G
a,b
k,c
f + ψ
x, y, f,
∂f
∂x
, x
k
∂f
∂y
= 0,
a, b, c ∈ C, k
G
a,b
k,c
=
∂
∂x
− iax
k
∂
∂y
∂
∂x
− ibx
k
∂
∂y
+ icx
k−1
∂
∂y
.
k
G
a,b
k,c
G
a,b
k,c
ψ
G
a,b
k,c
k
G
a,b
k,c
f + ψ
x, y, f,
∂f
∂x
, x
k
∂f
∂y
= 0.
a, b, c ∈ C, k
G
a,b
k,c
=
∂
∂x
− iax
k
∂
∂y
∂
∂x
− ibx
k
∂
∂y
+ icx
k−1
∂
∂y
.
k
G
a,b
k,c
G
a,b
k,c
ψ
G
a,b
k,c
k
G
a,b
k,c
G
a,b
k,c
G
a,b
k,c
k
G
a,b
k,c
k
A(Ω) : Ω,
C
k
(Ω) : k Ω,
D(Ω) : Ω,
D
(Ω) : D(Ω),
C
∞
(Ω) : Ω,
G
s
(Ω) : s Ω,
L
p
loc
: p,
R
n
: n .
¨o
P (D)
P (x, D)
¨o
G
k,λ
=
∂
2
∂x
2
+ x
2k
∂
2
∂y
2
+ iλx
k−1
∂
∂y
,
(x, y) ∈ Ω R
2
, λ ∈ C, i k
G
k,λ
k k
G
k,λ
G
a,b
k,c
= X
2
X
1
+ icx
k−1
∂
∂y
,
a = −1, b = 1.
X
2
=
∂
∂x
− iax
k
∂
∂y
, X
1
=
∂
∂x
− ibx
k
∂
∂y
.
G
a,b
k,c
a, b ab < 0
G
a,b
k,c
k
k
G
a,b
k,c
G
k,λ
G
k,λ
G
a,b
k,c
a, b, c
Re(a) < 0, Re(b) > 0
G
k,λ
f + ψ
x, y, f,
∂f
∂x
, x
k
∂f
∂y
= 0,
k
•
G
k,λ
• G
k,λ
•
ψ
•
ψ
G
a,b
k,c
f + ψ
x, y, f,
∂f
∂x
, x
k
∂f
∂y
= 0.
a = −1, b = 1, c = λ + k G
a,b
k,c
= G
k,λ
.
a = −1, b = 1
k
k k k k
a, b
a = −1, b = 1
a, b, c k
G
a,b
k,c
f + ψ
x, y, f,
∂f
∂x
, x
k
∂f
∂y
= 0.
a, b, c Re(a) < 0, Re(b) > 0 k
(x, y) ∈ Ω R
2
G
a,b
k,c
k
C
2
(
¯
Ω) G
a,b
k,c
G
a,b
k,c
G
m
k,loc
(Ω) S
m
loc
(Ω)
k
k
k
G
a,b
k,c
G
a,b
k,c
k
k
L
1
loc
(R
2
) x, y
G
a,b
k,c
m Ω ⊂ R
n
P (x, D) =
|α|≤m
a
α
(x)D
α
,
x = (x
1
, x
2
, , x
n
) ∈ Ω ⊂ R
n
, α = (α
1
, α
2
, , α
n
)
α
i
∈ N, |α| = α
1
+α
2
+ +α
n
, a
α
(x) ∈ C
∞
(Ω), D
α
=
∂
|α|
i
|α|
∂x
α
1
1
∂x
α
2
2
∂x
α
n
n
.
F (x) ∈ L
1
loc
(Ω)
x
0
∈ Ω P (x, D) F(x)
R
n
P (x, D)F (x) = δ(x − x
0
).
F (x, y) (x, y) ∈ (Ω ×Ω) y ∈ R
n
F (x, y) ∈ L
1
loc
(Ω) x
P (x, D)
P (x, D)F (x, y) = δ(x − y).
