Tải bản đầy đủ (.pdf) (53 trang)

Nghiên cứu quy trình cracking xúc tác dầu thực vật trên xúc tác zeolit tạo nhiên liệu sinh học

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.19 MB, 53 trang )

Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 1

LỜI CẢM ƠN
Trong quá trình thực tập và hoàn thành đồ án tại phòng Hoá lý bề mặt, Viện
Hoá Học, Viện Khoa Học và công nghệ Việt Nam tôi đã nhận được sự giúp đỡ,
chỉ bảo tận tình vê kiến thức và kĩ thuật thực nghiệm của các cán bộ nghiên cứu
của viện. Đặc biệt tôi xin bày tỏ lòng biết ơn sâu sắc tới PGS.TS Lê Thị Hoài
Nam cùng các anh chị trong phòng hoá lí bề mặt, đã trực tiếp hướng dẫn thực
nghiệm và tạo mọi điều kiện để tôi hoàn thành tốt đồ án này.
Tôi cũng xin bày tỏ lòng biết ơn sâu sắc tới các thầy, cô trong Bộ môn Hoá
Dầu trường Đại Học Dân Lập Hải Phòng đã dạy dỗ và chỉ bảo tận tình cho tôi
trong suốt quá trình học tập tại trường.
Tôi xin gửi lời cảm ơn sâu sắc tới gia đình tôi, những người đã giúp đỡ tôi về
mọi mặt trong học tập cũng như trong cuộc sống.
Cuối cùng tôi xin gửi lời cảm ơn tới tất cả bạn bè của tôi đã ủng hộ và giúp
đỡ nhiệt tình để tôi hoàn thành tốt đồ án này.
Xin chân thành cảm ơn!

Sinh viên


Nguyễn Văn Toán

Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 2


MỤC LỤC

MỞ ĐẦU ............................................................................................................... 1
CHƢƠNG I. TỔNG QUAN TÀI LIỆU…. ........................................................ 3
1.1. Tổng quan về vật liệu zeolit .......................................................................... 3
1.1.1. Giới thiệu về Zeolite .......................................................................... 3
1.1.2. Phân loại Zeolite ............................................................................................ 3
1.1.3. Sự hình thành cấu trúc Zeolit .......................................................... 4
1.1.4. Một số vật liệu Zeolit ......................................................................... 6
1.1.5. Một số tính chất hóa lý cơ bản của Zeolit ....................................... 8
1.2. Phản ứng Cracking ..................................................................................... 11
1.2.1. Giới thiệu về phản ứng cracking .................................................... 11
1.2.2. Cơ chế phản ứng cracking xúc tác ................................................. 12
1.2.3. Phản ứng cracking dầu mỏ ............................................................. 16
1.3. Giới thiệu về trấu và thành phần vỏ trấu ................................................. 17
CHƢƠNG 2. CÁC PHƢƠNG PHÁP THỰC NGHIỆM ............................... 18
2.1. Chiết tách oxit silic từ vỏ trấu .................................................................... 19
2.2. Tổng hợp vật liệu zeolit ZSM-5 và HY ..................................................... 19
2.2.1. Tổng hợp zeolit ZSM-5 ................................................................... 19
2.2.2. Tổng zeolit Y ................................................................................... 20
2.3. Các phƣơng pháp nghiên cứu cấu trúc vật liệu ....................................... 21
2.3.1. Phƣơng pháp phổ hấp thụ hồng ngoại (IR) .................................. 21
2.3.2. Phƣơng pháp nhiễu xạ Rơnghen (XRD) ....................................... 23
2.3.3. Phƣơng pháp đẳng nhiệt hấp phụ- khử hấp phụ Nitơ ................. 24
2.3.4. Phƣơng pháp hiển vi điện tử truyền qua (Transmission electron
microscopy –TEM) .................................................................................... 26
2.3.5. Phƣơng pháp hiển vi điện tử quét SEM ....................................... 27
2.4. Phƣơng pháp biến tính vật liệu ( trao đổi ion ) ..................................................... 28
2.5. Xác định hoạt tính xúc tác của vật liệu Zeolite ..................................................... 28
2.5.1. Xác định hoạt tính xúc tác vật liệu HY và HZSM-5 trong phản

ứng cracking dầu thực vật thải trên hệ MAT5000 (Microactivity Test)28
CHƢƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ................................................... 32
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 3

3.1. Kết quả nghiên cứu quá trình tách silic từ vỏ trấu .................................. 32
3.2. Kết quả tổng hợp vật liệu ........................................................................... 33
3.2.1. Kết quả tổng hợp đặc trƣng vật liệu ZSM-5 ................................. 33
3.2.2. Kết quả tổng hợp và đặc trƣng vật liệu zeolit Y ........................... 38
3.3. Kết quả đánh giá hoạt tính xúc tác ............................................................ 43
KẾT LUẬN ......................................................................................................... 49
Tài liệu tham khảo ............................................................................................. 50
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 4

MỞ ĐẦU
Nhiên liệu sinh học tổng hợp từ nguồn dầu thực vật hiện đang là một trong
những giải pháp thay thế nguồn nhiên liệu từ dầu mỏ đang ngày càng cạn kiệt.
Công nghệ chế biến biodiezen từ dầu thực vật chủ yếu bằng phương pháp chuyển
dịch este dùng xúc tác kiềm, phương pháp đòi hỏi phải xử dụng một lượng lớn
methanol và công đoạn thu hồi sản phẩm phụ glyxerin rất phức tạp [1, 2]. Khó
khăn lớn nhất khi mở rộng sản xuất biodiezen từ dầu thực vật là giá thành sản
phẩm cao hơn nhiều so với DO (gấp 2 lần). Trong thời gian gần đây, sử dụng
phương pháp cracking xúc tác để chuyển hoá dầu thực vật thành nhiên liệu sinh
học bắt đầu được quan tâm vì ưu điểm công nghệ này là có thể sử dụng các thiết
bị cracking xúc tác (FCC- Fix bed catalytic cracking), hệ thống làm việc liên tục,

