGHỆ AN - 2014

···

du
dt
= a(t)Au(t) 0  s  t < T
u(s) = χ
X −A
θ ∈

0,
π
2

X a ∈ C([0, T ] : R
+
)
C
0
θ
X
X X T (t), 0  t < ∞
X
T (0) = I, ( )
T (t + s) = T (t)T (s) t, s  0
T (t)

lim
t↓0
T (t) − I = 0
A
D(A) = {x ∈ X : lim
t↓0
T (t)x − x
t
}
Ax = lim
t↓0
T (t)x − x
t
x ∈ D(A)
T (t) D(A)
A
X
T (t), 0  t < ∞ lim
t↓0
T (t)x = x
x ∈ X
X C
0
C
0
A
A
A X
T (t) = e
tA

=


n=0
(tA)
n
n!
t  0
T (t) T (0) = I
T (t + s) = T (t)T (s)
T (t) − I  tAe
tA




T (t) − I
t
− A




 A max
0st
T (s) − I.
T (t)
X A
T (t)
X

ρ > 0 I − ρ
−1

ρ
0
T (s)ds < 1
ρ
−1

ρ
0
T (s)ds

ρ
0
T (s)ds
h
−1
(T (h) − I)

ρ
0
T (s)ds = h
−1


ρ
0
T (s + h)ds −


ρ
0
T (s)ds

= h
−1


ρ+h
ρ
T (s)ds −

h
0
T (s)ds

.
h
−1
(T (h) − I) =

h
−1

ρ+h
0
T (s)ds − h
−1

h

0
T (s)ds



ρ
0
T (s)ds

−1
.
h
−1
(T (h)−I)
(T (ρ) −I)


ρ
0
T (s)ds

−1
h ↓ 0
(T (ρ) −I)


ρ
0
T (s)ds


−1
T (t)
T (t) C
0
A
x ∈ X lim
h→0
1
h

t+h
t
T (s)xds = T(t)x.
x ∈ X

t
0
T (s)xds ∈ D(A)
A


t
0
T (s)xds

= T (t)x − x.
x ∈ D(A) T (t)x ∈ D(A)
d
dt
T (t)x = AT(t)x = T (t)Ax.

x ∈ D(A),
T (t)x − T (s)x =

t
s
T (τ)Axdτ =

t
s
AT (τ)xdτ.
A C
0
D(A) A X A
x ∈ X x
t
=
1
t

t
0
T (s)xds
x
t
∈ D(A) t > 0
t ↓ 0 D(A) ≡ X D(A) D(A)
A
x
n
∈ D(A) x

n
→ x Ax
n
→ y n → ∞
T (t)x
n
− x
n
=

t
0
T (s)Ax
n
ds.
T (s)y
n → ∞
T (t)x − x =

t
0
T (s)yds.
t > 0 t ↓ 0
x ∈ D(A) Ax = y
T (t) C
0
ω  0 M  1
T (t)  Me
ωt
0  t < ∞.

ω = 0 T (t) C
0
ω = 0
M = 1 T (t) C
0
η > 0 T (t) 0  t  η
{t
n
} t
n
 0, lim
n→∞
t
n
= 0
T (t
n
)x  n
x ∈ X T (t
n
)x
C
0
, T(t) M > 0
T (t)  M 0  t  η T (0) = 1 M  1
ω = η
−1
ln M  0 t  0 t = nη + δ n ∈ N
0  δ < η
T (t) = T(δ)T (nη)

n
  M
n+1
 MM
t/n
= Me
ωt
.
A C
0
T (t), t  0
A D(A) = X
ρ(A) A R
+
λ > 0
R(λ : A) 
1
λ
,
R(λ : A) = (λI −A)
−1
I X
θ ∈ (0;
π
2
]
T (t) t > 0 X
θ
T (t)
T (z)

S
θ
= {re


: r > 0, | θ

|< θ}
T (z + ω) = T (z)T (ω) z, ω ∈ S
θ
θ
1
< θ T(z)x → x z → 0 S
θ1
x ∈ X
θ
1
< θ T(z) S
θ1
T (t) X
θ T(t)
θ
A
X −A θ
θ
1
< θ M
1
> 0
ω /∈ S

π
/
2

θ
1
ω ∈ ρ(A)
(ω − A)
−1
 ≤
M
1
dist(ω, S
π/
2
−θ
1
)
.
−A
θ 0 ∈ ρ(A) σ > 0
A
A
−σ
=
1
2πi

