Tải bản đầy đủ (.pdf) (519 trang)

Safety and quality issues in fish processing

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.73 MB, 519 trang )


Safety and quality issues in
fish processing
Edited by
H. Allan Bremner


Published by Woodhead Publishing Limited
Abington Hall, Abington
Cambridge CB1 6AH
England
www.woodhead-publishing.com
Published in North America by CRC Press LLC
2000 Corporate Blvd, NW
Boca Raton FL 33431
USA
First published 2002, Woodhead Publishing Limited and CRC Press LLC
ß 2002, Woodhead Publishing Limited
The authors have asserted their moral rights.
This book contains information obtained from authentic and highly regarded sources.
Reprinted material is quoted with permission, and sources are indicated. Reasonable
efforts have been made to publish reliable data and information, but the authors and
the publishers cannot assume responsibility for the validity of all materials. Neither the
authors nor the publishers, nor anyone else associated with this publication, shall be
liable for any loss, damage or liability directly or indirectly caused or alleged to be
caused by this book.
Neither this book nor any part may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, microfilming and
recording, or by any information storage or retrieval system, without permission in
writing from the publishers.
The consent of Woodhead Publishing Limited and CRC Press LLC does not extend


to copying for general distribution, for promotion, for creating new works, or for
resale. Specific permission must be obtained in writing from Woodhead Publishing
Limited or CRC Press LLC for such copying.
Trademark notice: Product or corporate names may be trademarks or registered
trademarks, and are used only for identification and explanation, without intent to
infringe.
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.
Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress.
Woodhead Publishing Limited ISBN 1 85573 552 0
CRC Press ISBN 0-8493-1540-9
CRC Press order number: WP1540
Cover design by The ColourStudio
Project managed by Macfarlane Production Services, Markyate, Hertfordshire
()
Typeset by MHL Typesetting Limited, Coventry, Warwickshire
Printed by TJ International, Padstow, Cornwall, England


Contents

List of contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

xiii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H. Allan Bremner, Allan Bremner and Associates, Mount Coolum


1

Part 1 Ensuring safe products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

2

3

HACCP in the fisheries industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D. R. Ward, North Carolina State University, Raleigh
2.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2
HACCP principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3
Hazards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4
Developing and implementing HACCP plans . . . . . . . . . . . . . . . .
2.5
Sanitation standard operating procedures (SSOPs) . . . . . . . . . . .
2.6
The new millennium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HACCP in practice: the Thai fisheries industry . . . . . . . . . . . . . . . .
S. Suwanrangsi, Thai Department of Fisheries, Bangkok

3.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
The development of HACCP systems in Thailand . . . . . . . . . . .
3.3
HACCP methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4
Common problems in HACCP implementation . . . . . . . . . . . . . .
3.5
Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5
5
7
10
11
13
15
16
16
18
18
19
20
22
26


vi


Contents

4

5

6

7

3.6
Sources of further information and advice . . . . . . . . . . . . . . . . . . .
Appendix: Documented HACCP-based Quality Program . . . . . . . . . . . .

27
29

HACCP in the fish canning industry . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L. Ababouch, FAO, Rome
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2
The canning process, safety and spoilage . . . . . . . . . . . . . . . . . . . .
4.3
The regulatory context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4
Hazards in fish canning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5
Spoilage of canned fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6

The application of GMP in the fish canning industry . . . . . . . .
4.7
The application of HACCP in the fish canning industry . . . . .
4.8
Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9
Sources of further information and advice . . . . . . . . . . . . . . . . . . .
4.10 References and further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

Improving the control of pathogens in fish products . . . . . . . . . . .
L. Nilsson and L. Gram, Danish Institute for Fisheries Research,
Lyngby
5.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2
Microbial health hazards in fish products . . . . . . . . . . . . . . . . . . . .
5.3
Traditional preservation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4
New preservation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5
Biological preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6
Use of lactic acid bacteria for food fermentation . . . . . . . . . . . .
5.7
Non-thermal food processing techniques . . . . . . . . . . . . . . . . . . . . .
5.8
Conclusion and future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.9
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Identifying allergens in fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S. Yamada and E. Zychlinsky, Hitachi Chemical Diagnostics Inc.,
Mountain View; and H. Nolte, University of Copenhagen
6.1
Introduction: the pattern of fish allergy . . . . . . . . . . . . . . . . . . . . . .
6.2
Materials and methodology for identifying allergens:
the case of tuna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3
Analyzing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4
Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5
Sources of further information and advice . . . . . . . . . . . . . . . . . . .
6.6
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Identifying heavy metals in fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J. Oehlenschla¨ger, Institute for Fishery Technology and Quality,
Hamburg
7.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2
Mercury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31
32
34
35