thời gian làm việc của xúc tác ổn định và không sử dụng các dung môi độc hại
[3].
Quá trình cracking xúc tác đã được nghiên cứu từ cuối thế kỉ XIX, nhưng mãi
đến năm 1923, một kĩ sư người Pháp tên là Houdry mới đề nghị đưa quá trình áp
dụng vào công nghiệp. Năm 1936, nhà máy cracking xúc tác đầu tiên của công ty
Houdry Process Corporation được xây dựng ở Mỹ. Cho đến nay, sau hơn 60 năm
phát triển, quy trình công nghệ ngày càng được cải tiến và hoàn thiện nhằm mục
đích nhận được nguyên liệu có chất lượng cao từ nguyên liệu có chất lượng kém,
phục vụ cho công nghệ Hoá dầu và Hoá học.
Việt nam có sản lượng lương thực khoảng 30 triệu tấn mỗi năm, vỏ trấu
chiếm 15 – 20 % khối lượng thóc và là sản phẩm phế thải nông nghiệp [4, 5]
Việc nghiên cứu sử dụng nguồn silic của vỏ trấu để tổng hợp vật liệu zeolit đã
bước đầu được nghiên cứu nhằm sử dụng có hiệu quả nguồn trấu phế thải.
Trên cơ sở đó chúng tôi tiến hành thực hiện đề tài:
“Nghiên cứu quá trình cracking xúc tác dầu thực vật thải trên xúc tác zeolit
tạo nhiên liệu sinh học”
Trong phạm vi đồ án này, hai chất xúc tác mà chúng tôi tiến hành nghiên cứu
là zeolit Y và zeolit ZSM-5 được tổng hợp sử dụng nguồn silic được chiết tách từ
trấu. Vật liệu tổng hợp đã được tiến hành nghiên cứu các đặc trưng bằng các
phương pháp Hóa lý bao gồm IR, XRD, SEM, TEM và BET. Hoạt tính xúc tác
của các vật liệu được tiến hành khảo sát trong phản ứng cracking dầu thực vật
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 5

thải tạo nhiên liệu sinh học. Phản ứng được tiến hành trên hệ MAT5000. Chất
lượng các sản phẩm khí, lỏng được phân tích sử dụng các phương pháp tương
ứng là GC-TCD, GC-MS, và SIMDIST.






























Đồ án tốt nghiệp HD1001



Sinh viên : Nguyễn Văn Toán 6

CHƢƠNG I
TỔNG QUAN TÀI LIỆU
1.1. Tổng quan về vật liệu zeolit.
1.1.1. Giới thiệu về Zeolite.
Zeolite là các aluminosilicat tinh thể có cấu trúc không gian ba chiều với hệ
thống mao quản rất đồng đều.
Thành phần hoá học của zeolit có thể được biểu diễn bằng công thức hoá
học như sau [6]:
OzHSiOAlOOMe
yx
n 222/2
.

Trong đó: Me là cation kim loại có hoá trị n
y/x là tỷ số nguyên tử Si/Al, tỷ số này thay đổi tuỳ theo từng loại
zeolit
z là số phân tử H
2
O kết tinh trong zeolit,
Kí hiệu trong [ ] là thành phần cơ bản của một ô mạng cơ sở tinh thể.
Một số loại zeolite thường gặp
- Zeolite giàu Al: zeolite LTA: zeolite A, Si/Al=1.
- Zeolite silic trung bình: zeolite kiểu FAU (zeolite X, zeolte Y).
1 < Si/Al < 2 zeolit X
2 < Si/Al < 3 zeolit Y
- MOR: zeolit mordenit, Si/Al 5.
- Zeolite giàu silic: zeolite kiểu MFI(zeolite ZSM-5) Si/Al = 12 - 8000

1.1.2. Phân loại Zeolite.
- Theo nguồn gốc: gồm zeolite tự nhiên và zeolite tổng hợp.
- Theo chiều hướng không gian của các kênh hình thành cấu trúc mao quản:
zeolite có hệ thông mao quản 1 chiều, 2 chiều, 3 chiều.
- Theo tỉ lệ Si/Al: zeolite có hàm lượng Si thấp(Si/Al=1-1,5: A, X) hàm
lượng trung bình (Si/Al=2-5: zeolite Y, chabazit…), hàm lượng Si cao
ZSM-5.
Theo phân loại của IUPAC zeolit thuộc vật liệu vi mao quản. Dựa vào
kích thước mao quản vật liệu này để phân chia thành:
- Zeolit có mao quản nhỏ: kích thước mao quản nhỏ hơn 5A
o
.
ví dụ như
zeolit 3A
0
, 4A
0
, 5A
0
.
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 7

- Zeolit có mao quản trung bình: kích thước mao quản từ 5-6 A
o
.
ví dụ như
zeolit ZSM-5 , ZSM-11, ZSM-35...

- Zeolit có mao quản rộng: kích thước mao quản từ 7-15 A
o
. Ví dụ như
zeolit X,Y, mordenit, Bêta...
1.1.3. Sự hình thành cấu trúc Zeolit
Các zeolite được hình thành từ các đơn vị sơ cấp (cấu trúc cơ bản) là các tứ
diện TO
4
(T=Si, Al), gồm một cation T được bao quanh bởi 4 ion O
2-
. Khác với
tứ diện SiO
4
trung hoà về điện, mỗi một nguyên tử Al phối trí tứ diện trong
AlO
4
còn thừa một điện tích âm do Al có hoá trị 3. Điện tích âm này được bù
trừ bởi các cation kim loại M
n+
(M thường là cation kim loại kiềm hoặc kiềm
thổ).