P (x, D) =
|α|≤m
a
α
(x)D
α
a
α
(x) ∈ C
∞
(Ω) Ω Ω
Ω,
M u ∈ C
M
(Ω
) P(x, D)u ∈
C
∞
(Ω
) u ∈ C
∞
(Ω
).
P (x, D) Ω
Ω
Ω, u ∈ D
(Ω
) P (x, D)u ∈ C
∞
(Ω
) u ∈ C
∞
(Ω
).
P (x, D) a
α
(x) ∈ A(Ω)
Ω Ω
Ω, u ∈ D
(Ω
) P (x, D)u ∈ A(Ω
)
u ∈ A(Ω
).
P (x, D) a
α
(x) ∈ A(Ω)
Ω Ω
Ω, u ∈ D
(Ω
) P (x, D)u ∈ G
s
(Ω
)
u ∈ G
s
(Ω
).
G
s
(Ω) 1 ≤ s < ∞
f(x) ∈ C
∞
(Ω) K Ω C
α x ∈ K
|∂
α
f(x)| ≤ C
|α|+1
(α!)
s
.
(x, τ
α
)
|α|≤m
∈ (Ω
×
˜
Ω) Φ(x, ∂
α
)
|α|≤m
m
Φ(x, ∂
α
)
|α|≤m
: f(x) −→ Φ(x, ∂
α
f(x))
|α|≤m
,
Φ(x, τ
α
)
|α|≤m
∈ C
∞
(Ω ×
˜
Ω).
Φ(x, ∂
α
)
|α|≤m
Ω Ω
Ω M
f ∈ C
M
(Ω
) Φ(x, ∂
α
f)
|α|≤m
∈ C
∞
(Ω
) f ∈ C
∞
(Ω
)
Φ(x, τ
α
)
|α|≤m
∈ A(Ω ×
˜
Ω)(G
s
(Ω ×
˜
Ω))
Φ(x, ∂
α
)
|α|≤m
Ω
Ω
Ω, M f ∈
C
M
(Ω
) Φ(x, ∂
α
f)
|α|≤m
∈ A(Ω
)(G
s
(Ω
)) f ∈ A(Ω
)(G
s
(Ω
))
Φ(x, τ
α
)
|α|≤m
∈ A(Ω ×
˜
Ω)(G
s
(Ω ×
˜
Ω)),
Φ(x, ∂
α
)
|α|≤m
Ω Ω
Ω, f ∈ C
∞
(Ω
)
Φ(x, ∂
α
f)
|α|≤m
∈ A(Ω
)(G
s
(Ω
)) f ∈ A(Ω
)(G
s
(Ω
))
G
a,b
k,c
G
a,b
k,c
G
a,b
k,c
= X
2
X
1
+ icx
k−1
∂
∂y
,
(x, y) ∈ R
2
; a, b, c ∈ C; Re(a) < 0; Re(b) > 0; i =
√
−1 k
X
1
=
∂
∂x
− ibx
k
∂
∂y
, X
2
=
∂
∂x
− iax
k
∂
∂y
.
f(x, y) Ω
∂
α
f(x, y)
∂x
α
,
∂
β
f(x, y)
∂y
β
,
∂
α+β
f(x, y)
∂x
α
∂y
β
,
x
γ
∂
α+β
f(x, y)
∂x
α
∂y
β
,
∂
α
1
f, ∂
β
2
f, ∂
α,β
1,2
f,
γ
∂
α,β
f.