39
43
43
51
51
51
54

54
55
58
60
62
72
72
73
74
85

85
87
89
92
92
93
95

95
97



Contents
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
8

9

Lead
.......................................................
Cadmium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Zinc
.......................................................
Tin
.......................................................
Aluminium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sources of further information and advice . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fishborne zoonotic parasites: epidemiology, detection and
elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K. D. Murrell, Danish Centre for Experimental Parasitology,
Frederiksberg
8.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2
Parasites of marine fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3
Parasites of freshwater fish: nematodes . . . . . . . . . . . . . . . . . . . . . .
8.4
Parasites of freshwater fish: cestodes . . . . . . . . . . . . . . . . . . . . . . . .
8.5
Parasites of freshwater fish: trematodes . . . . . . . . . . . . . . . . . . . . . .
8.6
Prevention and decontamination: marine fish . . . . . . . . . . . . . . . .
8.7
Prevention and decontamination: freshwater fish . . . . . . . . . . . . .
8.8
Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.9
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rapid detection of seafood toxins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
G. Palleschi, D. Moscone, L. Micheli and D. Botta, University of Rome
9.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2
Immunosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3
Domoic acid detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4
Okadaic acid detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.5
Saxitoxin detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6
Prototype evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7
Conclusion and future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.8
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vii
100
102
104
105
105
106
107
107
108

114

114
115
118
119
123
128

132
137
138
142
142
143
144
147
151
156
156
157
160

Part II Analysing quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

161

10 Understanding the concepts of quality and freshness in fish . .
H. Allan Bremner, Allan Bremner and Associates, Mount Coolum
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Quality and freshness as concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 Other approaches to concepts of quality . . . . . . . . . . . . . . . . . . . . .
10.4 Quality as a driving force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

163
163
164
167
169



viii

Contents
10.5
10.6
10.7
10.8

Freshness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

170
170
171
171

11 The meaning of shelf-life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A. Barbosa, University of Porto; H. Allan Bremner, Allan Bremner
and Associates, Mount Coolum; and P. Vaz-Pires, University of Porto
11.1 Introduction: the concept of shelf-life . . . . . . . . . . . . . . . . . . . . . . . .
11.2 The beginning of shelf-life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 The end of shelf-life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4 Are there several shelf-lives? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5 Do we need the expression shelf-life? . . . . . . . . . . . . . . . . . . . . . . .
11.6 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.7 Sources of further information and advice . . . . . . . . . . . . . . . . . . .

11.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

173

12 Modelling and predicting the shelf-life of seafood . . . . . . . . . . . . .
P. Dalgaard, Danish Institute for Fisheries Research, Lyngby
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Modelling of shelf-life and quality attributes determined in
product storage trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.3 Modelling of microbial kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.4 Validation of shelf-life models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.5 Application software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.6 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The role of enzymes in determining seafood color, flavor
and texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N. Haard, University of California, Davis
13.1 Introduction: the importance of enzymes in postmortem
fish
.......................................................
13.2 Enzymes in fish myosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.3 Postmortem physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.4 Biochemical changes in post-rigor muscle . . . . . . . . . . . . . . . . . . .
13.5 Enzymes and seafood color and appearance . . . . . . . . . . . . . . . . .
13.6 Enzymes and seafood flavor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.7 Enzymes and seafood texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.8 The use of enzymes in seafood processing and quality
control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.9 Enzymes as seafood processing aids . . . . . . . . . . . . . . . . . . . . . . . . .
13.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


173
174
176
178
184
184
186
187
191
191
192
199
208
211
212
213

13

220

220
221
223
226
230
233
235
238

238
243


Contents

ix

14 Understanding lipid oxidation in fish . . . . . . . . . . . . . . . . . . . . . . . . . .
I. P. Ashton, Unilever R&D, Sharnbrook
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2 The role of lipolysis in rancidity development . . . . . . . . . . . . . . .
14.3 Lipid oxidation reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.4 Methods to control lipid oxidation and off-flavour
development in fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5 The direct application of antioxidant(s) to fish . . . . . . . . . . . . . . .
14.6 Modification of the diet of farmed fish . . . . . . . . . . . . . . . . . . . . . .
14.7 Modified atmosphere and vacuum packaging . . . . . . . . . . . . . . . .
14.8 The effects of freezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.9 Conclusion and future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.10 Sources of further information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.12 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

267
267
272
273
274
275

276
277
285

Part III Improving quality within the supply chain . . . . . . . . . . . . . . . . .