Hình 1.1. Cấu trúc cơ bản của zeolit.
Sự liên kết các tứ diện TO

4
theo một trật tự nhất định sẽ tạo ra các đơn vị
cấu trúc thứ cấp SBU (Secondary Building Unit) khác nhau [6]. Các đơn vị cấu
trúc thứ cấp có thể là các vòng Oxy, gồm các vòng đơn 4, 6, 8, 10 và 12 cạnh
hoặc hình thành các vòng kép 4x2 và 6x2 tứ diện v.v









O
2
_
o
2
_
O
2
_
O
2
_
O
O
2
_

O
2
_
O
2
_
o
2
_
O
Si
Al
3+
4+
_
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 8















Hình1.2 . Các đơn vị cấu trúc thứ cấp (SBU) trong cấu trúc của zeolite
Sau dó các SBU tiếp tục kết hợp với nhau tạo nên cấu trúc tinh thể của
zeolit, tuỳ thuộc vào thành phần gel và điều kiện kết tinh mà hình thành các loại
zeolit có cấu trúc khác nhau. Sự kết hợp giữa các tứ diện TO
4
hoặc các SBU tuân
theo quy tắc thực nghiệm Loewenstein: trong cấu trúc của zeolite không tồn tại
các liên kết Al-O-Al, mà chỉ tồn tại các liên kết Si-O-Si và các Si-O-Al, do đó tỷ
số SiO
2
/Al
2
O
3
≥ 2 [6].
Quá trình hình thành các liên kết SBU, cách ghép nối các SBU để tạo ra các
bát diện cụt và sau đó giữa các bát diện cụt với nhau tạo thành các kiểu cấu trúc
zeolit A hoặc Y được biểu diễn bởi hình sau:










Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 9





















Hình1.3. Sơ đồ minh họa quá trình hình thành Zeolit.
Cho đến nay người ta đã tổng hợp được hơn 200 loại zeolit với 85 kiểu cấu
trúc khác nhau [7].
1.1.4. Một số vật liệu Zeolit.
1.1.4.1. Zeolit ZSM-5

Zeolit ZSM-5 được phát minh bởi hãng Mobil từ năm 1972. Đây là loại
zeolit thuộc họ pentasil, có mã cấu trúc quốc tế là MFI. Loại zeolit này có cấu
trúc vòng SBU 5-1, với kiểu đối xứng orthorhombic, nhóm không gian Pnma. Hệ
thống mao quản trong zeolit ZSM -5 ba chiều với cửa sổ vòng 10 oxy, đường
kính mao quản trung bình xấp xỉ 5,5 A
0
thuộc zeolit có mao quản trung bình [8].
Công thức hoá học của zeolit Na -ZSM-5 có dạng:
Na
n
Al
n
Si
96-n
O
192
.16H
2
O (n<27)
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 10

Mạng tinh thể của zeolit ZSM -5 được tạo thành từ chuỗi 8 vòng 5 cạnh mà
đỉnh mỗi vòng 5 cạnh là 1 tứ diện TO
4
.
Cấu trúc ZSM - 5 bao gồm hai hệ thống kênh (mao quản) giao nhau. Các
kênh ziczắc và các kênh song song, có kích thước 5,1Å 5, 5Å và 5,3Å 5, 6Å

được hình thành bởi các vòng 10 nguyên tử oxy. Sự giao nhau các kênh này tạo
nên các lỗ có kích thước khoảng 9Å và đây có thể là nơi hiện diện của những tâm
axit mạnh trong ZSM -5 [6].













Zeolit ZSM-5 được ứng dụng rộng rãi trong công nghiệp hóa học. Trong
những năm gần đây, người ta thường thêm vào xúc tác FCC zeolit ZSM-5 nhằm
làm tăng trị số octan của xăng và tăng hàm lượng olefin. Lượng zeolit ZSM -5
trong xúc tác FCC thường chiếm 1-12% khối lượng hoặc có thể thay đổi trong
khoảng rộng hơn.
ZSM-5 có tỉ lệ Si /Al = 50 và có kích thước lỗ xốp tương đối nhỏ (5,5 A
0
).
Đặc điểm nổi bật của ZSM -5 là có độ axit lớn, tính bền nhiệt và khả năng chọn
lọc hình dạng cao.
1.1.4.2. Zeolite Y
Zeolit X và Y có cấu trúc và tên gọi là Faujasit, code quốc tế FAU [6]. Sự
khác biệt giữa zeolit X và Y là do tỉ số Si/Al trong khung mạng. Zeolit X có tỉ số
Si/Al = 1.1 – 1.5 và zeolit Y có tỉ số Si/Al = 1.6 – 2.5.

Hình 1.4. Cửa sổ mao quản phẳng
song song dạng hình sin của vật liệu
ZSM-5
Hình 1.5. Hệ thống các kênh mao
quản ZSM-5

Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 11

Do có tỉ số Si/Al thấp (kém bền nhiệt nên zeolit X thường được sử dụng làm
chất hấp phụ để làm khô khí, tách CO
2
, tách O
2
/N
2
. Zeolit Y có tỉ số Si/Al cao
nên bền cơ, nhiệt, độ axít cao hơn được dùng làm chất xúc tác axit trong quá
trình cracking xúc tác và hydrocracking. Tinh thể cơ bản của zeolit Y có cấu trúc
lập phương, hệ thống mao quản 3 chiều, cửa sổ vòng 12 oxy, đường kinh mao
quản 7.4 A
o
.
Đơn vị cấu trúc cơ bản của zeolit Y là các sodalit. Sodalit là một khối bát
diện cụt gồm 8 mặt lục giác và 6 mặt vuông do 24 tứ diện TO
4
gộp lại.











Các sodalit nối với nhau qua các lăng trụ lục giác tạo nên cấu trúc
FAUJASIT. Do sự sắp xếp này nên trong cấu trúc của zeolite Y tạo ra hốc lớn
với đường kính khoảng 13 A
o
, cửa sổ vòng 12 oxy có đường kính 7.4 A
o
mỗi hốc
lớn được nối thông với 4 hốc lớn khác qua các vòng 12 oxy tạo nên 1 cấu trúc
khung mạng có độ rỗng cao. Ngoài ra trong cấu trúc của FAUJASIT còn chứa
một hệ thống mao quản thứ cấp gồm có các hốc sodalit với kích thước nhỏ hơn
(đường kính 6.6 A
o
) và các lăng trụ lục giác nối tiếp.
1.1.5. Một số tính chất hóa lý cơ bản của Zeolite
1.1.5.1. Tính xúc tác (tính axit)
Tính chất này có được là do những tâm axit và bazo trên bề mặt của nó.
Tính xúc tác là một trong những tính chất quan trọng của zeolite.
Zeolit ở dạng trao đổi H
+
hoặc các cation kim loại đa hoá trị Me
n+

(RE
3+
,
Cu
2+
, Mg
2+
, Ca
2+
,...) có chứa hai loại tâm axit: tâm Bronsted và tâm Lewis. Các
tâm này có thể được hình thành theo các cách sau:
Hình 1.6. Cấu trúc zeolit Y.