Γ
ω

−σ
(ω − A)
−1
dω,
Γ ∞e
i∅
∞e
−i∅
π > φ > π/
2
−θ
A
σ
= (A
−σ)
−1
A
o
= I
−A
θ 0 ∈ ρ(A)
A
σ
σ > 0
A
σ
(A
σ
) ⊆ (A
σ


) σ > σ

> 0
(A
σ
) X σ ≥ 0
A
σ
1

2
x = A
σ
1
A
σ
2
x σ
1
, σ
2
∈ R x ∈ (A
σ
)
σ = max{σ
1
, σ
2
, σ

1
+ σ
2
}
L
2

u
t
= Au(t) 0  t < T,
u(0) = x,
−A
X
u
t
= −Au(t), t ∈ [0, ∞), u(0) = x
0
,
E A D(A)
E ρ(−A) = ∅
−A
α (0 < α <
π
2
) X
u
t
= Au(t), u(0) = x, (0  t < T ), −A
A
A

A
u
t
= Au(t) + h(t), u(0) = x, (0  t < T ).
u
t
+ Au(t) = 0, (0  t < T), u(T ) = x, A
−A
X x ∈ X

du
dt
= A(t, D)u(t), 0  s  t < T,
u(s) = χ
X −D
θ ∈ (
π
4
,
π
2
] χ ∈ X
u(t) u(t)
L
p
(R), 1  p < ∞
X

du
dt

= a(t)Au(t) 0  s  t < T
u(s) = χ
−A θ ∈ (0,
π
2
] X a ∈
C([0, T] : R
+
)
{R
β
(t) : β > 0, t ∈ [s, T ]}
X
u(t)
χ ∈ X δ > 0 β(δ) > 0
β(δ) −→ 0 δ −→ 0
u(t) −R
β(δ)
(t)χ
δ
 → 0 δ → 0 s ≤ t ≤ T χ −χ
δ
  δ

dv
dt
= f
β
(t, A)v(t) 0 ≤ s ≤ t < T
v(s) = χ

β > 0 f
β
(t; A), 0 ≤ t ≤ T a(t)A
θ ∈ (0,
π
2
]
f
β
(t, A) =

a(t)A − βA
σ
θ ∈ (0,
π
4
]
a(t)A(I + βA)
−1
θ ∈ (
π
4
,
π
2
]
σ > 1 θ ∈ (0;
π
4
]

β → 0 f
β
(t; A)
a(t)A u(t) v
β
(t)
u(t) − v
β
(t) → 0 β → 0
t ∈ [s; T] {V
β
(t; s) : β > 0
t ∈ [s; T]
V
β
(t; s)χ = v
β
(t)
χ − χ
δ
 ≤ δ β > 0 β → 0
δ → 0 u(t) − V
β
(t; s)χ
δ
 → 0 δ → 0 s ≤ t ≤ T
A A − βA
σ
σ > 1 σ(
π

2
− θ) <
π
2
A(I + βA)
−1
θ ∈ (
π
4
;
π
2
]
−A
θ ∈ (0; π/
4
] 0 ∈ ρ(A) 0 < β < 1 σ > 1
σ(π/
2
− θ) < π/
2
f
β
(t; A); 0 ≤ t ≤ T
f
β
(t, A) = a(t)A −βA
σ
.
v

β
(t) = V
β
(t; s)χ, χ ∈ X
V
β
(t, s) =

1
2πi

Γ
φ
e

t
s
f
β
(τ,ω)dτ
(ω − A)
−1
dω 0 ≤ s < t ≤ T,
I t = s,
Γ
φ
ρ(A) π/

> φ > π/
2

−θ
φ
σ(π/
2
− θ) < π/
2
.
V
β
(t; s) 0 ≤ s ≤ t ≤ T
0 ≤ s < t ≤ T 0 ∈ ρ(A)
d ∈ (0; 1)
ρ(A)
(t − s)
−1/
σ
≤ d
Γ
φ
ρ(A)
Γ
1
= {re

: r ≥ (t −s)
−1/
σ
},
Γ
2

= {(t −s)
−1
σ
e
−iθ

: −φ ≤ θ

≤ φ},
Γ
3
= {re
−iφ
: r ≥ (t −s)
−1/
σ
}.
ω ∈ Γ
1
∪Γ
3
θ
1
< θ φ > π/
2
−θ
1
> π/
2
−θ