287

15 Quality chain management in fish processing . . . . . . . . . . . . . . . . .
M. Frederiksen, Danish Institute of Fisheries Research, Lyngby
15.1 Introduction: the fish supply chain . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.3 Organising quality chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.4 An open price settling system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.5 Quality assurance systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.6 Maintaining the cold chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.7 Product traceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.8 Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.9 Organising a chain management system . . . . . . . . . . . . . . . . . . . . .
15.10 A common chain management philosophy . . . . . . . . . . . . . . . . . . .
15.11 Communication and cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.12 Developing quality chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.13 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

289

16 New non-thermal techniques for processing seafood . . . . . . . . . .
M. Gudmundsson and H. Hafsteinsson, Technological Institute of
Iceland, Reykjavik

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.2 The potential application of high pressure . . . . . . . . . . . . . . . . . . .
16.3 Effect on microbial growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.4 Effect on seafood quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.5 Other uses of high pressure and future trends . . . . . . . . . . . . . . . .
16.6 The potential application of high-intensity
pulsed electric fields (PEF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

254
254
256
261

289
291
293
295
296
296
297
298
299
299
301
302
305
306
308

308

308
309
310
317
318


x

Contents
16.7
16.8
16.9
16.10
16.11

Effect on microbial growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Effect on seafood quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Future trends in PEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

319
320
321
323
329

17 Lactic acid bacteria in fish preservation . . . . . . . . . . . . . . . . . . . . . . .
G. M. Hall, Loughborough University

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.2 The lactic acid bacteria (LAB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.3 Inhibitory effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.4 Probiotic effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.5 LAB fermentation of foods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.6 LAB fermentation of fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.7 LAB in ensilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.8 LAB fermentation of food fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.9 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.10 Sources of further information and advice . . . . . . . . . . . . . . . . . . .
17.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

330

18 Fish drying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P. E. Doe, University of Tasmania, Hobart
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.2 The drying process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.3 Spoilage of smoked, cured and dried fish . . . . . . . . . . . . . . . . . . . .
18.4 Water activity and its significance . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.5 Drying methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.6 Dried and cured fish products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.7 Recent developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.8 Quality assurance and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19 Quality management of stored fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E. Martinsdo´ttir, Icelandic Fisheries Laboratories, Reykjavik
19.1 Introduction: quality indices for fish . . . . . . . . . . . . . . . . . . . . . . . . .
19.2 Guidelines for sensory evaluation of fish . . . . . . . . . . . . . . . . . . . .
19.3 Sensory evaluation of fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19.4 Developing a quality index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.5 Using quality indices in storage management and
production planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.6 Keeping fish under different storage conditions . . . . . . . . . . . . . .
19.7 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

330
330
332
334
335
337
343
345
346
346
347
350
350
351
351
352
354
354
355
356
358
360

360
361
363
367
369
370
371
374
378


Contents
20 Maintaining the quality of frozen fish . . . . . . . . . . . . . . . . . . . . . . . . .
N. Hedges, Unilever R&D, Sharnbrook
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.2 Frozen supply chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.3 Freezing of fish tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.4 Texture and flavour changes on frozen storage . . . . . . . . . . . . . .
20.5 Texture changes on frozen storage . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.6 Flavour changes on frozen storage . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.7 Pre-freezing factors influencing storage stability . . . . . . . . . . . . .
20.8 The effect of freezing rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.10 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.11 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21 Measuring the shelf-life of frozen fish . . . . . . . . . . . . . . . . . . . . . . . . .
H. Rehbein, Institute of Fishery Technology and Fish Quality,
Hamburg
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21.2 Deterioration in frozen fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.3 Indicators of deterioration in frozen fish . . . . . . . . . . . . . . . . . . . . .
21.4 Biochemical indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.5 Physical indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.6 Sensory assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 Enhancing returns from greater utilization . . . . . . . . . . . . . . . . . . . .
A. Gildberg, Norwegian Institute of Fisheries and Aquaculture
Research, Tromsø
22.1 Introduction: the range of byproducts . . . . . . . . . . . . . . . . . . . . . . . .
22.2 Physical products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.3 Products from enzymatic modifications . . . . . . . . . . . . . . . . . . . . . .
22.4 Functional and pharmaceutical byproducts . . . . . . . . . . . . . . . . . . .
22.5 Useful enzymes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.6 Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.7 Sources of further information and advice . . . . . . . . . . . . . . . . . . .
22.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 Species identification in processed seafoods . . . . . . . . . . . . . . . . . . . .
C. G. Sotelo and R. I. Pe´rez-Martı´n, Instituto de Investigaciones
Marinas, Vigo
23.1 Introduction: the importance of species identification . . . . . . . .
23.2 The problem of species identification in seafood products . . .
23.3 The use of biomolecules as species markers . . . . . . . . . . . . . . . . .

xi
379
379
380
381

383
384
389
392
397
398
399
400
400
407

407
407
411
412
415
417
419
419
425

425
427
430
435
438
440
441
442
450


450
451
452


xii

Contents
23.4

The use of DNA for species identification:
DNA integrity and the effect of processing . . . . . . . . . . . . . . . . . .
23.5 Polymerase Chain Reaction (PCR) techniques . . . . . . . . . . . . . . .
23.6 Methods not requiring a previous knowledge of the
sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.7 Methods using sequence information . . . . . . . . . . . . . . . . . . . . . . . . .
23.8 Future trends: rapid methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.9 Sources of further information and advice . . . . . . . . . . . . . . . . . . .
23.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

456
456
458
460
465
467
467

24


Multivariate spectrometric methods for determining
quality attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B. M. Jørgensen, Danish Institute for Fisheries Research, Lyngby
24.1 Introduction to multivariate spectroscopic methods . . . . . . . . . .
24.2 Near-infrared (NIR)spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24.3 Fluorescence spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24.4 Nuclear magnetic resonance (NMR) sprectroscopy . . . . . . . . . .
24.5 Future trends and sources and further information and
advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

490
491

Index

495

.......................................................

