ĐỀ THI THỬ QUỐC GIA 2016
MÔN TOÁN
( Thời gian làm bài 180 phút không kể giao đề )
Câu 1 . (2 điểm ) Cho hàm số y =
21
()
2
x
C
x
+
−
1. Kháo sát sự biến thiên và vẽ đồ thị hàm số (C )
2. Viết phương trình tiếp tuyến với đồ thị hàm số (C ) biết hệ số góc của tiếp tuyến bằng -5 .
Câu 2
.( 0.5 điểm )Giải bất phương trình : log
3
(x – 3 ) + log
3
(x – 5 ) < 1
Câu 3
.(1 điểm ) Tính tích phân : I =
2
1
1
x
xdx−
∫
Câu 4
( 1 điểm ) Cho hình chóp S.ABCD có đáy là hình thang vuông tại A,D, SA vuông góc
với đáy . SA = AD= a ,AB = 2a .
1 . Tính thể tích khối chóp S.ABC .
2 . Tính khoảng cách giữa AB và SC .
Câu 5
.(1 điểm ) Trong không gian O.xyz cho A(1;2;3) , B(-3; -3;2 )
1. Viết phương trình mặt cầu đường kính AB .
2. Tìm điểm M nằm trên trục hoành sao cho M cách đều hai điểm A, B .
Câu 6
. (1 điểm ) Giải phương trình : 2sin2x - cos2x = 7sinx + 2cosx – 4
Câu 7
.(0.5 điểm ) Gọi T là tập hợp các số tự nhiên gồm 4 chữ số phân biệt được chọn từ các số
1,2,3,4,5,6,7 . Chọn ngẫu nhiên 1 số từ tập T . hoctoancapba.com
Tính xác suất để số được chọn lớn hơn 2015 .
Câu 8
. ( 1điểm ) Trong mặt phẳng Oxy cho tam giác ABC vuông tại A . B,C là hai điểm đối
xứng nhau qua gốc tọa độ .Đường phân giác trong góc B của tam giác có phương trình
x + 2y - 5= 0 . Tìm tọa độ các đỉnh của tam giác biết đường thẳng AC đi qua K(6;2)
Câu 9
. ( 1 điểm ) Giải hệ phương trình
()
2
2
99549 7
219 7 7
xxyxy y
x
yxyx
⎧
++−+ =
⎪
⎨
−+ += − + −
⎪
⎩
y
Câu 10
.(1 điểm ) Cho a,b,c thuôc đoạn [1;2] . Tìm giá trị nhỏ nhất của biểu thức
P =
()
()
2
2
4
ab
cabbcca
+
+++
.
- Hết -
Họ và tên thí sinh ……………………………… số báo danh…………………………….
CÂU NỘI DUNG ĐIỂM
Câu 1
y =
21
()
2
x
C
x
+
−
1
TXĐ : D = R \
{
}
2
y’ =
()
2
5
2x
−
−
< 0 với mọi x thuộc D
Hàm số nghịch biến trên các khoảng (-
∞
;2 ) và (2 ; +
∞
) , hàm số không
có cực trị
0.25
2
lim ,
x
y
−
→
=−∞
2
lim
x
y
+
→
=
+∞
nên đường thẳng x = 2 là tiệm cận đứng của đồ
thị
lim lim 2
xx
yy
→−∞ →+∞
==
nên đường thẳng y = 2 là tiệm cận ngang của đồ thị
0.25
Bảng biến thiên
x -
∞
2 + ∞
y’ - -
+
∞
2
2
-
∞
0.25
Đồ thị cắt trục tung tại (0 ;
1
2
−
) , cắt trục hoành tại (
1
2
−
; 0) . điểm I(2;2)
là tâm đối xứng của đồ thị .
