Tải bản đầy đủ (.pdf) (167 trang)

Hiệu ứng kích thước ảnh hưởng lên tính chất quang của CdS, CdSe và CuInS2

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.05 MB, 167 trang )

BỘ GIÁO DỤC VÀ ÐÀO TẠO VIỆN KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM
VIỆN KHOA HỌC VẬT LIỆU
------------


TRẦN THỊ KIM CHI


Hiệu ứng kích thước
ảnh hưởng lên tính chất quang
của CdS, CdSe và CuInS
2




Luận án Tiến sĩ Khoa học vật liệu








Hà Nội - 2010

BỘ GIÁO DỤC VÀ ÐÀO TẠO VIỆN KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM
VIỆN KHOA HỌC VẬT LIỆU
------------


Trần Thị Kim Chi


Hiệu ứng kích thước
ảnh hưởng lên tính chất quang
của CdS, CdSe và CuInS
2

Chuyên ngành: Vật liệu Quang học, Quang điện tử và Quang tử
Mã số: 62 44 50 05


Luận án Tiến sĩ Khoa học vật liệu


Người hướng dẫn khoa học:
1. PGS. TS. Nguyễn Quang Liêm
2.
PGS. TS. Đỗ Xuân Thành



Hà Nội - 2010
LỜI CÁM ƠN
Lời đầu tiên, tôi xin bày tỏ lòng kính trọng và biết ơn sâu
sắc tới sự hướng dẫn tận tình của PGS TS Nguyễn Quang Liêm và
PGS TS Đỗ Xuân Thành đã dành cho tôi trong suốt quá trình
thực hiện luận án.
Tôi xin chân thành cảm ơn các cán bộ và nghiên cứu sinh
phòng Vật liệu Quang điện tử (PGS TS Trần Kim Anh, KSC Đặng

Quốc Trung, KSC Trần Anh Vũ, KSC Đinh Xuân Lộc, TS Nguyễn
Vũ, ThS Ứng Thị Diệu Thúy, ThS Lê Quang Phương, CN Phạ
m
Song Toàn, NCS Phạm Thị Thủy, NCS Nguyễn Thị Minh Thủy) -
những người đã luôn giúp đỡ, khích lệ, động viên tôi trong suốt
thời gian làm luận án.
Tôi xin chân thành cảm ơn các cán bộ Phòng Thí nghiệm
Trọng điểm (ThS Đỗ Hùng Mạnh, TS Nguyễn Đức Văn, TS Trần
Đăng Thành, NCS Vũ Hồng Kỳ) đã giúp tôi thực hiện phép đo ảnh
vi hình thái, phân tích cấu trúc và chỉnh sửa bản in.
Tôi xin bày tỏ lòng biết ơn sâu sắ
c đến PGS TS Lê Văn Hồng,
PGS TS Vũ Doãn Miên về những ý kiến chuyên môn rất sâu sắc,
giúp tôi hoàn thành tốt hơn luận án.
Tôi xin được gửi lời cám ơn GS Philippe Colomban, TS
Gwénaël Gouadec và các đồng nghiệp ở Phòng thí nghiệm Động lực
học, Tương tác và Phản ứng, Trung tâm nghiên cứu khoa học quốc
gia Pháp đã tận tình giúp đỡ và hướng dẫn tôi trong suốt quá trình
thực tập của tôi tại Phòng thí nghiệm. Các kết quả đo đạc và nghiên
cứu về phổ tán xạ Raman đã được thực hiện tại đây.
Tôi xin chân thành cảm ơn TS Peter Reiss (Trung tâm nghiên
cứu Năng lượng nguyên tử Cộng hòa Pháp – CEA/Grenoble) đã có
sự hợp tác nghiên cứu hiệu quả trong lĩnh vực chế tạo mẫu.
Tôi xin trân trọng cảm ơn Bộ Giáo dục và Đào tạo, Viện Khoa
học V
ật liệu, đã tạo điều kiện thuận lợi cho tôi làm luận án nghiên
cứu sinh.
Nhân dịp này tôi xin dành những tình cảm sâu sắc nhất tới
những người thân trong gia đình: Bố, Mẹ, anh, chị, em đã chia sẻ
những khó khăn, thông cảm và động viên, hỗ trợ tôi.

Cuối cùng tôi xin dành những tình cảm đặc biệt và biết ơn của
mình tới chồng và các con, bằng tình yêu, sự cảm thông, quan tâm
và chia sẻ, đ
ã cho tôi nghị lực, tạo động lực cho tôi thực hiện thành
công luận án.
Hà Nội, ngày tháng năm 2010
Tác giả,


Trần Thị Kim Chi



Lời cam đoan
Tôi xin cam đoan đây là công trình nghiên cứu của riêng
tôi di s hng dn ca PGS TS Nguyn Quang Liờm
v PGS TS Xuõn Thnh. Các số liệu và kết quả này là
trung thực và cha từng đợc ai công bố trong bất cứ công
trình nào khác.