Re(a) < 0 Re(a) > 0
A
+
= −ax
k+1
+ bu
k+1
+ i(k + 1)(y − v)
A
−
= bx
k+1
− au
k+1
− i(k + 1)(y − v)
R = (x
k+1
+ u
k+1
)
2
+ (k + 1)
2
(y − v)
2
R
1
= (x
k+1
− u
k+1
)
2
+ (k + 1)
2
(y − v)
2
R = A
+
A
−
= −ab(x
2k+2
+ u
2k+2
) + (a
2
+ b
2
)(x
k+1
u
k+1
)
+ (k + 1)
2
(y − v)
2
+ i(k + 1)(y − v)(a + b)(x
k+1
− u
k+1
)
p =
(a − b)
2
x
k+1
u
k+1
R
−1
xu = 0,
0 xu = 0,
M = A
−
c
(k+1)(b−a)
+
A
−
k(b−a)−c
(k+1)(b−a)
−
.
k Re(a) < 0 Re(b) > 0
p /∈ (1, +∞)
p = 1 ⇔ y = v, x = ± u u = 0
A, B, C, D ∈ R, C
2
+ D
2
= 0.
p =
A + iB
C + iD
=
(A + iB)(C − iD)
C
2
+ D
2
=
AC + BD + i(−AD + BC)
C
2
+ D
2
·
p AD = BC.
p p = 0 p =
A
C
p =
B
D
p = (a − b)
2
x
k+1
u
k+1
− ab(x
2k+2
+ u
2k+2
) + (a
2
+ b
2
)x
k+1
u
k+1
+ (k + 1)
2
(y − v)
2
+ i(b + a)(x
k+1
− u
k+1
)(k + 1)(y − v)
−1
.
u = 0 p = 0
u = 0 :
y = v
p =
(a
2
− b
2
)X
−ab(X
2
+ 1) + (a
2
+ b
2
)X
X =
x
k+1
u
k+1
a = m+in, m, n ∈ R, m < 0; b = c+id, c, d ∈
R, c > 0,
p =
(m−c)
2
−(n−d)
2
X +2i(m−c)(n−d)X
(−mc+nd)(X
2
+1)
+(m
2
+ c
2
− n
2
− d
2
)X
+ i
(−md − nc)(X
2
+ 1) + 2(mn + cd)X
−1
.
p
p =
[(m − c)
2
− (n − d)
2
]X
(−mc + nd)(X
2
+ 1) + (m
2
+ c
2
− n
2
− d
2
)X
,
p =
2(m − c)(n − d)X
(−md − nc)(X
2
+ 1) + 2(mn + cd)X
.
(m − c)
2
− (n − d)
2
X
(−md − nc)(X
2
+ 1) + 2(mn + cd)X
= 2(m−c)(n−d)X
(−mc+nd)(X
2
+1)+(m
2
+c
2
−n
2
−d
2
)X
.
X = 0 p = 0 ∈ (1, +∞).
X = 0
(md − nc)(c
2
+ d
2
− m
2
− n
2
)(X − 1)
2
= 0,
md −nc = 0 c
2
+ d
2
−m
2
−n
2
= 0 X
2
−2X + 1 = 0.
md − nc = 0.
p =
(a − b)
2
X
−ab(X
2
+ 1) + (a
2
+ b
2
)X
.
(b) > 0 b = 0, p
p =
a
b
− 1
2
X
−
a
b
X
2
+ 1
+
a
b
2
+ 1
X
.
a, b md − nc = 0
a
b
=
m
c
p =
m
c
− 1
2
X
−
m
c
X
2
+ 1
+
m
c
2
+ 1
X
.
X > 0, −
m
c
> 0 p
p ≤
m
c
− 1
2
X
−
m
c
2X +
m
c
2
+ 1
X
= 1.