(ω, S
π/
2
−θ
1
) = |ω|sin(φ −(π/
2
−θ
1
))


(ω − A)
−1



M
1
|ω|sin(φ − (π/
2
− θ
1
))
.
M

1
= M
1

/
sin(φ−(π/
2
−θ
1
))
B = max
t∈[0,T ]
|a(t)|





Γ
1
∪Γ
3




≤ M

1

Γ
1
Γ
3

|e

t
s
(a(τ)ω−βω
σ
)dτ
||ω|
−1

= 2M

1


(t−s)
−1/
σ
e

t
s
(a(τ)τ cos φ−βτ
σ
cos σφ)dτ
τ
−1

≤ 2M


1


(t−s)
−1/
σ
e
B(t−s)τ cos φ−β(t−s)τ
σ
cos σφ
τ
−1

= 2M

1


1
e
B(t−s)
1−1/σ
x cos φ−βx
σ
cos σφ
x
−1
dx
≤ 2M


1


1
e
BT
1−1/σ
x cos φ−βx
σ
cos σφ
dx ≤ K,
K t s σ > 1 π/
2
σ >
φ > π/
2
− θ 0 < φ < σφ < π/
2
cos φ > 0
cos(σφ) > 0 ω ∈ Γ
2





Γ
2





≤ M
d

Γ
2
|e

t
s
(a(τ)ω−βω
σ
)dτ
|dω
= M
d

φ
−φ
e

t
s
(a(τ)(t−s)
1−/
σ
cos θ

−β(t−s)

−1
cos σθ

)dτ
(t − s)
−1/
σ


≤ dM
d

φ
−φ
e
B(t−s)
1−1/σ
cos θ

−β cos σθ



≤ dM
d

φ
−φ
e
BT

1−1/σ
cos θ



≤ dM
d
e
BT
1−1/σ

M
d
= max
|ω|≤d
(ω − A)
−1
 ω → (ω −A)
−1
ρ(A) V
β
(t; s) 0 ≤ s ≤ t ≤ T
(t − s)
−1/σ
> d
Γ
φ
Γ
1
= {re


: r ≥ (t −s)
−1/σ
},
Γ
2
= {(t −s)
−1/σ
e


: −φ ≤ θ

≤ π},
Γ
3
= {re

: d ≤ r ≤ (t −s)
−1/σ
},
Γ
4
= {de
−iθ

: −π ≤ θ

≤ π},
Γ

5
= {re
−iπ
: d ≤ r ≤ (t −s)
−1/σ
},
Γ
6
= {(t −s)
−1/σ
e


: −π ≤ θ

≤ −φ},
Γ
7
= {re
−iφ
: r ≥ (t −s)
−1/σ
}.
Γ
1
= Γ
1
Γ
7
= Γ

3


Γ
1
∪Γ
7
 = 

Γ
1
∪Γ
3
 ≤ K
ω ∈ Γ
2
ω ∈ Γ
2
(ω, S
π/2−θ
1
) ≥ ((t −s)
−1/σ
e

, S
π/2−θ
1
).






