TRƯỜNG THPT ĐÀO DUY TỪ
ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ 2 (25/10/2015)
MÔN THI: TOÁN HỌC
Thời gian làm bài 180 phút; không kể thời gian giao đề
Câu I: Cho hàm số f(x) = -x4 + 2(m + 1)x2 – 2m – 1
1) Khảo sát và vẽ đồ thị hàm số với m = 0
2) Tìm các giá trị của m để đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt có
hoành độ tạo thành cấp số cộng.
Câu II:
1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 5 4 x trên đoạn [-1;1]
2) Tìm a ≥ 1 để nghiệm lớn của phương trình: x2 + (2a – 6)x + 1 – 13 = 0 đạt giá
trị lớn nhất.
Câu III: Giải các phương trình sau:
1)
2)
1
log√2 (x – 1) –
2
log
1
2
(x + 5) = log4 (3x + 1)2
2(cos 6 x sin 6 x) sin x cos x
0
2 2 sin x
Câu IV:
1) Trong mặt phẳng với hệ độ độ Oxy, cho tam giác ABC có tâm đường tròn ngoại
tiếp tam giác ABC là I (-2; 1) và thỏa mãn điều kiện góc AIB = 900, chân đường
cao kẻ từ A đến BC là D (-1; -1), đường thẳng AC đi qua điểm M (-1;4). Tìm tọa
độ các đỉnh A, B biết rằng đỉnh A có hoành độ dương.
2) Cho đường thẳng (d) và đường tròn (C) có phương trình: (d): 2x – 2y – 1 = 0,
(C): (x + 1)2 + (y+ 2)2 = 2
a) Xác định vị trí tương đối của (d) và (C).
b) Tìm trên (C) điểm N(x1; y1) sao cho x1 + y1 đạt giá trị lớn nhất, nhỏ nhất.
Câu V: Cho hình chóp S.ABC có cạnh bên SA vuông góc với đáy, mặt bên (SBC)
tạo với đáy góc 600. Biết SB = SC = BC =a tính thể tích khối chóp theo a.
Câu VI: Khai triển (x – 2)100 = a0 + a1x + a2x2 + … + a100x100
a) Tính T = a0 + a1 + a2 + … + a100
b) Tính S = a1 + 2a2 + … + 100a100
THPT CHUYÊN LÀO CAI
ĐỀ THI THỬ THPT QUỐC GIA LẦN 1 NĂM 2016
MÔN: TOÁN
Câu 1 (2.0 điểm). Cho hàm số y = x3 – 3x2 + 2
a) Khảo sát sự biến thiên và và vẽ đồ thị (C) của hàm số đã cho.
b) Viết phương trình tiếp tuyến của đồ thị (C) biết tiếp tuyến song song với đường thẳng
24x - y -5=0
Câu 2 (1,0 điểm) Giải phương trình sinx(2sinx + 1) = cox(2cosx + √3)
Cầu 3 (1,0 điểm). Cho số phức z thỏa mãn hệ thức (i+3)z +
2i
= (2 -i)z. Tìm môđun của
i
số phức w = z - i
Câu 4 (1.0 điểm). Trong cụm thi xét công nhận tốt nghiệp THPT thí sinh phái thi 4 môn
trong đó có 3 môn buộc Toán, Văn. Ngoại ngữ và 1 môn do thi tinh tự chọn trong số các
môn: Vật li. Hóa học. Sinh học, Lịch sử vả Địa lý. Một trường THPT có 90 học sinh đăng
ki dự thi. trong đó 30 học sinh chọn mỏn Vật lỉ vả 20 học sinh chọn môn Hóa học. Chọn
ngẫu nhiên 3 học sinh bất kỳ của trường đó. Tính xắc suất để trong 3 học sinh đó luôn có
cả học sinh chọn môn Vật lí và học sinh chọn môn Hóa học.
Câu 5 (1,0 điểm). Cho hình chóp S.ABCD có đấy ABCD là hình vuông cạnh bằng 2a.
Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm H của cạnh AB. Góc
giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng 600. Tính theo a thể tích khối chóp
S.ABCD. Tính theo a khoảng cách giữa hai đường thẳng SA và BD.
Câu 6. (1,0 điểm). Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S): (x – 1)2 + (y –
2)2 + (z – 3)2 = 9 và đường thẳng :
x6 y2 z 2
. Viết phương trình mặt phẳng (P)
3
2
2
đi qua M(4; 3; 4), song song với đường thẳng ∆ và tiếp xúc với mặt cầu (S).