X = 1 x
k+1
= u
k+1
x = ±u
c
2
+ d
2
−m
2
−n
2
= 0 c
2
+ d
2
= m
2
+ n
2
,
|a| = |b| = r > 0. a, b
a = re
iϕ
1
, b = re
iϕ
2
,
π
2
< ϕ
1
<
3π
2
, −
π
2
< ϕ
2
<
π
2
,
p =
r
2
(e
iϕ
1
− e
iϕ
2
)
2
X
−r
2
e
iϕ
1
+iϕ
2
(X
2
+ 1) + r
2
(e
2iϕ
1
+ e
2iϕ
2
)X
.
p
p =
−2 cos(ϕ
1
+ ϕ
2
)(1 − cos(ϕ
1
+ ϕ
2
))X
−cos(ϕ
1
+ ϕ
2
)((X
2
+ 1) − 2 cos(ϕ
1
− ϕ
2
)X)
,
p =
[sin 2ϕ
1
+ sin 2ϕ
2
− 2 sin(ϕ
1
+ ϕ
2
)]X
−sin(ϕ
1
+ ϕ
2
)(X
2
+ 1) + (sin 2ϕ
1
+ sin 2ϕ
2
)X
.
p =
2[1 − cos(ϕ
1
− ϕ
2
)]X
(X
2
+ 1) − 2 cos(ϕ
1
− ϕ
2
)X
.
X > 0
p ≤
2[1 − cos(ϕ
1
− ϕ
2
)]X
2X − 2 cos(ϕ
1
− ϕ
2
)X
= 1.
X = 1 x = ±u.
y = v p ≤ 1 x = ±u.
X = 1 x = ±u p = 1
y = v.
p =
(a − b)
2
XU
(−ab)(U
2
+ X
2
) + (a
2
+ b
2
)XU + 1 + 2i(a + b)(X − U)
.
X =
x
k+1
(k + 1)(y − v)
, U =
u
k+1
(k + 1)(y − v)
, XU ≥ 0.
a = m + in, b = c + id, p
p =
[(m − c)
2
− (n − d)
2
]XU
(−md+nc)(X
2
+U
2
)+(m
2
+c
2
−n
2
−d
2
)XU −1−(n+d)(X −U)
p =
2(m − c)(n − d)XU
(−md + nc)(X
2
+ U
2
) + 2(mn + cd)XU + (m + c)(X − U)
.
(cn − md)(m
2
+ n
2
− c
2
− d
2
)(X − U)
2
+
(m − c)(m
2
+ n
2
− c
2
− d
2
)
− 2(n − d)(nc − md)
(X − U) − 2(m −c)(n − d) = 0.
(m
2
+ n
2
− c
2
− d
2
)(nc − md) = 0
X − U =
c − m
nc − md
X − U =
2(n − d)
m
2
+ n
2
− c
2
− d
2
.
nc − md = 0, m
2
+ n
2
− c
2
− d
2
= 0,
X − U =
2(n − d)
m
2
+ n
2
− c
2
− d
2
.
m
2
+ n
2
− c
2
− d
2
= 0, nc − md = 0
X − U =
c − m
(nc − md)
.
(nc − md) = m
2
+ n
2
− c
2
− d
2
= 0,
−2(m − c)(n − d) = 0.
−2(m − c)(n − d) = 0 m = c n = d = 0
m = −c a = −b ∈ R.
p =
4b
2
XU
b
2
(X + U)
2
+ 1
< 1.
X − U =
2(n − d)
m
2
+ n
2
− c
2
− d
2
p =
XU
XU +
(m + c)
2
+ (n − d)
2
(m
2
+ n
2
− c
2
− d
2
)
2
≤ 1, XU ≥ 0.
m = −c n = d. m
2
+ n
2
− c
2
− d
2
= 0
X − U =
c − m
nc − md
,
p =
XU
XU +
−mc
(nc − md)
2
.
−mc > 0, XU ≥ 0, p ≤ 1 m = 0
c = 0
p p ≤ 1; p = 1
y = v, x = ±u, u = 0.
E
a,b
k,c
(x, y, u, v) G
a,b
k,c
.
M = M(x, y, u, v), F (p) = F
a,b
k,c
(p(x, y, u, v)),
E
a,b
k,c
= E
a,b
k,c
(x, y, u, v) = MF (p).
E
a,b
k,c
(x, y, u, v)
G
a,b
k,c
E
a,b
k,c
(x, y, u, v) = δ(x − u, y − v).