Γ
2




≤ M

1

Γ
2
|e

t
s
(a(τ)ω−βω
σ
)dτ
||ω|
−1

= M

1


π
φ
e

t
s
(a(τ)(t−s)
−1/σ
cos θ

−β(t−s)
−1
cos σθ

)dτ


≤ M

1

π
φ
e
BT
1−1/σ
cos φ−βcosσθ




≤ M

1

π
φ
e
1+BT
1−1/σ
cos φ


= M

1
e
1+BT
1−1/σ
cos φ
(π − φ)
0 < β < 1 

Γ
6



Γ
3
+


Γ
5

= 

(t−s)
−1/σ
d
(e

t
s
(−a(τ)τ−βr
σ
e
−iπσ
)dτ
− e

t
s
(−a(τ)τ−βτ
σ
e
iπσ
)dτ
)(−τ − A)
−1
dτ

≤ M

1

(t−s)
−1/σ
d
|e
−(

t
s
(a(τ)dτ)τ
(e
−β(t−s)τ
σ
e
−iπσ
− e
−β(t−s)τ
σ
e
iπσ
) | τ
−1

= M

1


(t−s)
−1/σ
d
e
−(

t
s
(a(τ)dτ)τ
|(e
−β(t−s)τ
σ
cos σπ
2i sin(β(t −s)τ
σ
sin σπ)|τ
−1

≤ M

1

(t−s)
−1/σ
d
e
−β(t−s)τ
σ
cos σπ
2|sin(β(t −s)τ

σ
sin σπ)|τ
−1

= M

1

1
(t−s)
−1/σ
d
e
−βx
σ
cos σπ
2|sin(βx
σ
sin σπ)|x
−1
dx
= M

1

1
(t−s)
−1/σ
d
x

−1/2
e
−βx
σ
cos σπ
{4x
−1
sin
2
(βx
σ
sin σπ)}
1/2
dx
= M

1

1
(t−s)
−1/σ
d
x
−1/2
e
−βx
σ
cos σπ
{2x
−1

(1 − cos(2βx
σ
sin σπ))}
1/2
dx.
2x
−1
(1 − cos(2βx
σ
sin σπ)) → 0 x → 0.
M

1
β


Γ
3
+

Γ
5
 ≤ M

1

1
0
x
−1/2

e
−βx
σ
cosσπ
dx ≤ M

1
e

1
0
x
−1/2
dx = M

1
2e
0 < β < 1





Γ
4




≤ M

d

Γ
4
|e

t
s
(a(τ)ω−βω
σ
)dτ
|dω
= dM
d

π
−π
e

t
s
(a(τ)d cos θ

−βd
σ
cos σθ

)dτ



≤ dM
d

π
−π
e
BTd
e
−β(t−s)d
σ
cos σθ



≤ dM
d
e
BTd
(1 + e
T d
σ
)2π,
M
d
= max
|ω|≤d
(ω − A)
−1

V (t; s) 0 ≤ s ≤ t ≤ T

(t; s) → V
β
(t; s)
0 ≤ s ≤ t ≤ T
V
β
(t, s)A
−σ
=
1
2πi

Γ
φ
ω
−σ
e

t
s
f
β
(τ,ω)dτ
(ω − A)
−1
dω.
t → f
β
(t; w)
V

β
(t; s)A
−σ
− V
β
(t
0
, s
0
)A
−σ
 → 0 (t, s) → (t
0
, s
0
).
x ∈ (A
σ
)
V
β
(t; s)x − V
β
(t
0
, s
0
)x
≤ V
β

(t; s)A
−σ
− V
β
(t
0
, s
0
)A
−σ
A
σ
x → 0 (t, s) → (t
0
, s
0
).
V
β
(t; s)
(A
σ
) X
V
β
(t; s)
[s; T ] → X
t → V
β
(t; s)χ χ ∈ X

t → V
β
(t; s)χ [s; T ]

∂t
V
β
(t, s)χ = f
β
(t, A)V
β
(t, s)χ t ∈ (s, T )

∂t
V
β
(t, s)χ =
1
2πi

Γ
φ
(

∂t
e

t
s
f

β
(τ,ω)dτ
)(ω − A)
−1
χdω
=
1
2πi

Γ
φ
e

t
s
f
β
(τ,ω)dτ
)f
β
(t, ω)(ω − A)
−1
χdω
=
1
2πi

Γ
φ
e


t
s
f
β
(τ,ω)dτ
)a(t)ω(ω − A)
−1
χdω
+
1
2πi

Γ
φ
e

t
s
f
β
(τ,ω)dτ
)(−βω
σ
)(ω − A)
−1
χdω.
1
2πi


Γ
φ
e

t
s
f
β
(τ,ω)dτ
)a(t)ω(ω − A)
−1
χdω
= a(t)
1
2πi

Γ
φ
e

t
s
f
β
(τ,ω)dτ
)(ω − A) + A)(ω −A)
−1
χdω
= (a(t)
1

2πi

Γ
φ
e

t
s
f
β
(τ,ω)dτ
dω)χ
+ a(t)
1
2πi

Γ
φ
e

t
s
f
β
(τ,ω)dτ
A(ω − A)
−1
χdω
= a(t)AV
β

(t, s)χ
ω → e

t
s
f
β
(τ,ω)dτ
A
t ∈ (s; T)
G =
1
2πi

Γ
φ
ω
σ
e

t
s
f
β
(τ,ω)dτ
(ω − A)
−1
dω.
G X
A

−σ
G = V
β
(t; s) A
σ
= (A
σ
)
−1
(V
β
(t; s)) ⊆ (A
−σ
) = (A
σ
) G = A
σ
V
β
(t; s)
1
2πi

Γ
φ
e

t
s
f

β
(τ,ω)dτ
)(−βω
σ
)(ω − A)
−1
χdω = −βGχ = −βA
σ
V
β
(t, s)χ.