475
475
476
481
484


Contributors


Chapters 1 and 10

Chapter 2

Professor H. Allan Bremner
Allan Bremner and Associates
21 Carrock Court
Mount Coolum
Queensland 4573
Australia

Donn R. Ward
Professor and Associate Head
N.C. State University
College of Agriculture and Life
Sciences
Department of Food Science
Box 7624
Raleigh NC 27695
USA

Tel/Fax: +61(0)7 5446 2560
E-mail:
Formerly at
Danish Institute for Fisheries
Research
Department of Seafood Research
Building 221 Søltofts Plads
Technical University of Denmark
DK-2800 Kgs. Lyngby

Denmark
E-mail:

Tel: +1 919 515 2951
Fax: +1 919 515 4694
E-mail:

Chapter 3
Ms Sirilak Suwanrangsi
Special Exchange Projects Officer
(Thailand)
Fish, Seafood and Production
Division
Canadian Food Inspection Agency
59 Camerot Drive
Nepean


xiv

Contributors

Ontario
Canada K1A 0H9
Tel: +1 613 225 2342 (ext. 4541)
Fax: +1 613 228 6648
E-mail:

Chapter 4
Lahsen Ababouch

Chief
FIIU
F-608
FAO
Rome
Italy
Tel: +39 06 5705 4057
Fax: +39 06 5705 5188
E-mail:

Chapter 5
L. Nilsson and L. Gram
Danish Institute for Fisheries
Research
Department of Seafood Research
Søltofts Plads,
Building 221
Technical University of Denmark
DK-2800 Kgs. Lyngby
Denmark
Tel: +45 45 25 49 21
Fax: +45 45 88 47 74
E-mail:

Chapter 6
S. Yamada and E. Zychlinsky
Hitachi Chemical Diagnostics, Inc.
630 Clyde Court

Mountain View

CA 94043
USA
E-mail:
H. Nolte
Department of Internal Medicine
Asthma and Allergy Unit
University of Copenhagen
Denmark

Chapter 7
J. Oehlenschla¨ger
Institute for Fishery Technology and
Fish Quality
Federal Research Centre for Fisheries
Palmaille 9
D-22767 Hamburg
Germany
Tel: +49 40 38905 151
Fax: +49 40 38905 262
E-mail:

Chapter 8
K. D. Murrell
WHO/FAO Collaborating Centre
for Emerging Parasitic Zoonoses
Danish Centre for Experimental
Parasitology
The Royal Veterinary and
Agricultural University
Dyrlaegevej 100

DK-1870 Frederiksberg C
Denmark
Tel: +45 35 28 27 75
Fax: +45 35 28 27 74
E-mail:


Contributors

Chapter 9
G. Palleschi, D. Moscone, L. Micheli
and D. Botta
Dipartimento di Scienze e
Technologie Chimiche
Universita` di Roma ‘Tor Vergata’
Via della Ricerca Scientifica
00133 Roma
Italy
Tel: +39 06 72594337
Fax: +39 06 72594328
E-mail: Giuseppe.Palleschi@uni
roma2.it

Chapter 11
Dr Alexandra Barbosa
ICBAS – Insituto de Cieˆncias
Biome´dicas de Abel Salazar
Largo Prof. Abel Salazar, 2
4099-003 Porto
Portugal

Tel: +351 222 062 272
Fax: +351 220 622 232
E-mail:
Professor H. Allan Bremner
Allan Bremner and Associates
Formerly at
Danish Institute for Fisheries
Research
Department of Seafood Research
Building 221 Søltofts Plads
Technical University of Denmark
DK-2800 Kgs. Lyngby
Denmark
E-mail:

Professor Paulo Vaz-Pires
ICBAS – Insituto de Cieˆncias
Biome´dicas de Abel Salazar
Largo Prof. Abel Salazar, 2
4099-003 Porto
Portugal
Tel: +351 222 062 272
Fax: +351 222 062 232
E-mail:

Chapter 12
Paw Dalgaard
Danish Institute for Fisheries
Research (DIFRES)
Department of Seafood Research

Ministry of Food, Agriculture and
Fisheries
DTU
Building 221
DK-2800 Kgs. Lyngby
Denmark
Tel: +45 45 25 25 66
E-mail:

Chapter 13
Norman F. Haard
Institute of Marine Resources
Department of Food Science and
Technology
University of California
Davis
CA 95616
USA
Tel: +1 530 752 2507
Fax: +1 530 752 4759
E-mail:

xv


xvi

Contributors

Chapter 14


Chapter 17

I.P. Ashton
Unilever R&D
Colworth House
Sharnbrook
Beds MK44 1LQ
England

George M. Hall
Department of Chemical Engineering
Loughborough University
Leicestershire LE11 3TU
England

E-mail:

Tel: +44 (0) 1509 222 517
Fax: +44 (0) 1509 223 923
E-mail:

Chapter 15
M. Frederiksen
Danish Institute for Fisheries
Research (DIFRES)
Department of Seafood Research
Building 221 Søltofts Plads
Technical University of Denmark
DK-2800 Kgs. Lyngby

Denmark
Tel: +45 45 88 33 22
Fax: +45 45 88 47 74
E-mail:

Chapter 18
Peter E. Doe
School of Engineering
University of Tasmania
GPO Box 252-65
Hobart
Australia 7001
Tel: +61 3 6226 2129
Fax: +61 3 6226 7863
E-mail:

Chapter 19
Chapter 16
M. Gudmundsson and H. Hafsteinsson
Technological Institute of Iceland
(MATRA)
Keldnaholt
IS-112 Reykjavik
Iceland
Tel: +354 570 71 00
Fax: +354 570 71 11
E-mail:
E-mail:

E. Martinsdo´ttir

Project Manager
Research and Development Division
Icelandic Fisheries Laboratories
P.O. Box 1405
IS-121 Reykjavik
Iceland
Tel: +354 5620240
Fax: +354 5620740
E-mail:


Contributors

xvii

Chapter 20

Chapter 23

N. Hedges
Unilever R&D
Colworth House
Sharnbrook
Bedfordshire MK44 1LQ
England

Dr Carmen G. Soleto and Dr Ricardo
I. Pere´z-Martı´n
Instituto de Investigaciones Marinas
Eduardo Cabello 6

36208 Vigo
Spain

Tel: +44 (0) 1234 781781
E-mail:

Tel: +34 986 214471
Fax: +34 986 292762
E-mail:

Chapter 21
H. Rehbein
Institute for Fishery Technology and
Fish Quality
Federal Research Centre for Fisheries
Palmaille 9
D-22767 Hamburg
Germany
Tel: +49 40 38905 167
Fax: +49 40 38905 262
E-mail:

Chapter 22
Asbjorn Gildberg
Norwegian Institute of Fisheries and
Aquaculture Research Ltd.
N-9005 Tromsø
Norway
Tel: +47 77 62 90 00
Fax: +47 77 62 91 00

E-mail: asbjorn.gildberg@fiskforsk.
norut.no

Chapter 24
Bo M. Jørgensen
Danish Institute for Fisheries
Research (DIFRES)
Department of Seafood Research
Ministry of Food, Agriculture and
Fisheries
DTU
Building 221
2800 Kgs. Lyngby
Denmark
Tel: +45 45252566
E-mail:


1
Introduction
H. Allan Bremner, Allan Bremner and Associates, Mount Coolum

Fish is an exceptionally important component of the human diet and an enormous
industry exists to provide a huge variety of consumer products in which fish is a
major component. These offerings range from whole fish, large and small, to
pieces of fish such as cuts and fillets, to canned fish in a multitude of forms, to
dried and cured products, to fish oils and extracts, to frozen portions and
complete meals through to reformed and gelled products. The list is enormous,
the variety even within one product type is extensive and the range of species
used as food runs well into the thousands. Each of these variations and

combinations presents a huge matrix of possibilities, opportunities and problems.
Over the last 80 or so years, fish technologists and scientists have been
endeavouring to draw some general rules from observation and experimentation
on fish and fish products to control and predict their properties under a vast
variety of circumstances. The two main driving themes for these efforts have
been in safety and quality – expressed mostly in terms of measurable properties.
This volume picks up these driving themes to cover major issues in safety and
quality that are not only important topics of investigation relevant to industry
today but that will continue to be important into the future. Each author is an
expert in their own particular field and they have summed up the situation to
provide a current benchmark of existing knowledge. In addition they have
pointed to solutions to problems, where they exist, and have also indicated
current gaps in the knowledge base and described research and investigations
required to capitalise and expand on this base. In many instances they have
described how new understandings, approaches and technologies will have
impact and thus effect change in the way operations are carried out to provide
better, safer and more stable products with greater surety than previously. It has
also been important to describe how one area may relate to another, for example