E
a,b
k,c
G
a,b
k,c
E
a,b
k,c
= 0
G
a,b
k,c
E
a,b
k,c
(x, y, u, v) = 0
(a − b)
2
u
k+1
x
k+1
R
−2
− ab(u
k+1
− x
k+1
)
2
+
+ (k + 1)
2
(y − v)
2
+ i(k + 1)(y − v)(x
k+1
− u
k+1
)(a + b)
F
(p)
+
1
k + 1
− (a − b)
2
(2k + 1)x
k+1
u
k+1
R
−1
+ k
F
(p)
+
c(c − k(b − a)
(k + 1)
2
(b − a)
2
F (p) = 0.
p(1− p)F
(p) +
k
k + 1
−
2k + 1
k + 1
p
F
(p) +
c(c − k(b − a))
(k + 1)
2
(b − a)
2
F (p) = 0,
F (p)
p(1 − p)F
(p) +
γ −(1 + α + β)p
F
(p) − αβF (p) = 0,
α =
c
(k + 1)(b − a)
, β =
k(b − a) − c
(k + 1)(b − a)
, γ =
k
k + 1
F (p) = C
1
F
c
(k + 1)(b − a)
,
k(b − a) − c
(k + 1)(b − a)
,
k
k + 1
, p
+ C
2
p
1
k+1
F
c + b − a
(k + 1)(b − a)
,
(k + 1)(b − a) −c
(k + 1)(b − a)
,
k + 2
k + 1
, p
:= C
1
F
a,b
k,c;1
(p) + C
2
F
a,b
k,c;2
(p).
F (α, β, γ, p) C
1
, C
2
k F
a,b
k,c
(p)
p /∈ (1, +∞) u = 0 p = 0
G
a,b
k,c
E(x, y, 0, 0) = G
a,b
k,c
C
1
M(x, y, 0, 0) = C
1
G
a,b
k,c
M(x, y, 0, 0)
= −
4(b − a)
1
k+1
πΓ(
1
k+1
)C
1
Γ(
c
(k+1)(b−a)
)Γ(
k(b−a)−c
(k+1)(b−a)
)
δ(x, y),
C
1
= −
Γ(
c
(k+1)(b−a)
)Γ(
k(b−a)−c
(k+1)(b−a)
)
4(b − a)
1
k+1
πΓ(
1
k+1
)
:= C
a,b
k,c
.
u = 0, E
a,b
k,c
(x, y, u, v) F
a,b
k,c
(p)
F
a,b
k,c
(p) p /∈ (1, +∞) p → 1 p → 1
F
a,b
k,c;1
(p) = −
Γ(
1
k+1
)
Γ(
c
(k+1)(b−a)
)Γ(
k(b−a)−c
(k+1)(b−a)
)
log(1 −p) + O(1),
F
a,b
k,c;2
(p) = −
Γ(
k+2
k+1
)
Γ(
c+b−a
(k+1)(b−a)
)Γ(
(k+1)(b−a)−c
(k+1)(b−a)
)
log(1 −p) + O(1).
E
a,b
k,c
(x, y, u, v) x = u, y = v.
p
1
k+1
= ((b −a)
2
R
−1
)
1
k+1
xu → −1 (x, y) → (−u, v)
C
2
= −
Γ(
c+b−a
(k+1)(b−a)
)Γ(
(k+1)(b−a)−c
(k+1)(b−a)
)
4(b − a)
1
k+1
πΓ(
k+2
k+1
)
:= D
a,b
k,c
,
F
a,b
k,c
(p) x = −u, y = v.
c = ±[N(k + 1)(b − a)], c = ±[N(k + 1) + k](b − a),
N |C
a,b
k,c
|, |D
a,b
k,c
| F
a,b
k,c
(p)
u = 0 (x, y) = (u, v).