Hình 1.7. Hệ thống mao quản vòng 12 oxy


Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 12

- Phân huỷ nhiệt zeolit đã trao đổi cation với NH
4
+
:
300-500
o
C
NH
3

NH
4
+
NH
4
+
Si
O
Al
H
Si
O
Al
Na
+
Si
O
Al
_
_
Na
+

- Tiếp tục nung sẽ xảy ra quá trình dehydroxyl hoá cấu trúc, tạo một tâm
Lewis từ hai tâm Bronsted:
H
2
O
Al
Si

+
2
+
_
+
Si
O
Al
H
Si
O
Al
> 400
o
C
T©m Bronsted
T©m Lewis

- Xử lý zeolit trong môi trường axit (đối với các zeolit bền có tỷ số Si /Al
cao):
NaCl
HCl
Si
O
Al
H
Si
O
Al
H

+
Na
+
Si
O
Al
_

- Ngoài ra các tâm axit còn được tạo ra do sự thuỷ phân cation đa hoá
trị ở nhiệt độ cao và sự khử ion kim loại chuyển tiếp.
Độ axit của zeolit được biểu thị qua bản chất, lực và số lượng của tâm axit.
Độ axit của zeolit bị ảnh hưởng bởi nhiều yếu tố, trong đó những yếu tố quyết
định là: cấu trúc tinh thể của zeolit (sự thay đổi góc liên kết Si -OH-Al [9]);
thành phần của zeolit (tỷ số Si /Al khung mạng, sự phân bố Al trong và ngoài
mạng [10], sự thay thế đồng hình Si với các nguyên tố khác như Be, B, Ga, Fe,
Ge, P, Ti,...); bản chất và hàm lượng của cation trao đổi; các điều kiện xử lý nhiệt
[11].
1.1.5.2. Tính chất chọn lọc hình dạng
Chọn lọc hình dạng của zeolite là sự điều khiển theo kích cỡ và hình dạng
của phân tử, khuếch tán vào và ra khỏi hệ thống mao quản, làm ảnh hưởng đến
hoạt tính xúc tác và độ chọn lọc của xúc tác. Tính chất chọn lọc hình dạng của
zeolite cũng là tính chất quyết định hiệu quả của phản ứng.
Zeolite có ba hình thức chọn lọc hình dạng sau
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 13

Chọn lọc chất tham gia phản ứng
Chỉ có những chất có kích thước phân tử đủ nhỏ mới có thể thâm nhập vào bên

trong mao quản của zeolit và tham gia phản ứng.








Chọn lọc sản phẩm phản ứng
Sau khi phản ứng thực hiện trong mao quản của zeolite, những sản phẩm
tạo ra phải có kích thước đủ nhỏ mới có thể khuếch tán ra ngoài. Các phân tử lớn
hơn tạo ra ở trong mao quản sẽ tiếp tục bị chuyển hóa thành phân tử nhỏ hơn sau
đó mới khuếch tán được ra ngoài. Các sản phẩm này có tốc độ khuếch tán khỏi
mao quản không giống nhau. Sản phẩm nào có tốc độ khuếch tán lớn nhất thì độ
chọn lọc theo sản phẩm đó là lớn nhất.









Chọn lọc hợp chất trung gian
Phản ứng ưu tiên hình thành các hợp chất trung gian (hoặc trạng thái
chuyển tiếp) có kích thước phù hợp với kích thước mao quản của zeolit. Ví dụ
khi isome hoá m-xylen trong H-ZSM22 phản ứng chỉ có thể xảy ra trong mao
OH


OH

OH

OH

OH

OH

OH

OH

CH
2
CH
3
CH
3

CH
2
CH
3
H
3
C


p-etyltoluen
+
CH
2
CH
2
CH
3

CH
3
CH
2
CH
3


Hình 1.9. Sự chọn lọc hình dạng sản phẩm phản ứng




OH

OH

OH

OH


OH

OH

OH

OH

CH
CH
3
CH
2
CH
2

CH
3
CH
3
CH
2
CH
2

CH
3
CH
2
CH

2
CH
2
CH
2
CH
2
CH
2
CH
3

CH
3
C
CH
3
CH
2
CH
3
CH
CH
3
CH
3

Hình 1.8. Sự chọn lọc sản phẩm theo chất tham gia phản ứng

Hình 2.2. Quy trình tổng hợp zeolit Y


Hình 1.10. Sự chọn lọc hình dạng hợp chất trung gian

Hình 1.8. Sự chọn lọc hình dạng chất tham gia phản ứng

Hình 3.12. Đường phân bố kích thước mao quản của zeolit Y tổng hợp sử dụng nguồn silic từ
trấu
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 14

quản, cacbenium trung gian được hình thành theo cơ chế lưỡng phân tử chứ
không theo cơ chế đơn phân tử.










Ngoài ra, ảnh hưởng của các hiệu ứng trường tĩnh điện trong mao quản,
khuếch tán cấu hình, khống chế vận chuyển trong zeolit có hệ thống kênh giao
nhau nhưng kích thước khác nhau (như ZSM -5, mordenit,...) cũng được xem là
các kiểu chọn lọc hình dạng trong xúc tác zeolit [12].
1.2. Phản ứng Cracking
1.2.1. Giới thiệu về phản ứng cracking

Cracking là quá trình phân cắt liên kết C-C của hydrocacbon có khối
lượng phân tử (KLPT) lớn tạo ra các phân tử có KLPT thấp hơn với giá trị ứng
dụng tốt hơn.
Phản ứng cracking được chia thành hai loại: Cracking nhiệt xảy ra theo cơ
chế gốc tự do dưới tác dụng của nhiệt và Cracking xúc tác xảy ra theo cơ chế
cacbocation nhờ tác dụng của chất xúc tác.
Phản ứng Cracking một số hydrocacbon thường gặp và các sản phẩm
tương ứng có thể được viết ở dạng tổng quát như sau:
Parafin olefin + parafin nhẹ hơn
C
n
H
2n+2
C
m
H
2m
+ C
p
H
2p + 2
, n = m + p (1.1)
Olefin các olefin nhẹ hơn
C
n
H
2n
C
m
H

2m
+ C
p
H
2p
, n = m + p (1.2)
Cycloparafin (naphten): bị mở vòng tạo olefin, sau đó olefin có thể bị
Cracking tiếp tạo các olefin nhỏ hơn

m-xylen
CH
3
CH
3

Không tạo thành toluen và
trimetylbenzen
OH

O(-)