Tác giả luận án



Trn Th Kim Chi
Mục lục

Trang
Danh mục các chữ viết tắt và ký hiệu
Danh mục các bảng

Danh mục các hình vẽ
MỞ ĐẦU 1
Chương 1: VẬT LIỆU BÁN DẪN CẤU TRÚC NANO VÀ TÍNH
CHẤT QUANG CỦA CHÚNG
6
1.1. Giới thiệu về vật liệu nano 6
1.2. Một số loại vật liệu nano, chấm lượng tử bán dẫn
1.2.1. Chấm lượng tử CdS
1.2.2. Chấm lượng tử CdSe
1.2.3. Chấ
m lượng tử CuInS
2

10
10
12
15
1.3. Một số hiệu ứng đặc biệt của vật liệu có kích thước nano mét
1.3.1. Hiệu ứng bề mặt
1.3.2. Hiệu ứng giam giữ lượng tử
17
17
19
1.4. Tính chất quang của chấm lượng tử 28
Kết luận chương 1 32
Chương 2: TỔNG QUAN CÁC PHƯƠNG PHÁP THỰC NGHIỆM
ĐƯỢC SỬ DỤNG TRONG LUẬN ÁN
33
2.1. Các phương pháp chế tạo mẫu 33
2.1.1. Phương pháp phun nóng sử dụng dung môi hữu cơ có

nhiệt độ sôi cao chế tạo vật liệu có cấu trúc nano và
chấm lượng tử bán dẫn
35

2.1.1.1. Nguyên lý chung của quá trình tạo mầm và phát
triển chấm lượng tử
35

2.1.1.2. Phương pháp phun nóng sử dụng dung môi hữu
cơ có nhiệt độ sôi cao
38
2.1.2. Phương pháp nghiền cơ năng lượng cao
40
2.2. Một số phương pháp nghiên cứu vi hình thái và cấu trúc của
vật liệu
44
2.2.1. Ghi ảnh vi hình thái bằng hiển vi điện tử 44
2.2.2. Phương pháp nhiễu xạ tia X 47
2.2.3. Phương pháp quang phổ tán xạ Raman 49
2.3. Mộ
t số phương pháp nghiên cứu tính chất quang của vật liệu 53
2.3.1. Phương pháp phổ hấp thụ 53
2.3.2. Phương pháp phổ phát quang 55
Kết luận chương 2 60
Chương 3: CHẤM LƯỢNG TỬ BÁN DẪN HỢP CHẤT II-VI CdS

61
3.1. Chế tạo chấm lượng tử CdS từ CdS đơn tinh thể 61
3.1.1. Ảnh hưởng của thời gian nghiền đến kích thước của
chấm lượng tử CdS

62
3.1.2. Khảo sát ảnh hưởng của nhiệt độ ủ và thời gian ủ 64
3.2. Nghiên cứu cấu trúc của chấm lượng tử CdS 66
3.2.1. Giản đồ nhiễu xạ tia X 68
3.2.2. Phổ tán xạ Raman 72
3.3. Tính chất quang của chấm lượng tử CdS 77
K
ết luận chương 3 83
Chương 4: CHẤM LƯỢNG TỬ BÁN DẪN HỢP CHẤT II-VI CdSe 84
4.1. Chế tạo chấm lượng tử CdSe từ CdO 84
4.2. Ảnh vi hình thái và cấu trúc của chấm lượng tử CdSe 88
4.2.1. Ảnh vi hình thái 88
4.2.2. Cấu trúc của chấm lượng tử CdSe 89
4.3. Tính chất quang của chấm lượng tử bán dẫn 92
4.3.1. Ảnh hưởng của một số thông số công nghệ chế tạo lên
kích thước của các chấm lượng tử CdSe
93
4.3.2. Hiệ
u suất lượng tử của chấm lượng tử CdSe 98
4.3.3. Hiệu ứng Stark lượng tử trong chấm lượng tử CdSe 99
4.3.4. Quá trình thụ động hóa chấm lượng tử CdSe 104
Kết luận chương 4 108
Chương 5: CHẤM LƯỢNG TỬ BÁN DẪN HỢP CHẤT BA
NGUYÊN TỐ CuInS
2
(CIS)
110
5.1. Chế tạo và nghiên cứu cấu trúc của chấm lượng tử CIS 111
5.1.1. Chế tạo chấm lượng tử CIS 111
5.1.2. Nghiên cứu cấu trúc của chấm lượng tử CIS 112

5.2. Tính chất quang của chấm lượng tử CIS 113
5.2.1. Phổ hấp thụ và huỳnh quang dừng của chấm lượng tử CIS 114
5.2.2. Huỳnh quang phân giải thời gian của chấm lượng tử CIS 117
Kết luận chương 5 130
KẾT LUẬN 131
DANH M
ỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ 133
TÀI LIỆU THAM KHẢO 136