2

Safety and quality issues in fish processing

how improvements in analytical techniques have increased understanding of
composition, properties, nutritional attributes and of contamination and that this
information is relevant to safety and quality considerations.
The volume is organised into three major sections concerned with ‘Ensuring safe
products’, ‘Analysing quality attributes’ and, ‘Improving quality within the supply
chain’. In the first part, relating to safety, the chapters deal with the over-riding issue

of ensuring that the fish products are safe for human consumption. The volume is not
concerned per se with safety of the processes themselves with regard to premises,
vessels, installations, machinery and personnel except where this impinges on the
product, or the perception of the product, but does include reference to factors such
as allergies in process staff. Safety in the context of this volume means freedom from
pathogenic organisms at infective levels including parasites. It also covers
contaminants such as heavy metals and other residues, allergens and toxins. These
are viewed from the perspectives of detection, identification, quantitation, evaluation
and implication. As such this includes aspects of processing, safety management and
risk assessment. Risk assessment and control is covered by outlining and emphasising the value of the HACCP approach and by providing examples of how this is done
in practice to establish conditions to minimise risk and to ensure a safe product.
Although this volume has the word quality in the title, the intent is that the word
is not used vaguely as a ‘catch all’ term and endeavour has been made throughout
each contribution to try to be specific and to be exact wherever possible. Thus the
section on analysis of quality includes discussion on the use of this term and of the
commonly used terms freshness and shelf-life to set the scene for chapters on the
major causative factors of change in properties of fish products in all forms
whether raw, stored, part-processed or finished product. These major factors are
covered in chapters dealing with modelling of the effects of the extrinsic bacterial
agents involved in spoilage, elaboration of the roles of the intrinsic enzymes, and
the processes of oxidation all of which affect one or more properties.
The third section on improvements starts with a fresh look at managing quality
along the whole supply chain and then includes quality management of stored
fish and of frozen fish and the factors that affect shelf-life. Correct identification
of species is included here as it is an important part of business and regulatory
practice but it also relates to safety and to analytical improvements. The newer
non-thermal technologies using high pressures are summarised and an up-to-date
understanding of the ancient, but incidental, practice of using lactobacilli as a
preservation technique and the equally ancient, but more deliberate, technique of
drying fish to preserve them is covered. The final chapter deals extensively with

more efficient utilisation and contains a wealth of ideas on this aspect.
The volume is aimed at several levels as it contains information that is both
current and very relevant to future practices. Each chapter is extensively
referenced with key information. The book is aimed at being a substantial
addition to industry, institutional, research and personal libraries. It will be
invaluable for industry technologists, consultants, researchers, graduate and
post-graduate students and for government authorities involved in regulation or
inspection and control.


Part I
Ensuring safe products


2
HACCP in the fisheries industry
D. R. Ward, North Carolina State University, Raleigh

2.1

Introduction

Over the past decade, the Hazard Analysis and Critical Control Point (HACCP)
system has become internationally recognized as the system of choice, with
respect to the prevention and control of food safety hazards. In some respects,
the evolution of HACCP from concept to an international standard has been
relatively rapid. Credit for the development of HACCP is traditionally given to
the 1971 Food Protection Conference (APHA, 1972), with the first industry
application by The Pillsbury Company for astronaut feeding during the inception
of the NASA manned space program. The basic concepts of HACCP, however,

are found in the Hazard Opportunity Studies (HAZOP) which have been
employed by the chemical and engineering industries for hazard controls dating
back to the mid-1930s (Mayes and Kilsby, 1989). After HACCP’s introduction,
the low-acid canned food industry and the US Food and Drug Administration
(FDA) quickly picked up on the preventive controls and documentation aspects
of HACCP. Other segments of the food processing industry voluntarily
introduced HACCP, or elements of HACCP, into their food safety control
systems. However, it was not until 1985 that HACCP moved, in any meaningful
way, into the national spotlight. In that year, the National Academy of Science
(NAS, 1985) indicated that while HACCP had worked well for the low-acid
canned food industry, it had not been successfully transferred to other food
commodities. The implication being that processors of other food commodities
should use HACCP. They also pointed out that HACCP must be an industrydriven program, with the role of the regulatory agency being that of approval of
the processing plant’s basic plan design, on-site verification, and inspector
training.


6

Safety and quality issues in fish processing

It is important to recognize that HACCP has been in a constant state of
evolution since its introduction. Principles have been added and renumbered;
application guidelines, prerequisite programs and decision trees have been
developed; and definitions revised and added. HACCP, which began as a
voluntary program, is now mandatory for various products and processes by
both the FDA and the United States Department of Agriculture (USDA). As a
voluntary program HACCP evolved based largely on the experiences of food
processors who were trying to incorporate this science-based system into diverse
and complex processing environments. Now that HACCP is becoming the