OH

OH

O(-)

OH

p-xylen

CH
3
HCH
3
H
H
CH
3
H
CH
3

CH
2
CH
3
CH
3
CH
3


CH
3
CH
3



Hình 1.10. Sự chọn lọc sản phẩm theo trạng thái tạo thành

của hợp chất trung gian
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 15

cycloparafin C
n
H
2n
olefin C
n
H
2n
C
m
H
2m
+ C
p
H
2p
, n = m + p (1.3)
Alkyl thơm: thường bị dealkyl hoá tạo hydrocacbon thơm không có nhóm
thế và olefin
ArC
n
H
2n+1
ArH + C

n
H
2n
, Ar là gốc thơm (1.4)
1.2.2. Cơ chế phản ứng cracking xúc tác
Cho đến nay, cơ chế phản ứng cracking xúc tác các hydrocacbon đã được
thừa nhận rộng rãi bao gồm sự tạo thành cacbocation trung gian, xảy ra trên các
tâm axit của xúc tác. Cacbocation bao gồm ion cacbeni (nguyên tử cacbon mang
điện tích dương có số phối trí ba ở trạng thái lai hoá sp
2
, ví dụ: CH
3
+
, C
2
H
5
+
,…)
và ion cacboni (nguyên tử cacbon mang điện tích dương có số phối trí năm, ví
dụ:
+
CH
5
, CH
5
+
,

C

6
H
7
+
,…). Tuỳ theo dạng tồn tại của ion trung gian là cacbeni
hay cacboni mà người ta chia thành hai loại tương ứng là cơ chế ion cacbeni và
cơ chế ion cacboni .
1.2.2.1. Cơ chế ion cacbeni.
Cơ chế ion cacbeni được Greensfelder và cộng sự đề ra lần đầu tiên ngay từ
năm 1949, dựa trên cơ sở hoá học ion cacbeni của Whitmore và Church [13, 14].
Cơ chế này đã được xác nhận và phát triển cho đến nay. Cơ chế ion cacbeni bao
gồm ion trung gian là cacbeni, được xem như xảy ra theo kiểu dây chuyền bao
gồm các giai đoạn sau:
a) Giai đoạn khơi mào:
Quá trình tạo thành ioncabeni
Ioncacbeni tạo thành từ quá trình proton hóa một olefin trên tâm Bronsted
(HZ) (phản ứng 1.5) hay trên tâm Lewwis, hoặc bằng sự tách H
-
ở các parafin
(phản ứng 1.6; 1.7)
R
1
CH CH R
2
HZ
R
1
CH
2
C

+
H
R
2
Z
-
+
+

+
+
Z
-
R
1
CH
2
C
+
H
R
2
HZ
H
2
R
1
CH
2
CH

2
R
2
+

R
1
CH
2
CH
2
R
2
R
1
CH
2
C
+
H
R
2
+
+
L
LH
-

Ion cacbeni được tạo ra có thể tham gia vào các quá trình chuyển dịch
hydrua hoặc cracking trong giai đoạn phát triển mạch tiếp theo.

(1.5)
(1.6)
(1.7)
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 16

b) Giai đoạn phát triển mạch
Ở giai đoạn này xảy ra hai quá trình
- Chuyển dịch hydrua H
-
: tạo các ion cacbeni bền hơn so với ion cacbeni
ban đầu, bao gồm sự chuyển dịch hydrua liên phân tử:
R
1
CH
2
C
+
H
R
2
R
3
CH
2
CH
2
C

+
H
R
4
R
3
CH
2
CH
2
CH
2
R
4
+
+
R
1
CH
2
CH
2
R
2

hoặc sự chuyển dịch hydrua nội phân tử qua sự tạo thành phức trung gian
cyclopropan proton hoá, ví dụ:

H
+

C C C C C
C
C
C
+
C C C C
C
C
+
C C C
C
Phức trung gian dạng cyclopropan proton hoá do Brouwer đề nghị năm
1980 và đã được xác nhận sau đó .
- Cracking: ion cacbeni tạo ra từ giai đoạn khơi mào hoặc từ quá trình
chuyển dịch hydrua bị phân cắt liên kết C -C theo quy tắc β (đứt liên kết C -C ở
vị trí β so với nguyên tử cacbon mang điện tích dương) để tạo ra một olefin và
một ion cacbeni mới:
c¾t
+
CH
2
CH R
4
R
3
C
+
H
2
R

3
CH
2
CH
2
C
+
H
R
4

Ion bậc một R
3
-
+
CH
2
kém bền, chúng có thể chuyển thành các ion cacbeni
bậc hai hoặc bậc ba bền hơn, hoặc có thể nhận H
-
để tạo parafin.
c) Giai đoạn tắt mạch:
Ion cacbeni nhường proton lại cho tâm xúc tác để chuyển thành olefin

+
Z
-
+
HZR CH CH CH
3

R CH
2
C
+
H
CH
3

hoặc nhận H
-
từ một chất cho (ví dụ cốc) để chuyển thành parafin:

H
-
+
R CH
2
CH
2
CH
3
R CH
2
C
+
H
CH
3

Tốc độ của quá trình chuyển dịch hydrua và cracking phụ thuộc nhiều vào

độ bền nhiệt động học của các ion cabeni ban đầu và sản phẩm. Độ bền của các
ion cacbeni giảm theo thứ tự, bậc ba > bậc hai > bậc một >
+
CH
3
.
(1.10)
(1.9)
(1.8)
(1.11)
(1.12)
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 17

1.2.2.2. Cơ chế ion cacboni.
Cơ chế ion cacboni do Haag và Dessau đề ra năm 1984 [36], dựa trên cơ sở
hoá học cacbocation trong supeaxit của Olah [15, 16]. Cơ chế bao gồm ion trung
gian là cacboni, được tạo ra từ phản ứng proton hoá một parafin:
C
n
H
2n+2
+ HZ ↔ [C
n
H
2n+3
]
+

+ Z
-
(1.13)
Ion cacboni ở trên, bị dehydro hoá tạo ion cacbeni:
[C
n
H
2n+3
]
+
[C
n
H
2n+1
]
+
+ H
2
(1.14)
hoặc bị cracking tạo các parafin và ion cacbeni mới:
[C
n
H
2n+3
]
+
[C
m
H
2m+1