DANH MỤC CÁC CHỮ VIẾT TẮT VÀ KÝ HIỆU

A
II
B
VI
II–VI
NC Tinh thể nano
QD Chấm lượng tử bán dẫn
CIS CuInS
2
HH Lỗ trống nặng
LH Lỗ trống nhẹ
SEM Hiển vi điện tử quét
TEM Hiển vi điện tử truyền qua
HRTEM Hiển vi điện tử truyền qua phân giải cao
XRD Nhiễu xạ tia X
TOPO Trioctylphosphine oxide
DDPA Dodecyl-phosphonic acid
TOP Trioctylphosphine

DDPA Dodecylphosphonic acid
HDA Hexadecylamine
c-CdS CdS cấu trúc lục giác
h-CdS CdS cấu trúc lập phương
p-CdS CdS đa cấu trúc
TO Quang ngang
LO Quang dọc
SO Quang bề mặt
QY Hiệu suất lượng tử
DANH MỤC CÁC BẢNG
STT
Trang
1 Bảng 1.1

Số nguyên tử và năng lượng bề mặt của hạt nano cấu
tạo từ nguyên tử giống nhau giống nhau
7
2 Bảng 3.1

Các đỉnh nhiễu xạ tia X của cấu trúc lục giác và cấu
trúc lập phương của vật liệu CdS
68
3 Bảng 3.2 Vạch phổ Raman và độ bán rộng của tại 300 K và 10 K 73
4 Bảng 3.3 Các vạch phổ Raman trong các báo cáo 74
5 Bảng 3.4 Vị trí đỉnh phổ huỳnh quang và độ
bán rộng tương ứng 81

DANH MỤC HÌNH VẼ
STT
Trang

1 Hình 1.1 Một số thực thể từ nhỏ như nguyên tử (kích thước
khoảng angstron) đến lớn như tế bào động vật (khoảng
một vài chục micron)
6
2 Hình 1.2
Mối quan hệ giữa tỉ số nguyên tử bề mặt và tổng số
nguyên tử với số lớp nguyên tử khác nhau trong một
cấu trúc nano
8
3 Hình 1.3 Cấu trúc vùng năng lượng của bán dẫn có cấu trúc tinh
thể lập phương giả kẽm và wurtzite
20
4 Hình 1.4 Mật độ trạng thái của điện tử tự do trong hệ bán dẫn
21
5 Hình 1.5 (a) Năng lượng của điện tử tự do phụ thuộc vào hàm
parabol; (b) Mật độ trạng thái đối với điện tử tự do
22
6 Hình 1.6
(a) Năng lượng của điệ
n tử tự do phụ thuộc vào
,
x y
kk

theo hàm parabol; năng lượng của điện tử chỉ có thể
nhận các giá trị gián đoạn ứng với
1,2,...
z
n 
(theo

phương
z
); (b) Mật độ trạng thái
2d
()
gE
hệ hai chiều
24
7 Hình 1.7 (a) Trong phạm vi một đường, phân bố trạng thái là
liên tục, vì
0

x
k
. Tuy nhiên, sự phân bố các đường
lại có tính gián đoạn, bởi vì dọc theo các trục
y
k

z
k

chỉ tồn tại các giá trị năng lượng gián đoạn. (b) Mật độ
trạng thái
)(
d1
Eg
trong phạm vi một đường dọc theo
trục
x

k
tỷ lệ với
2/1
E
. Mỗi đường hypecbol trên hình
tương ứng với một trạng thái (
zy
kk
,
) riêng biệt
25
8 Hình 1.8 (a) Vật rắn bị co lại trong cả ba chiều; (b) Vì hiệu ứng
giam giữ, tất cả các trạng thái đều gián đoạn và được
biểu diễn bằng các điểm trong không gian
k
ba chiều.
(c) Chỉ có các mức năng lượng gián đoạn là đươc
phép. (d) Mật độ trạng thái
)(
d0
Eg
dọc theo một chiều
26
9 Hình 1.9 Các dịch chuyển quang các mức năng lượng lượng tử
hóa của điện tử và lỗ trống trong NC bán dẫn
28
10 Hình 1.10 Sự phụ thuộc kích thước của độ rộng vùng cấm của
chấm lượng tử CdSe với bán kính a
30
11 Hình 1.11 Phổ hấp thụ và huỳnh quang tại nhiệt độ phòng của

các chấm lượng tử CdSe với kích thước khác nhau
31
12 Hình 1.12 Sự tă
ng các mức năng lượng lượng tử hóa và sự dịch
xanh của năng lượng vùng cấm của nano tinh thể so
với vật liệu khối
31
13 Hình 2.1 Sự thay đổi của độ quá bão hòa theo thời gian t 36
14 Hình 2.2 Các trạng thái của hỗn hợp bột ở hai pha ban đầu
A và B trong quá trình hợp kim cơ để tạo ra pha mới C
41
15 Hình 2.3a Máy nghiền SPEX 8000 42
16 Hình 2.3b Cối và bi nghiền 42
17 Hình 2.4 Hiện tượng nhiễu xạ xảy ra trên các mặt mạng tinh thể 48
18 Hình 2.5 Mô hình tán xạ Raman 50
19 Hình 2.6 Mô hình năng lượng và quá trình tán xạ 51
20 Hình 2.7
Phổ phát xạ của đèn Halogen trong vùng nhìn thấy 54
21 Hình 2.8