regulatory system of choice, both nationally and internationally, policy issues
will be likely to shape its evolution more than science.
Although the principles of HACCP have not changed since FDA first
mandated its implementation by the seafood processing industry (December 17,
1997), there have been changes in FDA’s expectations. When first introduced,
FDA’s expectations were very rudimentary: existence of a written HACCP plan
(if required), critical control point monitoring records, and sanitation monitoring
records of eight required areas (although not part of HACCP, sanitation
monitoring is part of the HACCP regulation). It is important to note that some
products and processes are not associated with any readily identifiable food
safety hazard. Therefore, in these specific situations, a HACCP plan is not
necessary. However, if a plant does not have a HACCP plan, due to the fact that
a significant safety hazard could not be identified, the person responsible for
making that determination should be prepared to demonstrate that they have
conducted a thorough hazard analysis. FDA’s rules do not require a written
hazard analysis, nor do they require predetermined corrective actions or that
verification records be listed in the plan. These specific peculiarities are not the
result of FDA’s lack of interest in these HACCP components; they are the
consequence of FDA being the first agency to develop a HACCP rule for review
by the Office of Management and Budget (OMB). During this review, OMB’s
staffers did not understand the seven HACCP principles as comprising a unified
food safety system. Consequently, they eliminated such requirements as a
written hazard analysis and predetermined corrective actions. Nonetheless, if a
plant opts not to have a written hazard analysis, or chooses not to share that
analysis with the inspector, and then claims its product does not pose a
significant food safety hazard, it should be prepared for intense questioning by
the inspector. Irrespective of whether a plant needs to have a written HACCP
plan or not, all seafood processing operations must maintain sanitation records.
Some consumer groups have been highly critical of FDA’s expectations of
the seafood industry, particularly during the first few years of the HACCP

regulations. Such criticism was both unfortunate and unnecessary. While the
HACCP concept is very simple (i.e., identify the food safety hazards, control
those hazards, and provide relevant documentation), development and
implementation of an actual plan can be very difficult, especially for an
industry that was unaccustomed to a high level of regulatory structure. FDA’s
strategy provided industry with the opportunity to grow into the new HACCP-


HACCP in the fisheries industry

7

regulatory environment. Also, it allowed time for FDA inspectors to become
accustomed to their role in this new regulatory climate. While inspectors have
always had major responsibilities for evaluating food-processing facilities,
HACCP expanded those responsibilities to include not only the processing
environment but also a higher level of accountability for reviewing the adequacy
of the actual manufacturing processes. It is important to understand that the
products produced during this time were no less safe than they were before
HACCP, and for many plants that had good HACCP plans that were
appropriately implemented, the risks associated with food safety hazards were
reduced.

2.2

HACCP principles

In essence, HACCP is a two-part system. The first part focuses on defining the
nature of the product being produced and developing a flow diagram which
details each operational step in the process. Understanding the nature of the

product is essential to determining the potential food safety hazards. Important
aspects to know include the intended use (i.e., raw ready-to-eat; raw ready-tocook; cooked ready-to-eat); method of distribution and marketing (i.e.,
refrigerated, frozen, etc.); and the intended consumer (i.e., infants, elderly,
general population). The significance of the intended consumer is often a
confusing point. This does not mean that food should be safer for one segment
of the population than another. It does recognize, however, that some segments
of the population are more vulnerable than other segments. For example, we
know that infants are more vulnerable due to the fact that they have developing
immune systems, and we know that the elderly are more vulnerable because
their immune system may be in decline. With this knowledge in mind, if a food
manufacturer was targeting either of these populations, then its HACCP plan
should reflect the increased risk through tighter critical limits, and/or increased
monitoring frequency, and/or enhanced verification schedules.
The second part of HACCP consists of applying the seven principles. The
following is a brief review of the HACCP principles as developed by the
National Advisory Committee on Microbiological Criteria for Foods
(NACMCF, 1998).

2.2.1 Conduct a hazard analysis (Principle 1)
The purpose of the hazard analysis is to develop a list of hazards that are of such
significance that they are reasonably likely to cause illness or injury if not
effectively controlled. Consequently, in the context of HACCP, the word
‘hazard’ is always limited to safety.
In HACCP there is no hierarchy among the principles in terms of importance.
All seven principles are equally important and must ultimately be integrated into
an overall plan. However, in the opinion of the author, if the principles were


8


Safety and quality issues in fish processing

ranked, the hazard analysis principle would be among the most consequential,
simply because all hazards must be correctly identified and characterized
(reasonably likely to occur or not reasonably likely to occur) or the ensuing plan
will be flawed, and some potentially relevant hazard could exist without a
preventive control.

2.2.2 Determine the critical control points (Principle 2)
A critical control point (CCP) is defined as a step at which control can be
applied and is essential to prevent or eliminate a food safety hazard, or reduce it
to an acceptable level. Examples of CCPs could include thermal processing,
chilling, testing ingredients for chemical residues, product formulation control,
and testing product for metal contamination.

2.2.3 Establish critical limits (Principle 3)
A critical limit is a parameter, established at CCPs, which targets conditions
essential for the production of safe food. It can be a maximum and/or minimum
value to which a biological, chemical or physical parameter must be controlled
at a CCP to prevent, eliminate, or reduce to an acceptable level the occurrence of
a food safety hazard. Failure to achieve the critical limit means that the CCP is
not in control and the food being produced must be considered unsafe.