]
+
+ C
p
H
2p+2
, n = m + p
(1.15)
Do parafin là hydrocacbon no, bền nên trong phản ứng (5.13) cần một chất
cho proton có lực axit rất mạnh. Sự proton hoá một parafin xảy ra bởi sự tấn công
của proton vào liên kết C -H hoặc C -C.
Mức độ can thiệp của mỗi cơ chế kể trên phụ thuộc vào điều kiện phản ứng,
bản chất của chất phản ứng và xúc tác. Người ta thường định lượng mức độ can
thiệp của mỗi cơ chế trong quá trình cracking bằng cách dựa vào sự khác nhau về
phân bố sản phẩm giữa hai cơ chế .
Chẳng hạn, trong phản ứng cracking n -hexan trên xúc tác axit (HZ), hai cơ
chế cacbocation với sự tạo thành các sản phẩm đặc trưng khác nhau có thể được
viết như sau:
(1) Cơ chế ion cacboni:









Cân bằng (1.16) là giai đoạn tạo ion cacboni hấp phụ trên bề mặt zeolit.
Phản ứng (1.17) tạo ion cacbeni bậc hai C

6
H
13
+
qua sự dehydro hoá ion cacboni
(1.16)
(1.17)
(1.18)
(1.19)
(1.20)
(1.21)
(1.22)
+
+
+
+
+
+
C
2
H
5
+
Z
-
C
4
H
9
+

Z
-
CH
3
+
Z
-
C
3
H
7
+
Z
-
C
5
H
11
+
Z
-
C
6
H
13
+
Z
-
C
5

H
12
C
4
H
10
C
3
H
8
C
2
H
6
CH
4
H
2
nC
6
H
15
+
Z
-
+
nC
6
H
15

+
Z
-
HZnC
6
H
14
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 18

nC
6
H
15
+
. Các phản ứng (1.18) (1.22) là sự phân cắt liên kết C -C của ion
cacboni tạo parafin và ion cacbeni thứ cấp bậc một hấp phụ trên zeolit. Độ bền
của các ion cacbeni ở trên giảm theo chiều dài mạch cacbon, tức là theo thứ tự:
C
6
H
13
+
> C
5
H
11
+

> C
4
H
9
+
> C
3
H
7
+
> C
2
H
5
+
> CH
3
+
. Các ion CH
3
+
và C
2
H
5
+

độ bền rất kém. Vì thế, ba phản ứng (1.17), (1.18) và (1.19) xảy ra dễ dàng hơn,
tạo các sản phẩm tương ứng là H
2

, CH
4
và C
2
H
6
. Do vậy đây là ba sản phẩm
được dùng để đặc trưng sự hiện diện của cơ chế ion cacboni.
(2) Cơ chế ion cacbeni.
Đầu tiên, phân tử n -hexan bị tách H
-
trên tâm Bronsted (hoặc tâm Lewis) của
xúc tác, tạo ion cacbeni bậc hai C
6
H
13
+
hấp phụ trên bề mặt zeolit:

Ion bậc hai C
6
H
13
+
(C-C
+
-C-C-C-C hoặc C -C-C
+
-C-C-C) bị phân cắt liên
kết C -C theo quy tắc , tạo một olefin và một ion cacbeni thứ cấp hấp phụ trên

zeolit theo các phản ứng sau:
C
3
H
7
+
Z
-
C
3
H
6
CH
3
C
+
H
CH
2
CH
2
CH
2
CH
3
+
Z
-



Độ bền của các ion cacbeni giảm theo thứ tự: C
3
H
7
+
> C
2
H
5
+
> CH
3
+
. Giá trị
H của các phản ứng (1.24), (1.25), và (1.26) lần lượt bằng 50; 53 và 86 kcal
/mol [A2], tăng dần từ (1.24) đến (1.26). Vì thế sự phân cắt ở vị trí đối xứng là
thuận lợi hơn cả về mặt nhiệt động học. Sơ đồ trên cho thấy các olefin C
3
=
C
5
=

là các sản phẩm chủ yếu đặc trưng của quá trình cracking theo cơ chế ion
cacbeni.
Các ion cacbeni thứ cấp ở cả hai cơ chế trên (C
3
H
7
+

, C
4
H
9
+
, C
5
H
11
+
) lại tiếp
tục tham gia vào các quá trình đồng phân hoá tạo ion bậc cao bền hơn, chuyển
dịch hydrua tạo sản phẩm là các parafin, ví dụ:

a
b
b
a
C H
3
+
Z
-
C
5
H
10
+
+
C H

3
C H
2
C
+
H
C H
2
C H
2
C H
3
C
4
H
8
C
2
H
5
+
Z
-
Z
-
(1.25)
(1.26)
(1.23)
(1.24)
(1.27)

Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 19


Do đó, sự tạo thành sản phẩm C
3
và các parafin có mạch cacbon cao hơn
được xem là thông số đánh giá mức độ chuyển dịch hydrua của quá trình. Các
sản phẩm phân nhánh (như isobutan) còn được đặc trưng cho mức độ đồng phân
hoá trên xúc tác.
Hiện nay, cơ chế phản ứng cracking xúc tác vẫn còn đang được nhiều nhà
nghiên cứu quan tâm với mục đích làm rõ bản chất của các trạng thái chuyển
tiếp, sự tương tác giữa chúng với các tâm hoạt động của xúc tác, đánh giá mức độ
can thiệp của mỗi cơ chế vào quá trình cracking trên các xúc tác khác nhau. Các
tính toán hoá học lượng tử cũng đã và đang được sử dụng để định lượng bản chất
hoá học của cacbocation trung gian trong phản ứng cracking xúc tác.
1.2.3. Phản ứng cracking dầu mỏ.
Nguyên liệu cơ bản cho phản ứng cracking xúc tác trong công nghiệp dầu
mỏ thường là các phân đoạn kerosen (khoảng nhiệt độ sôi 180
0
-270
0
C), gas oil
chưng cất khí quyển, (270
0
-360
0
C), gas oil chưng cất chân không (350