y
2
O 2 x
0.25
2
Gọi M(x
0
;y
0
) là tiếp điểm , k là hệ số góc của tiếp tuyến . phương trình
tiếp tuyến tại M có dạng : y = k(x- x
0
) + y
0 ,
y’
()
2
5
2
x
−
−
0.25
Hệ số góc k = -5
⇔
y’(x
0
) = -5
⇔
(x
0
– 2)
2
= 1
⇔
x
0
= 3 hoặc x
0
= 1 0.25
Với x
0
= 3 thì M(3;7) phương trình tiếp tuyến là y = -5x + 22 0.25
Với x
0
= 1 thì M(1;-3) phương trình tiếp tuyến là y = -5x + 2 0.25
Câu 2 Giải bất phương trình : log
3
(x – 3 ) + log
3
(x – 5 ) < 1 (*)
ĐK: x > 5
(*) log
3
(x – 3 )(x - 5) < 1 ⇔
⇔
(x – 3 )( x - 5) < 3 0.25
⇔ x
2
– 8x +12 < 0 2 < x < 6 ⇔
Kết hợp ĐK thì 5 < x < 6 là nghiệm của bất phương trình 0.25
Câu 3
Tính tích phân : I =
2
1
1
x
xdx−
∫
Đặt
1
x
− = t thì x = t
2
+ 1 , dx = 2tdt
Đổi cận : x = 1 thì t = 0 ; x = 2 thì t = 1 0.25
I = 2 = 2
()
1
22
0
1tt+
∫
dt t
()
1
42
0
ttd+
∫
0.25
= 2 (
53
53
tt
+ )
1
0
=
16
15
0.5
Câu 4
H
E
C
B
D
A
S
1 Tính thể tích khối chóp S.ABC
SA vuông góc với mp đáy nên SA là đường cao của khối chóp , SA = a
Trong mặt phẳng đáy từ C kẻ CE // DA , E thuộc AB suy ra CE vuông
góc với AB và CE = DA = a là đường cao của tam giác CAB
0.25
Diện tích tam giác là S =
1
2
CE.AB = a
2
Thể tích khối chóp S.ABC là V =
1
3
a
3
0.25
2 Tính khoảng cách giữa AB và SC
Ta có AB//DC nên d(AB,SC) = d(AB, SDC ) . Trong mặt phẳng (SAD)từ
A kẻ AH vuông góc với SD (1) , H thuộc SD
Ta có DC vuông góc với AD , DC vuông góc SA nên DC vuông góc với
mp(SAD) suy ra DC vuông góc AH (2) . hoctoancapba.com
Từ (1) và (2) suy ra AH vuông góc với (SDC)
0.25
AH = d(AB, SDC) = d(AB , SC )
Trong tam giác vuông SAD ta có
22
11
A
HAD
=
+
22
12
SA a
=
⇒ AH =
2
a
0.25
Câu 5
1
Gọi I là trung điểm của AB thì I(-1;
1
2
−
;
5
2
) là tâm mặt cầu . Bán kính
mặt cầu R
2
= IA
2
= 21/2
0.25
Phương trình mặt cầu (x+1)
2
+(y +
1
2
)
2
+(z
5
2
−
)
2
= 21/2
0.25
2
M nằm trên trục hoành nên M(x;0;0) .
M
A
u
uur
(1-x ;2;3) ,
M
B
u
uur
(-3-x;-3;2).
0.25
M cách đều A , B tức là MA
2
= MB
2
Hay (1-x)
2
+13 = (-3-x)
2
+13 x = 1 ⇔
Vậy M(1;0;0) thỏa mãn yêu cầu bài toán . 0.25
Câu 6 Giải phương trình : 2sin2x - cos2x = 7sinx + 2cosx – 4
4sinxcosx – 2cosx +2sin
2
x - 1– 7sinx + 4 = 0 ⇔
2cosx(2sinx -1) + 2sin
2
x -7sinx +3 = 0 ⇔
0.25
2cosx(2sinx -1) + (sinx -3)(2sinx – 1) = 0 ⇔
(2sinx -1) (sinx + 2cosx – 3) =0
⇔
0.25
sinx =
⇔
1
2
Hoặc sinx + 2cosx – 3 =0
Ta có : sinx + 2cosx – 3 =0 vô nghiệm vì 1
2
+2
2
< 3
2
0.25
Phương trình tương đương sinx =
1
2
⇔
x=
2
6
k
π
π
+
hoặc x=
5
2
6
k
π
π
+
0.25
Câu 7
Số phần tử của tập hợp T là
4
7
A
= 840
Gọi
abcd
là số tự nhiên gồm 4 chữ số phân biệt được chọn từ các chữ số
1,2,3,4,5,6,7 và lớn hơn 2015.