Hệ đo phổ hấp thụ Carry 5000 55
22 Hình 2.9 Sơ đồ khối một hệ đo huỳnh quang thông thường 55
23 Hình 2.10 Hệ đo phổ huỳnh quang phân giải cao 57
24 Hình 2.11 Hệ đo huỳnh quang phân giải thời gian 57
25 Hình 2.12 Sơ đồ khối hệ huỳnh quang phân giải thời gian 58
26 Hình 3.1 Hình ảnh một phiến tinh thể CdS 62
27 Hình 3.2 Ảnh TEM của mẫu CdS nghiề
n trong 1 giờ 63
28 Hình 3.3 Ảnh SEM của mẫu CdS nghiền trong 2,5 giờ 63
29 Hình 3.4 Ảnh SEM của mẫu CdS nghiền trong 6 giờ 64

30 Hình 3.5 Cường độ huỳnh quang của mẫu CdS nghiền trong 6
giờ với nhiệt độ ủ mẫu: 100, 300, 500 và 700
0
C trong
15 phút
65
31 Hình 3.6 Cường độ phổ huỳnh quang của mẫu CdS nghiền
trong 6 giờ, tại 500
0
C với thời gian ủ mẫu 10, 20, 30,
45, 120 phút
65
32 Hình 3.7 Mô hình xếp lớp (a) wurtzite CdS lục giác (h-CDS)
(b) cấu trúc lập phương (c-CdS) (c) faulted c-CD và
(d) CdS polytype (p-CDS).
67
33 Hình 3.8 Giản đồ nhiễu xạ tia X của mẫu CdS
69
34 Hình 3.9 Ảnh nhiễu xạ điện tử của mẫu CdS chưa nghiền (a) và
mẫu CdS sau khi nghiền trong 1 giờ (b và c)
71
35 Hình 3.10 Phổ tán xạ Raman tại nhiệt độ phòng của mẫu CdS
chưa nghiền tại nhiệt độ phòng (Hệ XY1,bước sóng
kích thích 647,1 nm, công suất laser 5mW). Phần bôi
đen là đặc trưng của h-CdS (Bảng 4.3)
72
36 Hình 3.11 Phổ Raman theo thời gian nghiền mẫu
77
37 Hình 3.12 Phổ
hấp thụ của CdS nghiền 2,5 giờ (a) và 6 giờ (b).

78
38 Hình 3.13 Phổ huỳnh quang của CdS đơn tinh thể và CdS nghiền
với thời gian khác nhau
80
39 Hình 3.14 Một số cơ chế tái hợp trong CdS kích thước nano
82
40 Hình 4.1 Sơ đồ chế tạo chấm lượng tử CdSe bằng phương pháp
sử dụng dung môi có nhiệt độ sôi cao
85
41 Hình 4.2 Hoà tan CdO trong hỗn hợp TOPO + HDA + DDPA
87
42 Hình 4.3 Phun dung dịch TOPSe vào dung dịch chứa Cd
87
43 Hình 4.4 Sản phẩm CdSe
87
44 Hình 4.5 Ảnh TEM của các ch
ấm lượng tử CdSe
88
45 Hình 4.6 Phân bố kích thước hạt CdSe tại nhiệt độ xác định
88
46 Hình 4.7 Giản đồ nhiễu xạ tia X của chấm lượng tử CdSe chế
tạo tại 240
0
C và 300
0
C
89
47 Hình 4.8 Phổ hấp thụ và huỳnh quang của chấm lượng tử bán
dẫn CdSe
92

48 Hình 4.9 Phổ hấp thụ của CdSe theo nhiệt độ khác nhau, lần
lượt từ trái sang phải: 240
0
C, 250
0
C, 270
0
C, 290
0
C,
300
0
C
95
49 Hình 4.10 Đồ thị biểu diễn mối liên hệ giữa kích thước hạt và
bước sóng tại đỉnh hấp thụ exciton thứ nhất từ các kết
quả thực nghiệm
96
50 Hình 4.11 Phổ huỳnh quang của CdSe theo nhiệt độ khác nhau
97
51 Hình 4.12 Phổ huỳnh quang của chấm lượng tử CdSe (a) và
Rh.6G (b) để tính hiệu suất lượng tử
99
52 Hình 4.13 Dịch đỉnh phổ huỳnh quang và hấp thụ của chấ
m
lượng tử CdSe lõi sau khi rửa để loại trừ các phân tử
ligand, rồi phân tán trong các dung môi có độ phân
cực khác nhau. Kí hiệu Abs(PL) là hấp thụ (huỳnh
quang), chỉ số 1(2) là số lần làm sạch mẫu
101

53 Hình 4.14 Phân cực tổ hợp của chấm lượng tử với độ phân cực
P
chấm lượng tử
, có các phân tử ligand xung quanh với độ
phân cực P
LG
, hoà tan trong dung môi có độ phân cực
P
SOL