0
-540
0
) và
các phân đoạn cặn. Các nhóm sản phẩm khí sau khi thực hiện phản ứng cracking
bao gồm: khí (khí khô C
1
– C
2
và LPG C
3
– C
4
); xăng (phần lỏng có nhiệt độ sôi
cuối khoảng 200
0
C); các sản phẩm lỏng nặng hơn gồm: dầu nhẹ LCO (200 –
350
0
C) và dầu nặng HCO (> 350
0
C); sản phẩm rắn là cốc bám trên bề mặt xúc
tác. Thành phần các sản phẩm thay đổi trong một khoảng rộng và phụ thuộc vào
nhiều yếu tố như bản chất nguyên liệu, xúc tác; các điều kiện phản ứng (nhiệt độ,
áp suất, tốc độ nạp nguyên liệu, tỷ lện nguyên liệu/xúc tác). Các sản phẩm mong
muốn trong quá trình cracking dầu mỏ là: LCO, HCO chuyển hóa tiếp thành
xăng, đồng thời hạn chế quá trình cracking sâu tạo ra nhiều khí.
Trong cracking xúc tác, bên cạnh phản ứng chính của quá là sự phân cắt
liên kết C-C, nhiều phản ứng thứ cấp cũng xảy ra, làm tăng tính phức tạp của
thành phần sản phẩm. Đó là các phản ứng dịch chuyển hydrua, chuyển vị nhóm

alkyl, đồng phân hóa, đóng vòng hóa, thơm hóa, ngưng tụ…Các phản ứng này
cũng xảy ra theo cơ chế cacbocation trên các tâm axit có lực khác nhau của xúc
tác.
1.3. Giới thiệu về trấu và thành phần vỏ trấu:
(1.28)
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 20

Trấu chiếm khoảng 15- 20% khối lượng trong thóc, hàng năm nước ta có
khoảng 3-4 triệu tấn trấu.
Qua quá trình phân tích đánh giá, thành phần hóa học của vỏ trấu được được
đặc trưng bởi bảng sau:
Bảng 1.1. Đặc trưng thành phần của nguyên liệu trấu [3, 5]
Thành phần

Khoảng hàm lƣợng %
Độ ẩm

2,4 – 11,4
Protein thô 1,7 – 7,4
Dầu trấu thô 0,4 – 3,0
Dịch chiết không chứa nito

24,7 – 38,8
Sợi thô 31,7 – 49,9
Tro 13,2 – 29,0
Pentosan 16,9 – 22,0
Cellulose


34,3 – 43,8
Thành phần không tan của tro trong
axit
13,7 – 20,8
Hàm lượng của các thành phần trong trấu có biên độ dao động lớn, với
mục đích tổng hợp vật liệu, từ vỏ trấu, thành phần cần quan tâm đặc biệt là hàm
lượng Silic trong vỏ trấu đặc biệt là trong tro thu được từ quá trình nung trấu.
Tro là hỗn hợp của các oxit kim loại, trong đó thành phần chủ yếu là oxit
silic chiếm tới 87-97 % . Tro trấu có thành phần hóa học như sau:
Bảng 1.2. Đặc trưng thành phần của tro
Thành phần Khoảng hàm lƣợng (%)
SiO
2
86.9 – 97.3
K
2
O 0.6 – 2.5
Na
2
O 0.3 – 1.8
CaO 0.2 – 1.5
MgO 0.1 – 2.0
Fe
2
O
3
0.2 – 0.9
P
2

O
5
0.2 – 2.9
SO
3
0.1 – 1.1

Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 21

Cl
-
0.1 – 1.4

CHƢƠNG 2
CÁC PHƢƠNG PHÁP THỰC NGHIỆM
2.1. Chiết tách oxit silic từ vỏ trấu.
Trấu được rửa sạch, sấy khô ở 100
0
C trong thời gian từ 2h – 3h. Lấy mẫu
trấu đã qua xử lí, đem đốt thành tro đen, lấy lượng tro đen đem đi nung ở nhiệt
độ 550
0
C trong khoảng thời gian 4,5h – 5h, trong diều kiện có không khí. Tro
trấu sau khi nung, được hoà tan trong dung dịch NaOH theo tỉ lệ thành phần của
vật liệu.
2.2. Tổng hợp vật liệu zeolit ZSM-5 và HY.
Từ nguồn oxit silic tách được từ trấu, chúng tôi tiến hành tổng hợp các vật

liệu: zeolit Y, zeolit ZSM-5 theo phương pháp kết tinh thuỷ nhiệt.
2.2.1. Tổng hợp zeolit ZSM-5.
* Nguyên liệu:
- Nguồn silic: dung dịch chiết từ vỏ trấu Việt Nam
- Nguồn nhôm: sunphat nhôm (Al
2
(SO
4
)
3
.18H
2
O), Trung Quốc
- Chất tạo cấu trúc vi mao quản: tetrapropylamonium bromua (TPABr), Đức
- Nước cất 2 lần
Quy trình tổng hợp vật liệu zeolit ZSM-5 được đưa ra trong sở đồ hình 2.1.
Vật liệu được tổng hợp bằng phương pháp kết tinh thuỷ nhiệt sử dụng chất tạo
cấu trúc TBABr. Gel được kết tinh ở 170
0
C với thời gian là 24h. Sản phẩm rắn
sau khi kết tinh được rửa bằng nước cất đến pH =7, sấy khô ở 100
0
C và nung ở
550
0
C trong không khí 5h để loại bỏ hết tạp chất. Sản phẩm sau đó được trao đổi
H
+
bằng dung dịch NH
4

NO
3
2M, rửa, sấy, nung lại ở 500
0
C để tạo sản phẩm cuối
cùng là HZSM-5.
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 22


2.2.2. Tổng zeolit Y .
* Nguyên liệu:
- Nguồn silic: dung dịch chiết từ vỏ trấu Việt Nam
- Nguồn nhôm: Hydroxit nhôm (Al(OH)
3
, Trung Quốc
- Axít sunfuric (H
2
SO
4
98%), Trung Quốc
- Nước cất.
- NaOH Trung Quốc.
* Phương pháp tổng hợp.
Sơ đồ tổng hợp zeolit Y được trình bày trong sơ đồ hình 2.2. Gel được tạo
từ nguồn silic tách từ trấu và nguồn nhôm dưới dạng aluminat, có thành phần mol
như sau: 28NaOH x 1Al
2