Vì trong các chữ số đã cho không chứa chữ số 0 nên để có số cần tìm thì
a 2
≥
0.25
Vậy có 6 cách chọn a . Sau khi chọn a thì chọn b,c,d có
3
6
A
cách chọn
Xác suất cần tìm là P =
3
6
4
7
6A
A
=
6
7
0.25
Câu 8 Điểm B nằm trên đường thẳng x + 2y – 5 = 0 nên B(5 – 2b ; b)
B ; C đối xứng nhau qua O nên C(2b – 5 ; - b ) và O thuộc BC 0.25
Gọi I là điểm đối xứng của O qua phân giác góc B suy ra I(2;4)
B
I
uur
(2b – 3 ; 4 – b ) ,
CK
(11 – 2b ; 2 + b)
uuur
Tam giác ABC vuông tại A nên
.
B
ICK
u
uuruuur
= 0
⇔
- 5b
2
+ 30b – 25 = 0
⇔
b= 1 hoặc b= 5
0.25
Với b= 1 thì B(3;1) , C(-3;-1) suy ra A(3;1) nên loại 0.25
Với b= 5 thì B(- 5, 5 ), C(5 ; -5) suy ra A(
31 17
;
55
)
0.25
Câu 9
Giải hệ phương trình
()
2
2
99549 7 (1)
219 7 7 (2)
xxyxy y
xy xy x y
⎧
++−+ =
⎪
⎨
−+ += − + −
⎪
⎩
Đk : x . Nếu x = y thì (2) vô nghiệm nên x > y
0y≥≥
(2)
⇔
2xy−+
-
77
x
y−
+ 1 – [3(x- y )]
2
= 0
0.25
⇔
()()
26 6
13 3 13 3 0
277
xy
xy xy
xy x y
−+
+− + + − =
−+ + −
⇔
() ()
2
13 3 13 3 0
277
xy xy
xy x y
⎡⎤
−+ ++− =
⎢⎥
−++ −
⎢⎥
⎣⎦
x > y 0 nên
≥
(
2
13 3
277
)
x
y
xy x y
⎡⎤
++ −
⎢
−++ −
⎢
⎣
⎥
⎥
⎦
> 0 suy ra 1–3x + 3y =0
0.25
Thay y = x –
1
3
vào phương trình (1) ta được hoctoancapba.com
9x
2
+ 9x(x -
1
3
) + 5x – 4(x -
1
3
) + 9
1
3
x
−
= 7
⇔ 18x
2
– 8x + 6x -
8
3
+ 9
1
3
x
−
- 3 = 0
⇔ 2x(9x – 4 ) +
2
3
(9x – 4 ) +3(
93
x
−
- 1 ) = 0
0.25
⇔ (9x – 4 )
23
2
3
931
x
x
⎛⎞
++
⎜
⎜
−+
⎝⎠
⎟
⎟
= 0
⇔
x =
4
9
vì x > 0
Với x =
4
9
thì y =
1
9
. Vậy hệ có nghiệm (x;y) = (
4
9
;
1
9
)
0.25
Câu 10
Cho a,b,c thuôc đoạn [1;2] . Tìm GTNN của P =
()
()
2
2
4
ab
cabbcca
+
+++
.
P =
()
()
2
2
4
ab
cabbcca
+
+++
=
()
()
2
2
44
ab
cabca
+
+++b
Ta có 4ab (a + b)
2
nên P ≤ ≥
()
()()
2
2
2
4
ab
cabcab
+
++++
=
2
2
14
ab
cc
ab ab
cc cc
⎛⎞
+
⎜⎟
⎝⎠
⎛⎞⎛
++++
⎜⎟⎜
⎝⎠⎝
⎞
⎟
⎠
0.25
Đặt t =
ab
cc
+
vì a, b , c thuộc [1;2] nên t thuộc [1;4]
Ta có f(t) =
2
2
44
t
tt++
, f’(t) =
()
2
2
2
42
14
tt
tt
+
++
> 0 với mọi t thuộc [1;4]
0.25
Hàm số f(t) đồng biến trên [1;4] nên f(t) đạt GTNN bằng
1
6
khi t = 1
0.25
Dấu bằng xảy ra khi a = b ;
ab
c
+
= 1, a,b,c thuộc [1;2]
⇔
a =b = 1 và c =2
Vậy MinP =
1
6
khi a =b = 1 và c = 2
0.25
( MỌI CÁCH GIẢI ĐÚNG ĐỀU CHO ĐIỂM THEO THANG ĐIỂM TƯƠNG ỨNG