103
54 Hình 4.15 Phổ huỳnh quang của mẫu CdSe phân tán trong nước
với thời gian chiếu tử ngoại khác nhau tương ứng từ
trên xuống: 3000 s, 1500 s, 700 s, 500 s, 400 s, 240 s,
180 s, 100 s, 40 s
105
55 Hình 4.16 Cường độ huỳnh quang mẫu CdSe phân tán trong
nước theo thời gian chiếu tử ngoại
106
56 Hình 4.17 Phổ huỳnh quang của mẫu CdSe phân tán trong
Chloform với thời gian chiếu tử ngoại khác nhau
tương ứng từ trên xuống: 3000 s, 1500 s, 700 s, 500 s,
400 s, 240 s, 180 s, 100 s, 40 s
107
57 Hình 5.1 Giản đồ nhiễu xạ tia X của chấm lượng tử CuInS
2

112
58 Hình 5.2 Phổ hấp thụ của chấm lượng tử CuInS
2

chế tạo ở nhiệt
độ 230
o
C theo thời gian khác nhau 5, 15, 30, 60 phút
113
59 Hình 5.3 Phổ huỳnh quang của chấm lượng tử CuInS
2
chế tạo ở
nhiệt độ 230
o
C trong thời gian 5, 15, 30 và 60 phút
114
60 Hình 5.4 Phổ huỳnh quang của chấm lượng tử CuInS
2
chế tạo
ở nhiệt độ khác nhau: 210, 220, 230
o
C (thời gian lấy
mẫu 30 phút)
116
61 Hình 5.5 Giản đồ nhiễu xạ tia X của CuInS
2
(230
0
C, thời gian
phản ứng 40 phút) và CuInS
2
/ZnS
117
62 Hình 5.6 Ảnh TEM của mẫu CIS chế tạo tại 230

0
C, thời gian
lấy mẫu 40 phút, kích thước cỡ 6 nm
118
63 Hình 5.7 Huỳnh quang của CIS dưới ánh sáng tử ngoại (bán
kính lõi 2–4 nm tương ứng từ trái sang phải), b) Phổ
huỳnh quang của các mẫu tương ứng (λ
ex
= 470 nm)
118
64 Hình 5.8 Phổ hấp thụ và phổ huỳnh quang của mẫu CIS 40
119
65 Hình 5.9 Phổ huỳnh quang phân giải thời gian tại 300 K của
mẫu CIS 40 theo thời gian trễ khác nhau
120
66 Hình 5.10 Phổ huỳnh quang phân giải thời gian tại 300 K của
mẫu CIS10 theo thời gian trễ khác nhau
121
67 Hình 5.11 Vị trí đỉnh năng lượng của hai thành phần phổ của
mẫu CIS 40 tại các thời gian trễ nhau
123
68 Hình 5.12 Phổ huỳnh quang phân giải thời gian của chấm lượng
tử CIS40 tại 300 K theo mật độ công suất kích thích
124
69 Hình 5.13 Phổ huỳnh quang phân giải thời gian của chấm lượng
tử CIS40 tại 300 K, theo mật độ công suất kích thích.
125
70 Hình 5.14 Diện tích phát xạ của hai thành phần phổ theo nhiệt độ 127
71 Hình 5.15 Phân rã thời gian của hai
đỉnh phát xạ tại năng lượng

1,94 eV (hình tam giác), tại năng lượng 1,69 eV (hình
tròn) tại 300 K, đường liền nét là hàm được làm khớp
theo hai hàm exponent.
128
72 Hình 5.16 Đường phân rã thời gian của hai đỉnh phát xạ tại năng
lượng 1,94 eV (hình tam giác), tại năng lượng 1,69
eV (hình tròn) theo nhiệt độ.
129

1

MỞ ĐẦU
Vật liệu có kích thước nano mét thể hiện những tính chất đặc biệt do tỉ
số bề mặt trên khối lớn và có hiệu ứng giam giữ lượng tử khi kích thước so
sánh được với bán kính Bohr. Khi chỉ quan tâm đến kích thước, tên thường
được gọi là các vật liệu nano. Khi có hiệu ứng giam hãm lượng tử, vật liệu
nano được gọi là vật liệu có cấu trúc lượng tử (như giếng l
ượng tử, dây lượng
tử và chấm lượng tử, tùy thuộc vào số chiều hạt tải điện bị giam hãm lượng
tử). Vì vậy, nghiên cứu chế tạo và tính chất của vật liệu nano được quan tâm
thực hiện do ý nghĩa khoa học cơ bản lý thú cũng như triển vọng ứng dụng to
lớn của chúng.
Một số loại chấm lượng tử bán dẫn hợp ch
ất II–VI như CdS, CdSe và
chấm lượng tử bán dẫn hợp chất I–III–VI
2
như CuInS
2
được nghiên cứu mạnh
mẽ trong khoảng 2 thập kỷ qua do triển vọng ứng dụng trong các lĩnh vực