k a, b, c, k
k a, b, c, k
E
a,b
k,c
(x, y, u, v) = M(C
a,b
k,c
F
a,b
k,c;1
(p) + D
a,b
k,c
F
a,b
k,c;2
(p))
= −
Γ
c
(k+1)(b−a)
)Γ(
k(b−a)−c
(k+1)(b−a)
)F (
c
(k+1)(b−a)
,
k(b−a)−c
(k+1)(b−a)
,
k
k+1
, p
4(b − a)
1
k+1
πΓ(
k
k+1
)A
c
(k+1)(b−a)
+
A
k(b−a)−c
(k+1)(b−a)
−
−
xuΓ(
c+b−a
(k+1)(b−a)
)Γ(
(k+1)(b−a)−c
(k+1)(b−a)
)F (
c+b−a
(k+1)(b−a)
),
(k+1)(b−a)−c
(k+1)(b−a)
,
k+2
k+1
, p)
4(b − a)
−
1
k+1
πΓ(
k+2
k+1
)A
c+b−a
(k+1)(b−a)
+
A
(k+1)(b−a)−c
(k+1)(b−a)
−
G
a,b
k,c
k a, b, c, k
G
a,b
k,c
E
a,b
k,c
(x, y, u, v) = δ(x − u, y − v).
(u, v) ∈ R
2
.
u = 0,
x = u + r cos ϕ; y = v + r sin ϕ.
B
ε
(u, v) =
(x, y) ∈ R
2
: r < ε
,
R
2
ε
(u, v) = R
2
\B
ε
(u, v) =
(x, y) ∈ R
2
: r ≥ ε
.
E
a,b
k,c
∈ L
1
loc
(R
2
(x, y)).
R
2
ε
(u, v), E
a,b
k,c
(x, y, u, v)
E
a,b
k,c
(x, y, u, v) ∈ L
1
(R
2
ε
(u, v)).
B
ε
(u,v)
E
a,b
k,c
(x, y, u, v)dxdy.
(x, y) (u, v) u = 0
x
l
= u
l
+ (lu
l−1
cos ϕ)r +
l(l −1)u
l−2
cos
2
ϕ
2
r
2
+ o(r
2
),
A
+
= (b − a)u
k+1
+ (k + 1)(−au
k
cos ϕ + i sin ϕ)r
−
a(k + 1)ku
k−1
cos
2
ϕ
2
r
2
+ o(r
2
),
A
−
= (b − a)u
k+1
+ (k + 1)(bu
k
cos ϕ − i sin ϕ)r
+
b(k + 1)ku
k−1
cos
2
ϕ
2
r
2
+ o(r
2
),
M = (b −a)
−
k
k+1
u
−k
+ o(1),
X
1
p =
(k + 1)
2
(−bu
k
cos ϕ + i sin ϕ)
(b − a)u
k+2
r + o(r),
R = (b − a)
2
u
2k+2
+ [(b − a)
2
(k + 1)u
2k+1
cos ϕ]r
+
(b − a)
2
(k + 1)ku
2k
cos
2
ϕ
2
+ (k + 1)
2
− abu
2k
cos
2
ϕ + sin
2
ϕ
+ i(b − a)u
k
cos ϕ sin ϕ
r
2
+ o(r
2
),
1 − p =
(k + 1)
2
(−au
k
cos ϕ + i sin ϕ)(bu
k
cos ϕ − i sin ϕ)r
2
(b − a)
2
u
2k+2
+ o(r
2
).
B
ε
(u,v)
E
a,b
k,c
(x, y, u, v)dxdy
=
2π
0
ε
0
(b − a)
−
1
k+1
u
−k
+ o(1)
C
2(b − a)
1
k+1
π
log r + O(1)
rdrdϕ < ∞.
B
ε
(u,v)
E
a,b
k,c
(x, y, u, v)dxdy < ∞.
u = 0 p = 0
F (p) = 1, E
a,b
k,c
(x, y, u, v) = M(x, y, u, v).
