Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (62.11 KB, 1 trang )
Gieo một con súc sắc cân đối và đồng chất
4. Gieo một con súc sắc cân đối và đồng chất. Giả sử con súc sắc xuất hiện mặt b chấm. Xét phương trình
x2 + bx + 2 = 0. Tính xác suất sao cho:
a) Phương trình có nghiệm
b) Phương trình vô nghiệm.
c) Phương trình có nghiệm nguyên.
Bài giải:
Không gian mẫu là Ω = {1, 2, 3, 4, 5, 6}. Số kết quả có thế có thể có là 6 (hữu hạn); các kết quả đồng khả
năng.
Ta có bảng:
a) Phương trình x2 + bx + 2 = 0 có nghiệm khi và chỉ khi ∆ = b2 - 8 ≥ 0 (*). Vì vậy nếu A là biến cố:
"Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm"
thì A = {3, 4, 5, 6}, n(A) = 4 và
P(A) =
=
.
b) Biến cố B: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 vô nghiệm" là biến cố A, do
đó theo qui tắc cộng xác suất ta có
P(B) = 1 - P(A) =
.
c) Nếu C là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm nguyên" thì
C = {3}, vì vậy
P(C) =