quang–điện tử [42], [83] đánh dấu huỳnh quang y–sinh [62], ứng dụng trong
cấu trúc của pin mặt trời [99] … Kết quả công nghệ tuyệt vời đã đạt được là
có thể chế tạo các chấm lượng tử có độ đồng nhất kích thước cao (độ sai lệch
kích thước chỉ ~5–10%), có chấ
t lượng tinh thể tốt, có hiệu suất phát quang
rất cao (đạt tới 85% [95]) tại những vùng phổ mong muốn do điều khiển/kiểm
soát được kích thước của chấm lượng tử bán dẫn.
Về mặt công nghệ chế tạo vật liệu tinh thể nano, đã có những tổng kết
rất có ý nghĩa, so sánh đánh giá về ưu điểm/hạn chế của từng loại phương
pháp [51]. Với phương pháp “xuất phát từ bé” (bottom–up), có thể kể một số
công nghệ điển hình cho phép chế tạo các tinh thể nano/các chấm lượng tử
bán dẫn đạt chất lượng cao như phương pháp dùng dung môi hữu cơ có nhiệt
độ sôi cao [91], [94], phương pháp chế tạo trong môi trường nước [95],
[117]… Trong các phương pháp này, các chất hoạt động bề mặt đã được sử
2

dụng một cách hợp lý với các tiền chất thành phần để có thể điều khiển kích
thước và hình dạng của các tinh thể nano/chấm lượng tử bán dẫn. Với phương
pháp “xuất phát từ to” (top–down), ví dụ phương pháp nghiền cơ năng lượng
cao, có thể dễ dàng chế tạo lượng lớn vật liệu nano với những ưu việt của nó,
phù hợp với điều kiện
ở Việt Nam. Kích thước và hình dạng của các tinh thể
nano/chấm lượng tử bán dẫn có thể được điều chỉnh bằng năng lượng và thời
gian nghiền cơ.
Ở Việt Nam, trong thời gian đây, những nghiên cứu về chấm lượng tử
bán dẫn CdS và CdSe đã và đang thu hút sự quan tâm của một số cơ sở
nghiên cứu. Có thể tham khảo các kết quả nghiên cứu về vật li
ệu trên tại Kỷ
yếu của các Hội nghị khoa học quốc gia và quốc tế tổ chức tại Việt Nam [4],
[12], và một số luận án tiến sỹ [2], [6].

Chúng tôi lựa chọn thực hiện luận án nghiên cứu “Hiệu ứng kích
thước ảnh hưởng lên tính chất quang của CdS, CdSe và CuInS
2
” với ba
nội dung cụ thể như sau: (1) Nghiên cứu hiệu ứng chuyển pha cấu trúc từ lục
giác sang lập phương khi kích thước của chấm lượng tử nhỏ trong khoảng
một vài nano mét; (2) Nghiên cứu hiệu ứng kích thước thể hiện qua việc thay
đổi độ rộng vùng cấm năng lượng phụ thuộc vào kích thước chấm lượng tử;
(3) Nghiên cứu cơ chế phát quang do tái hợp cặp donor–acceptor trong chấm
l
ượng tử.
Mục đích của luận án
– Nghiên cứu chế tạo chấm lượng tử CdS (bằng phương pháp nghiền cơ
năng lượng cao đi từ vật liệu khối) và CdSe, CuInS
2
(CIS) (bằng phương pháp
phun nóng (hot–injection) sử dụng dung môi hữu cơ có nhiệt độ sôi cao). CIS
được lựa chọn nghiên cứu vì có cấu trúc và độ rộng vùng cấm năng lượng rất
3

tương tự với bán dẫn hợp chất II–VI và là một ví dụ về vật liệu phát quang do
tái hợp cặp điện tử–lỗ trống ở trạng thái donor–acceptor.
– Áp dụng các phương pháp ảnh vi hình thái, phân tích cấu trúc để xác
định kích thước hạt, cấu trúc vật liệu, nghiên cứu ảnh hưởng của điều kiện chế
tạo tới kích thước và chất lượng chấm lượng tử tạo thành. Đồ
ng thời, nghiên
cứu hiệu ứng kích thước qua sự chuyển pha cấu trúc từ pha lục giác sang pha
lập phương khi kích thước chấm lượng tử CdS và CdSe giảm.
– Nghiên cứu tính chất quang (hấp thụ và huỳnh quang) của các chấm
lượng tử CdSe và CIS. Hiệu ứng kích thước được nghiên cứu qua sự thay đổi

độ rộng vùng cấm phụ thuộc kích thước hạt.
– Đi sâu nghiên cứu cơ chế phát quang trong chấm lượng tử bán dẫ
n thong
qua việc nghiên cứu phổ huỳnh quang phân giải thời gian của chấm lượng tử
CIS, qua đó so sánh bản chất tái hợp phát quang trong chấm lượng tử và trong
bán dẫn khối.
Đối tượng nghiên cứu
– Vật liệu bán dẫn II–VI: CdS và CdSe
– Vật liệu bán dẫn hợp chất ba nguyên I–III–VI
2
: CuInS
2
(CIS)