O
3
x 20SiO
2
x 300H
2
O. Gel được làm già trong 72 giờ
Dung dịch oxit silic
chiết từ tro trấu
Nhôm sufat + H
2
SO
4

98%

Khuấy

Lọc, rửa, sấy, Nung
Khuấy (làm già
48h)
Mầm ZSM-5
Kết tinh thủy nhiệt
ở 170
0
C
Sản phẩm
Hình 2.1. Sơ đồ quá trình tổng hợp Zeolite ZSM-5

Đồ án tốt nghiệp HD1001



Sinh viên : Nguyễn Văn Toán 23

và kết tinh thủy nhiệt ở 100
0
C trong 24 giờ. Sản phẩm sau kết tinh được rửa pH,
sấy khô và nung ở 500
0
C trong 3 giờ. Sau khi nung, sản phẩm được trao đổi H
+

bằng dung dịch NH
4
NO
3
2M, rửa, sấy và nung ở 500
0
C trong 3 giờ tạo sản phẩm
HY.



2.3. Các phƣơng pháp nghiên cứu cấu trúc vật liệu.
Trong lĩnh vực khoa học thực nghiệm có rất nhiều phương pháp khác nhau
được sử dụng để nghiên cứu đặc tính và cấu trúc tinh thể của vật liệu. tùy thuộc
vào từng loại cấu trúc và mục đích nghên cứu mà ta có thể lựa chọn được phương
pháp nghiên cứu phù hợp. Trong phạm vi đồ án này tôi sử dụng một số phương
pháp sau để nghiên cứu cấu trúc của vật liệu.
2.3.1. Phương pháp phổ hấp thụ hồng ngoại (IR).

Dd NaOH + Tro
nung tử vỏ trấu
Kết tinh thủy nhiệt
100
0
C
Lọc, rửa , sấy
Khuấy
(làm già 48 h)
Nguồn silic
Dd NaOH
Al(OH)
3

Dd H
3
PO
4
98%
Sản phẩm Zeolit Y
Nung 550
0
C, 6h
Hình 2.2. Sơ đồ quá trình tổng hợp Zeolite Y

Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 24


2.3.1.1. nguyên tắc.
Phương pháp phổ IR dựa trên sự tương tác của các bức xạ điện từ, miền
hồng ngoại (400-4000 cm
-1
) với các phân tử cần nghiên cứu. Quả trình tương tác
đó có thể dẫn đến sự hấp thụ năng lượng có liên quan chặt chẽ đến cấu trúc của
các phân tử, do đó phổ IR được dùng để nghiên cứu cấu trúc các chất.
ΔE = E
*
- E = h ν
Trong đó: - E: là năng lượng ở trạng thái cơ bản.
- E
*
: là năng lượng ở trạng thái kích thích.
- ΔE: là hiệu năng lượng.
- h: là hằng số Planck.
- ν: là tần số.
Người ta phân biệt hai loại dao động của phân tử, thể hiện trên phổ IR là
dao động hóa trị và dao động biến dạng. Loại dao động hóa trị chỉ thay đổi độ dài
liên kết mà không thay đổi góc liên kết. loại dao động biến dạng chỉ thay đổi góc
liên kết mà không thay đổi độ dài liên kết. Phương trình cơ bản của sự hấp phụ
bức xạ điện từ là phương trình Lambert – Beer :
D = lgI
o
/I = .l.C
Trong đó: D: mật độ quang
l: chiều dày cuvet (cm).
C: nồng độ chất phân tích (mol/l).
: hệ số hấp thụ phân tử.
I

o
, I: cường độ ánh sáng trước và sau khi ra khỏi chất phân tích.
Đường cong biểu diễn sự phụ thuộc của mật độ quang vào chiều dài bước sóng
kích thích gọi là phổ. Mỗi cực đại trong phổ IR đặc trưng cho một dao động của một
liên kết trong phân tử. Do có độ nhạy cao, cho nên phổ IR được dử dụng rộng rãi trong
phân tích cấu trúc zeolit, phát hiện nhóm OH bề mặt, phân biệt các tâm axit Bronsted và
lewis...
2.3.1.2. Thực nghiệm.
Phổ IR của các mẫu Zeolit được ghi theo kỹ thuật ép viên với KBr theo tỷ
lệ 1mg mẫu/100mg KBr trên máy Impact-410 (Đức), viện Hóa Học – Viện Khoa
Học Việt Nam, trong vùng 400-1300 cm
-1
ở nhiệt độ phòng..
2.3.2. Phương pháp nhiễu xạ Rơnghen (XRD).
Đồ án tốt nghiệp HD1001


Sinh viên : Nguyễn Văn Toán 25

2.3.2.1 Nguyên tắc:
Theo lý thuyết cấu tạo tinh thể, mạng tinh thể được xây dựng từ các
nguyên tử hay ion phân bố đều đặn trong không gian theo một quy tắc xác định .


Khi chùm tia Rơnghen ( X ) tới bề mặt tinh thể và đi sâu vào bên trong
mạng tinh thể thì mạng lưới này đóng vai trò như một cách tử nhiễu xạ đặc biệt.
Các nguyên tử, ion bị kích thích bởi chùm tia X sẽ trở thành các tâm phát ra các
tia phản xạ.
Mà các nguyên tử ion này được phân bố trên các mặt phẳng song song.
Do đó hiệu quang trình Δ của hai tia phản xạ bất kỳ trên hai mặt song song cạnh

nhau được tính như sau :
=2 d sin

Trong đó : d: là khoảng cách giữa hai mặt phẳng song song.
: là góc giữa chùm tia X và mặt phẳng phản xạ.

:

là hiệu quang trình của hai tia phản xạ .
Theo điều kiện giao thoa, để các sóng phản xạ trên hai mặt phẳng song song
cùng pha thì hiệu quang trình phải bằng nguyên lần độ dài sóng ( ) :
2dsin = n. (n Є N, l là bậc phản xạ)
Đây là hệ thức Vulf- Bragg, là phương trình cơ bản để nghiên cứu cấu trúc tinh
thể. Căn cứ vào cực đại nhiễu xạ trên giản đồ ( giá trị 2 ) tìm được d theo hệ thức trên.
Hình 2.3. Sơ đồ tia tới và tia phản xạ trên tinh thể

×