∂t
V
β
(t, s) = a(t)AV
β
(t, s)χ − βA
σ
V
β
(t, s)χ
= f
β
(t, A)V
β
(t, s)χ t ∈ (s, T ).
V
β
(s, s)χ = χ t → V

β
(t; s)χ
t → f
β
(t, A)V
β
(t, s)χ
(s; T ) t → e

t
s
f
β
(τ,ω)dτ
f
β
(t, ω)
t → V
β
(t; s)χ (s; T ) t → V
β
(t; s)χ
t → V
β
(t; s)χ
0 < β < 1 f
β
(t, A) 0 ≤ t ≤
T V
β

(t; s) 0 ≤ s ≤ t ≤ T
β
V
β
(t, s) ≤ K

e

−1/(σ−1)
0 ≤ s ≤ t ≤ T K

K β
t s
0 ≤ s < t ≤ T V
β
(t; s)
β


Γ
1
∪Γ
3
 = 

Γ
1
∪Γ
7


V
β
(t, s) ≤ K
1
+
M

1
π


1
e
BT
1−1/σ
x cos φ−βx
σ
cos σφ
dx,
K
1
β
β q(x) = 2BT
1−1/σ
x cos φ − βx
σ
cos(σφ)
[1; ∞) x
0
= (

BT
1−1/σ
cos φ
βσ cos(σφ)
)
1/(σ−1)
x ∈ [1; ∞)
2BT
1−1/σ
x cos φ − βx
σ
cos(σφ) ≤ q(x
0
)
= β
−1/(σ−1)
(BT
1−1/σ
cos φ)
σ/(σ−1)
σ
σ/(σ−1)
cos
1/(σ−1)
(σφ)
(σ − 1)
:= K
2
β
1/(σ−1)

.


1
e
BT
1−1/σ
x cos φ−βx
σ
cos σφ
dx ≤ e
K
2
β
1/(σ−1)


1
e
BT
1−1/σ
x cos φ
dx
=
K
2
β
1/(σ−1)
BT
1−1/σ

cos φe
BT
1−1/σ
cos φ
.
V
β
(t, s) ≤ K
1
+K
3
e
K
2
β
1/(σ−1)
0 ≤ s ≤ t ≤ T
K
1
K
2
K
3
β t s
β V
β
(t, s) ≤ K

3
e

K
2
β
−1/(σ−1)
0 ≤ s ≤ t ≤ T
K

3
K
3
−A
θ ∈ (π/4; π/2] 0 ∈ ρ(A) β ∈ (0, 1)
f
β
(t; A) 0 ≤ t ≤ T
f
β
(t, A) = a(t)A(I + βA)
−1
.
v
β
(t) =
V
β
(t; s)χ, χ ∈ X V
β
(t; s) 0 ≤ s ≤ t ≤ T
V
β

(t, s) ≤ e
CT/β
, 0 ≤ s ≤ t ≤ T
C β t s
−A 1/β ∈
ρ(−A)
(I + βA)
−1
= (1/β)(1/β)I − (−A))
−1
 ≤ 1/β ×Cβ = C
C β f
β
(t; A)
X t ∈ [0; T]
f
β
(t, A) = a(t)A(I + βA)
−1

= a(t)
1
β
(I − (I + βA)
−1


B
β
(I+ (I + βA)

−1
)

B(1 + C)
β
,
B = max
t∈[0;T ]
|a(t)| t → f
β
(t; A)
A(I + βA) a(t)
v
β
(t) χ ∈ X v
β
(t)
v
β
(t) = V
β
(t; s)χ V
β
(t; s)
V
β
(t, s) ≤ e

t
s

f
β
(τ,A)dτ
−A
θ 0 ∈ ρ(A) β ∈ (0, 1) f
β
(t; A)
0 ≤ t ≤ T
V
β
(t; s) 0 ≤ s ≤ t ≤ T
f
β
(t; A) 0 ≤ t ≤ T ∈ X v
β
(t) = V
β
(t; s)χ

×