Phương pháp nghiên cứu
Luận án được tiến hành bằng phương pháp nghiên cứu thực nghiệm.
Vật liệu CdS và CdSe, CIS được chế tạo bằng phương pháp nghiền cơ năng
lượng cao và phương pháp phun nóng sử dụng dung môi hữu cơ có nhiệt độ
sôi cao. Vi hình thái và cấu trúc vật liệu được khảo sát bằng phương pháp ghi
ảnh SEM, TEM, ghi giản đồ nhiễu xạ tia X và phổ tán xạ Raman. Tính chất
quang của vật liệu được nghiên cứ
u bằng một số phương pháp quang phổ: hấp
thụ và huỳnh quang.
4

Bố cục và nội dung của luận án
Luận án bao gồm 150 trang với 5 bảng, 72 hình vẽ và đồ thị. Ngoài
phần mở đầu và kết luận, luận án được chia thành 5 chương:
Chương I trình bày tổng quan về vật liệu nano và tính chất quang của
chấm lượng tử bán dẫn. Các dẫn chứng minh họa được lấy trên đối tượng bán

dẫn hợp chất II–VI: CdS và CdSe, và bán dẫn hợp chất ba nguyên I–III–VI
2
:
CuInS
2
(CIS). Những vấn đề được đề cập trong chương này là cơ sở để so
sánh và giải thích trong phần kết quả của luận án.
Chương II trình bày các phương pháp thực nghiệm sử dụng trong luận
án, trong đó mô tả các phương pháp chế tạo vật liệu (phương pháp phun nóng
sử dụng dung môi hữu cơ có nhiệt độ sôi cao và phương pháp nghiền cơ năng
lượng cao), ghi ảnh vi hình thái (SEM, TEM), nghiên cứu cấu trúc (ghi giản
đồ
nhiễu xạ tia X, phổ tán xạ Raman) và tính chất quang của vật liệu (các
phương pháp quang phổ hấp thụ và huỳnh quang).
Chương III trình bày các kết quả nghiên cứu về chấm lượng tử CdS
được chế tạo bằng phương pháp nghiền cơ năng lượng cao (phương pháp xuất
phát từ vật liệu khối) cũng như các kết quả nghiên cứu về ảnh hưởng của
nhiệt độ và thờ
i gian ủ mẫu lên tính chất quang của vật liệu. Ở đây, hiệu ứng
kích thước thứ nhất được quan tâm qua việc nghiên cứu chuyển pha cấu trúc
từ lục giác sang lập phương của chấm lượng tử CdS khi kích thước giảm.
Chương IV trình bày các kết quả nghiên cứu về ảnh hưởng của công
nghệ chế tạo chấm lượng tử CdSe tới kích thước của chúng. Đây là hiệu ứ
ng
kích thước thứ hai được nghiên cứu qua việc mở rộng độ rộng vùng cấm năng
lượng khi kích thước chấm lượng tử CdSe giảm, được chứng minh từ phổ hấp
thụ và phổ huỳnh quang. Hiệu ứng Stark lượng tử trong vùng kích thước nano
5

mét và quá trình thụ động hóa chấm lượng tử CdSe trong nước dưới ánh sáng

tử ngoại cũng được đề cập trong chương này.
Chương V trình bày các kết quả nghiên cứu chấm lượng tử CIS. Trong
chương này, hai kết quả chính được trình bày. Thứ nhất, chế tạo các chấm
lượng tử CIS trong dung môi diesel thông thường, nghiên cứu cấu trúc và tính
chất quang (hấp thụ và huỳnh quang dừng). Kết quả nghiên cứu cho thấy
chấm lượng tử
chế tạo được có chất lượng tốt, thể hiện rõ hiệu ứng kích thước
thứ nhất: đỉnh hấp thụ và huỳnh quang dịch về phía sóng ngắn khi kích thước
chấm lượng tử giảm. Thứ hai, nghiên cứu tái hợp cặp điện tử–lỗ trống ở trạng
thái donor–acceptor trên mẫu CIS chất lượng cao (nhận được từ Trung tâm
nghiên cứu Năng lượng nguyên tử Cộng hòa Pháp – CEA/Grenoble) bằng k

thuật phổ huỳnh quang phân giải thời gian. Kết quả cho thấy bản chất tái hợp
cặp donor–acceptor trong vật liệu khối vẫn xảy ra trong chấm lượng tử CIS
với kích thước nhỏ và tỉ số bề mặt trên khối lớn. Đây cũng chính là hiệu ứng
kích thước thứ ba mà luận án muốn thảo luận.
Cuối cùng là phần kết luận, danh sách những công trình đã công bố liên
quan đến luận án và danh mục tài liệu tham khảo.
Luận án được thực hiện chủ yếu tại Viện Khoa học Vật liệu, Viện Khoa
học và Công nghệ Việt Nam. Một phần nghiên cứu chế tạo các chấm lượng tử
CIS trong dung môi hữu cơ có nhiệt độ sôi cao được thực hiện tại Trung tâm
nghiên cứu Năng lượng nguyên tử Cộng hòa Pháp – CEA/Grenoble. Kết quả
nghiên cứu cấu trúc bằng phương pháp quang phổ
tán xạ Raman được thực
hiện tại Phòng thí nghiệm Động lực học, Tương tác và Phản ứng (LADIR) –
CNRS, Cộng hòa Pháp.