Câu 7 (1,0 điểm). Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD có đỉnh C thuộc
đường thẳng d: x + 2y – 6 = 0, điểm M(1; 1) thuộc cạnh BD. Biết rằng hình chiếu vuông
góc của điểm M trê cạnh AB và AD đều nằm trên đường thẳng ∆: x + y – 1 = 0. Tìm tọa
độ đỉnh C.
Câu 8 ( 1,0 điểm). Giải bất phương trình:
( x 2)( 2 x 3 2 x 1) 2 x 2 5 x 3 1
Câu 9 ( 1,0 điểm). Cho x, y, z là các số thực dương thỏa mãn 5(x2 + y2 + z2) = 9(xy + 2yz
+ xz). Tìm giá trị của biểu thức:
P
x
1
2
y z
( x y z)2
2
Đề thi thử THPT Quốc gia môn Toán 2016 chuyên Vĩnh Phúc lần 1
Câu 4 (1,0 điểm). Giải phương trình: 3sin2x – 4sinxcosx + 5 cos2x = 2
Câu 5 (1,0 điểm)
a) Tìm hệ số của x10 trong khai triển của biểu thức: (3x3 – 2/x2)5
b) Một hộp chứa 20 quả cầu giống nhau gồm 12 quả đỏ và 8 quả xanh. Lấy ngẫu
nhiên (đồng thời) 3 quả. Tính xác suất để có ít nhất một quả cầu màu xanh.
Câu 6 (1,0 điểm). Trong mặt phẳng với hệ tọa độ (Oxy), cho hình bình hành
ABCD có hai đỉnh A(-2;-1), D(5;0) và có tâm I(2;1). Hãy xác định tọa độ hai đỉnh
B, C và góc nhọn hợp bởi hai đường chéo của hình bình hành đã cho.
Câu 7 (1,0 điểm)
Cho hình chóp S.ABCD có đấy ABC là tam giác vuông tại A, mặt bên SAB là tam
giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC), gọi M là điểm
thuộc cạnh SC sao cho MC = 2MS. Biết AB = 3, BC = 3√3, tính thể tích của khối
chóp S.ABC và khoảng cách giữa hai đường thẳng AC và BM.
Câu 8. (1,0 điểm). Trong mặt phẳng với hệ tọa độ (Oxy), cho tam giác ABC ngoại
tiếp đường tròn tâm J(2;1). Biết đường cao xuất phát từ đỉnh A của tam giác ABC
có phương trình: 2x + y – 10 = 0 và D(2;-4) là giao điểm thứ hai của AJ với đường
tròn ngoại tiếp tam giác ABC. Tìm tọa độ các đỉnh tam giác ABC biết B có hoành
độ âm và B thuộc đường thẳng có phương trình x + y + 7 = 0.
SỞ GD&ĐT BẮC GIANG
TRƯỜNG THPT HIỆP HÒA SỐ 1
ĐỀ THI THỬ THPT QUỐC GIA NĂM 2016
Môn thi: TOÁN
Thời gian làm bài: 180 phút, không kể thời gian giao đề
x2
Câu 1: (2,0 điểm) Cho hàm số y
(1)
x 1
a) Khảo sát sự biến thiên và vẽ đồ thi (C) của hàm số (1)
b) Viết phương trình tiếp tuyến của (C) biết tiếp điểm đó có hệ số góc bằng
1
4
Câu 2: (1,0 điểm) Tìm giá trị lớn nhất và nhỏ nhất của hàm số y =vx4 - 2x3 - 5x2 + 1 trên
đoạn [-3; 1]
1
3
Câu 3: (1,0 điểm) Cho hàm số y = x3 +
1 2
1
ax + bx + . Xác định a, b để hàm số đạt
2
3
cực đại x = 1 và giá trị cực đại tại điểm đó bằng 2.
4
Câu 4 (1,0 điểm) Cho cosα =
; ( 0) . Tính giá trị biểu thức
5
2
A sin( ) cos( )
4
4
Câu 5. (1,0 điểm) Một bình đựng 6 viên bi màu trắng vả 7 viên bi màu vàng. Lấy ngẫu
nhiên một viên bi, rồi lấy tiếp một viên nữa. Tính xác suất của biến cố lần thứ hai được
một viên bi màu vàng.
Câu 6. (1,0 điểm) Trong không gian hình chóp S.ABCD, tứ giác ABCD là hình thang cân,
hai đáy BC và AD. Biết SA = a 2 , AD = 2a, AB = BC = CD = a. Hình chiếu vuông góc
cúa S trên mặt phẳng ABCD trùng với trung điểm cạnh AD. Tính theo a thể tích khối chóp
S.ABCD và khoảng cách giữa hai đường thẳng SB và AD.