(x, y) → (0, v)
x
k+1
= r
k+1
cos
k+1
ϕ,
A
+
= −ar
k+1
cos
k+1
ϕ + i(k + 1)r sin ϕ = r[i(k + 1) sin ϕ −ar
k
cos
k+1
ϕ],
A
−
= br
k+1
cos
k+1
ϕ − i(k + 1)r sin ϕ = r[−i(k + 1) sin ϕ + br
k
cos
k+1
ϕ],
M = r
−
k
k+1
(k + 1)
2
sin
2
ϕ
−
k
k+1
+ o(1)
.
B
ε
(u,v)
E
a,b
k,c
(x, y, u, v)dxdy = C
2π
0
ε
0
r
−
k
k+1
sin
−
k
k+1
ϕ + o(1)
rdrdϕ
= C
+∞
−∞
ε
0
r
−
k
k+1
r
2t
1 + t
2
−
k
k+1
1
1 + t
2
drdt < ∞.
B
ε
(u,v)
E
a,b
k,c
(x, y, u, v)dxdy < ∞.
E
a,b
k,c
(x, y, u, v) ∈ L
1
(R
2
(x, y))
E
a,b
k,c
G
a,b
k,c
.
G
a,b
k,c
E
a,b
k,c
(x, y, u, v) = δ(x − u, y − v),
(G
a,b
k,c
E
a,b
k,c
, ω(x, y)) = ω(u, v) ∀ω(x, y) ∈ C
∞
0
(R
2
).
(G
a,b
k,c
E
a,b
k,c
, ω(x, y)) = (E
a,b
k,c
, G
b,a
k,−c
ω(x, y)).
(E
a,b
k,c
(x, y, u, v), G
b,a
k,−c
ω(x, y)) = lim
ε→0
R
2
ε
(u,v)
E
a,b
k,c
(x, y, u, v)G
b,a
k,−c
ω(x, y)dxdy.
R
2
ε
(u,v)
E
a,b
k,c
(x, y, u, v)G
b,a
k,−c
ω(x, y)dxdy.
R
2
ε
(u,v)
E
a,b
k,c
(x, y, u, v)G
b,a
k,−c
ω(x, y)dxdy
=
R
2
ε
(u,v)
E
a,b
k,c
(x, y, u, v)
X
1
X
2
− icx
k−1
∂
∂y
ω(x, y)dxdy
=
R
2
ε
(u,v)
ω(x, y)G
a,b
k,c
E
a,b
k,c
(x, y, u, v)dxdy
+
r=ε
E
a,b
k,c
(x, y, u, v)
X
2
ω(x, y)(ν
1
− ibx
k
ν
2
) − icx
k−1
ν
2
ω(x, y)
ds
−
r=ε
(ν
1
− iax
k
ν
2
)X
1
E
a,b
k,c
(x, y, u, v)ω(x, y)ds.
B
1
(ω(x, y), a, b, c, k) = X
2
ω(x, y)(ν
1
− ibx
k
ν
2
) − icx
k−1
ν
2
ω(x, y),
B
2
(E
a,b
k,c
(x, y, u, v), a, b, c, k) = (ν
1
− iax
k
ν
2
)X
1
E
a,b
k,c
(x, y, u, v).
R
2
ε
(u,v)
E
a,b
k,c
(x, y, u, v)G
b,a
k,−c
ω(x, y)dxdy =
R
2
ε
(u,v)
ω(x, y)G
a,b
k,c
E
a,b
k,c
(x, y, u, v)dxdy
+
r=ε
E
a,b
k,c
(x, y, u, v)B
1
(ω(x, y), a, b, c, k)ds
−
r=ε
ω(x, y)B
2
(E
a,b
k,c
(x, y, u, v), a, b, c, k)ds
:= I
1
+ I
2
+ I
3
.
G
a,b
k,c
E
a,b
k,c
(x, y, u, v) = 0 R
2
ε
(u, v) I
1
= 0