6


CHƯƠNG 1:
VẬT LIỆU BÁN DẪN CẤU TRÚC NANO
VÀ TÍNH CHẤT QUANG CỦA CHÚNG
1.1. Giới thiệu về vật liệu nano
Hiện nay, vì ý nghĩa khoa học cơ bản cũng như triển vọng ứng dụng to
lớn nên các nghiên cứu khoa học–công nghệ, nghiên cứu ứng dụng vật liệu có
cấu trúc nano đang được thực hiện tại nhiều phòng thí nghiệm tiên tiến trên
thế giới. Vật liệu có kích thướ
c cấu trúc nano được hiểu theo nghĩa chung là
kích thước các hạt vật liệu nằm trong vùng một vài nano mét đến nhỏ hơn
100 nm.

Hình 1.1. Một số thực thể từ nhỏ như nguyên tử (kích thước khoảng angstron)
đến lớn như tế bào động vật (khoảng một vài chục micron) [5]
Để có thể hình dung, so sánh về vật liệu có kích thước nano mét, Hình 1.1
trình bày một số thực thể từ nhỏ như nguyên tử (atom, kích thước khoảng
angstron) đến lớn như tế bào động vật (animal cell, khoảng vài chục micron),
7

và vùng kích thước của vật liệu có cấu trúc nano/chấm lượng tử đang được
quan tâm (NCs/QDs, vùng một vài đến một vài chục nano mét cũng là vùng
kích thước của các protein).
Với kích thước nhỏ như vậy, số nguyên tử phân bố trên bề mặt trở nên
rất đáng kể so với số nguyên tử nằm bên trong hạt. Bảng 1 cho biết một số giá
trị điển hình của hạt nano cấu tạo từ
các nguyên tử giống nhau và Hình 1.2
biểu diễn mối quan hệ giữa tỉ số nguyên tử bề mặt và tổng số nguyên tử với số
lớp nguyên tử khác nhau trong một cấu trúc nano.
Bảng 1.1. Số nguyên tử và năng lượng bề mặt của hạt nano cấu tạo từ nguyên
tử giống nhau [53]

Đườn
g kính
hạt nano
(nm)
Số nguyên tử
Tỉ số nguyên
tử trên bề
mặt (%)
Năng lượng bề
mặt (erg/mol)
Năng lượng
bề mặt/Năn
g
lượng tổng
(%)
10 30.000 20 4,08×10
11
7,6
5 4.000 40 8,16×10
11
14,3
2 250 80 2,04×10
12
35,3
1 30 90 9,23×10
12
82,2
Chẳng hạn, với một hạt nano có đường kính 5 nm thì số nguyên tử mà
hạt đó chứa là: 4000 nguyên tử với tỉ số nguyên tử trên bề mặt là 40%, năng
lượng bề mặt là 8,16×10

11
và tỉ số năng lượng bề mặt trên năng lượng toàn
phần là 14,3%. Do vậy, các hiệu ứng hoá–lý, quang phổ liên quan tới trạng
thái bề mặt cần được đặc biệt lưu ý khi nghiên cứu vật liệu có cấu trúc nano.
8


Hình 1.2. Mối quan hệ giữa tỉ số nguyên tử bề mặt và tổng số nguyên
tử với số lớp nguyên tử khác nhau trong một cấu trúc nano [53]
Khi kích thước của vật liệu giảm xuống cỡ nano mét, có hai hiện tượng
đặc biệt xảy ra:
Thứ nhất, tỷ số giữa số nguyên tử nằm trên bề mặt và số nguyên tử trong
cả hạt nano trở nên rất lớn. Mặt khác, năng lượng liên kết của các nguyên tử
bề mặt bị hạ thấp mộ
t cách đáng kể vì chúng không được liên kết một cách
đầy đủ, thể hiện qua nhiệt độ nóng chảy hoặc nhiệt độ chuyển pha cấu trúc
của các hạt nano thấp hơn nhiều so vật liệu khối tương ứng (thí dụ với TiO
2
,
nhiệt độ chuyển pha từ cấu trúc anatase sang cấu trúc rutile khoảng 400
0
C khi
vật liệu có kích thước nano và khoảng 1200
0
C khi vật liệu ở dạng khối). Bên
cạnh đó, cấu trúc tinh thể của hạt và hiệu ứng lượng tử của các trạng thái điện
tử bị ảnh hưởng đáng kể bởi số nguyên tử trên bề mặt, dẫn đến vật liệu ở cấu
trúc nano có nhiều tính chất mới lạ so với vật liệu khối và hứa hẹn mang lại
những
ứng dụng quan trọng trong cuộc sống.

Số lớp nguyên
tử
Tổng số
nguyên tử
Tổng số nguyên tử
bề mặt (%)
Một lớp
Hai lớp
Ba lớp
Bốn lớp
Năm lớp
Bảy lớp
13
55
147
309
561
1415
92
76
63
52
45
35

×