5
2
Câu 7. (1,0 điểm) Trong mặt phẳng Oxy, cho hình vuông ABCD có M(2; ) là trung
điểm của AB, trọng tâm của tam giác ACD là điểm G(3; 2). Tìm tọa độ các đỉnh của hình
vuông ABCD, biết B có hoành độ dương.
(8 x 3) 2 x 1 y 4 y 3 0
Câu 8. (1,0 điểm) Giải hệ phương trình
4 x 2 8 x 2 y 3 y 2 2 y 3 0
(x, y ∈ R)
Câu 9. (1,0 điểm) Cho 2 số thực a, b ∈ (0; 1) thỏa mãn (a3 + b3)(a + b) - ab(a - 1)(b - 1)
= 0. Tìm giá trị lớn nhất của biểu thức F
1
1 a
2
1
1 b
2
3ab a 2 b 2
..........................Hết.......................
(Cán bộ coi thi không giải thích gì thêm)
SỞ GD&ĐT BẮC GIANG
TRƯỜNG THPT LỤC NGẠN SỐ 1
ĐỀ: CHÍNH THỨC
(Đề thi gồm 01 trang)
ĐỀ THI THỬ THPT QUỐC GIA
THÁNG 10 - 2015
MÔN: TOÁN
Thời gian làm bài: 150 phút (không kể thời gian giao đề)
Câu 1. (2,0 điểm) Cho hàm số y = x3 – 3x + 1 (1)
a). Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
b). Tìm tọa độ điểm A(x1; y1) thuộc (C), biết tiếp tuyến với (C) tại A cắt (C) tại điểm B(x2;
y2) (B khác điểm A) sao cho x1 + x2 = 1
Câu 2. (2,0 điểm)
a) Tìm giá trị lớn nhất, nhỏ nhất của hàm số f(x) = x4 – 2x2 – 3 trên đoạn [0; 2].
b) Giải phương trình
3 sin2x + 2sin2x = 4sin3xcosx + 2
Câu 3. (1,5 điểm)
a) Một tổ của lớp 12A1 trường THPT Lục Ngạn số 1 – Bắc Giang gồm 5 nam và 8 nữ.
Từ tổ trên người ta cần lập một nhóm “Tình nguyện” gồm 4 học sinh. Tìm xác suất để
trong 4 học sinh được chọn có ít nhất 1 nữ.
3
4
b) Tìm hệ số xủa x6 trong khai triển nhị thức Niu-tơn của biểu thức P ( x 5 ) n 6 (x ≠
0), biết n là số nguyên dương thỏa mãn Cn2 2 An1 27 .
Câu 4. (1,5 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M là
trung điểm của đoạn AB. Biết hai mặt phẳng (SMC), (SMD) cùng vuông góc với mặt
phẳng (ABCD) và góc tạo bởi đường thẳng SC với mặt đáy bằng 600. Tình theo a thể tích
khổi chóp S.ABCD và khoảng cách từ điểm B đến mặt phẳng (SCD).
Câu 5. (1,0 điểm) Trên mặt phẳng Oxy, cho hình vuông ABCD. Gọi M là điểm thuộc
cạnh BC. Đường tròn đường kính AM cắt BC tại B, cắt BD tại N(6; 2). Tìm tọa độ các
điểm A và C, biết M(5; 7); đỉnh C thuộc đường d: x + y - 4 = 0, hoành điểm C nguyên và
điểm A có hoành độ bé hơn 2.
Câu 6. (1,0 điểm) Giải hệ phương trình
( x 4) 3 x y 3 y 0
(x, y ∈ R)
2
2 x y 2 3 x 12 5 x 6 7 x 11 0
Câu 7. (1,0 điểm) Cho các số thực x, y, z thay đổi thỏa mãn x.y.z = -1 và x4 + y4 = 8xy - 6.
Tìm giá trị lớn nhất của biểu thức: P xy ( x y ) 2
1
.
2 z
----------Hết----------
TRƯỜNG THPT TRẦN HƯNG ĐẠO
Tổ: TOÁN
(Đề thi gồm 01 trang)
KÌ THI THỬ TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2016
Môn thi: TOÁN
Thời gian làm bài: 150 phút, không kể thời gian phát đề
Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị hàm số y
2x 1
x2
Câu 2 (1,0 điểm). Cho hàm số y = x3 – 3x – 4 có đồ thị là (C). Viết phương tình
tiếp tuyến của (C) tại điểm A là giao điểm của (C) và trục Oy.