2.2.4 Establish monitoring procedures (Principle 4)
Monitoring is a planned sequence of observations or measurements to assess
whether a CCP is under control and to produce an accurate record for future use
in verification. Monitoring at CCP is done to determine whether or not the
critical limit(s), established for each CCP, is being met. Monitoring serves three
main purposes: first, it is essential to food safety management in that it
facilitates tracking of an operation. If monitoring indicates that there is a trend

toward loss of control, then action can be taken to bring the process back into
control before a deviation from a critical limit occurs. Second, monitoring is
used to determine when there is a loss of control and a critical limit deviation
occurs at a CCP, i.e., exceeding or not meeting a critical limit. When a deviation
occurs, an appropriate corrective action must be taken. Third, it provides written
documentation for use in verification.

2.2.5 Establish corrective actions (Principle 5)
When there is a deviation from established critical limits, corrective action is
necessary. As recommended by the NACMCF (1998), corrective actions are
predetermined components of a written HACCP plan. However, while FDA’s
rules (1995) require that corrective actions be taken, they are not required to be
predetermined. Corrective actions include the following elements: (a) determine


HACCP in the fisheries industry

9

and correct the cause of noncompliance; (b) determine the disposition of noncompliant product; and (c) record the corrective actions that have been taken.

2.2.6 Establish verification procedures (Principle 6)
Verification is defined as those activities, other than monitoring, that determine
the validity of the HACCP plan. Of the seven principles, this one inevitably
proves to be the most challenging for trainers to teach and for students to
understand. Perhaps part of this lies in the fact that in the evolution of HACCP
this principle was the last to be developed and as a consequence it attempts to
deal with several problematic issues that had become evident. The activities
(other than monitoring) that determine the validity of the plan include:
1.

2.

3.

4.

Evaluating whether the facility’s HACCP system is functioning according
to the written plan.
Determining (initial validation) if the plan is scientifically and technically
sound, that all hazards have been identified, and that if the HACCP plan is
properly implemented these hazards would be effectively controlled. This
includes determining if CCPs have been properly identified and that the
critical limits are scientifically valid for hazards being controlled.
Equipment calibration is also part of validation.
A subsequent validation (sometimes referred to as revalidation) is necessary
if there is an unexplained system failure; a significant product, process, or
packaging change occurs; or a new hazard is recognized.
A periodic comprehensive verification should be conducted, even if there
have been no substantive changes to the plan. FDA requires that seafood
processors review their plan on an annual basis.

2.2.7 Establish record-keeping and documentation procedures (Principle 7)
Generally, records maintained for the HACCP system should include:
1.

2.

Summary of the hazard analysis, including rationale for determining
hazards and control measures. (FDA does not require a written hazard
analysis).

The HACCP plan:
a. Listing of the HACCP team and assigned responsibilities (not required
by FDA)
b. Description of the food, its distribution, intended use, and consumer
(not required by FDA)
c. Verified flow diagram (not required by FDA)
d. HACCP Plan Summary Table:
i. steps in the process that are CCPs
ii. the hazard(s) of concern
iii. critical limits
iv. monitoring (procedures and frequency)


10

Safety and quality issues in fish processing
v. corrective action
vi. verification procedures and schedule (procedures and frequency)
vii. Recording-keeping procedures

2.3

Hazards

In the context of HACCP, a hazard is defined as a biological, chemical, or
physical agent that is reasonably likely to cause illness or injury in the absence
of its control (NACMCF, 1998). As stated earlier, the proper identification of all
hazards that are reasonably likely to occur is essential to the development of a
HACCP plan. When discussing hazards associated with seafood one often finds
that the issue can quickly become very complex. Because the word ‘seafood’

represents literally hundreds of commercially available species, each with a
potentially unique species-related hazard, processors must be vigilant. The food
safety hazards associated with seafoods may be different due to inherent
differences in physiology, environment, post-harvest handling, and method of
preparation. In the US FDA has published the third edition of The Fish and
Fisheries Products Hazards & Controls Guidance. The purpose of the ‘guide’ is
to assist processors to identify hazards and to formulate control strategies. The
guide is divided into three sections; (i) Potential Vertebrate Species Related
Hazards, (ii) Potential Invertebrate Species Related Hazards, and (iii) Potential
Process Related Hazards.

2.3.1 Species-related hazards
In the guide, the division between vertebrate species (fish with backbones) and
invertebrate species (fish without backbones) was done as a means to enhance
the user’s ability to find and retrieve information and as a means of facilitating
hazard identification. Table 2.1 illustrates the classification of potential hazards
in vertebrate species according to the guide (FDA, 2001). The concern
associated with biological hazards is limited to parasites, while potential
chemical hazards are natural toxins (e.g., ciguatera, amnesic shellfish poisoning,
gemplotoxin, tetrodotoxin), histamine (scombrotoxin), chemical (e.g., environmental and pesticides), and drugs (aquacultured species).

Table 2.1
Market
names

Potential vertebrate species-related hazards
Latin
names

Hazards

Biological
Parasites

1

Chemical
Natural
toxins1

Histamine

This hazard applies only if the product is market uneviscerated.

Chemical

Drugs


×