Câu 3 (1,0 điểm). Tìm giá trị lớn nhất và giá trj nhỏ nhất của hàm số:
f(x) = x4 – 8x2 + 9 trên đoạn [-1; 3].
Câu 4 (1,0 điểm). Giải phương trình sin2x – cos2x = 2sinx - 1
Câu 5 (1,0 điểm). Một hộp đựng 15 viên bi. Trong đó có 4 viên bi màu đỏ, 5 viên
bi màu xanh và 6 viên bi màu vàng. Lấy ngẫu nhiên từ hộp ra 4 viên bi. Tính xác
suất để lấy được ít nhất 2 viên bi có cùng màu.
2x2 x 2x 1
Câu 6 (1,0 điểm). Tính giới hạn L lim
x 1
x 1
Câu 7 (1,0 điểm). Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Tam
giác SBC cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Biết
SA = a. Tính theo a thể tích khối chóp S.ABC và khoảng cách từ điểm B đến mặt
phẳng (SAC).
Câu 8 (1,0 điểm). Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình vuông ABCD
có đỉnh C(3; -3) và điểm A thuộc đường thẳng d: x + 2y – 2 = 0. Gọi E là điểm
thuộc cạnh BC, F là giao điểm của hai đường thẳng AE và CD, I (
87 7
; ) là giao
19 19
4
3
điểm của hai đường thẳng DE và BF. Tìm tọa độ các điểm B, D biết điểm M( ; 0)
thuộc đường thẳng AF.
Câu 9 (1,0 điểm). Giải phương trình ( x 5) x 1 1 3 3x 4 trên tập hợp số thực.
Câu 10 (1,0 điểm). Cho hai số thực a, b thuộc (0; 1) và thỏa mãn điều kiện (a3 +
b3)(a + b) = ab(1 - a)(1 - b). Tìm giá trị lớn nhất của biểu thức
T
1
1 a
2
1
1 b
2
a 2 3ab b 2
----------Hết----------
SỞ GD & ĐT BẮC NINH
TRƯỜNG THPT LÝ THÁI TỔ
ĐỀ THI THỬ THPT QUỐC GIA NĂM HỌC 2015-2016
Môn: TOÁN;
Thời gian: 180 phút, không kể thời gian phát đề.
Ngày thi: 7/11/2015
Câu 1 (2.0 điểm) Cho hàm số: y x 3 3x 2 1 có đồ thị là (C) .
a. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
b. Viết phương trình tiếp tuyến của đồ thị (C) tại điểm A 1; 5 . Gọi B là giao điểm của tiếp tuyến
với đồ thị (C) B A . Tính diện tích tam giác OAB, với O là gốc tọa độ.
Câu 2 (1.0 điểm) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f (x)
x 2 3x 6
trên đoạn 2; 4 .
x 1
Câu 3 (1.0 điểm)
a) Giải phương trình lượng giác: cos2x cos6x cos4x
b) Cho cos2
4
với . Tính giá trị của biểu thức: P 1 tan cos
5
2
4
Câu 4 (1 điểm)
a)Tìm hệ số của số hạng chứa x 2010 trong khai triển của nhị thức: x
2
x2
2016
.
b) Gọi X là tập hợp các số tự nhiên gồm 6 chữ số đôi một khác nhau được tạo thành từ các chữ số
1, 2, 3, 4, 5, 6, 7, 8, 9 . Chọn ngẫu nhiên một số từ tập hợp X. Tính xác suất để số được chọn chỉ chứa 3
chữ số lẻ.
Câu 5 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(1; 2), B(3; 4) và đường thẳng
d có phương trình: x 2y 2 0. Tìm điểm M thuộc đường thẳng d sao cho: MA 2 MB2 36.
Câu 6 (1,0 điểm). Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và AB 2, AC 4.
Hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC) là trung điểm H của đoạn thẳng AC. Cạnh
bên SA tạo với mặt đáy một góc 60o. Tính thể tích khối chóp S.ABC và khoảng cách giữa hai đường
thẳng AB và SC.
Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông tại A nội tiếp đường
tròn (T) có phương trình: x 2 y 2 6x 2y 5 0. Gọi H là hình chiếu của A trên BC. Đường tròn
đường kính AH cắt AB, AC lần lượt tại M, N. Tìm tọa độ điểm A và viết phương trình cạnh BC, biết
đường thẳng MN có phương trình: 20x 10y 9 0 và điểm H có hoành độ nhỏ hơn tung độ.
xy y 2 2y x 1 y 1 x
Câu 8 (1,0 điểm). Giải hệ phương trình:
3 6 y 3 2x 3y 7 2x 7
Câu 9 (1,0 điểm). Cho x, y, z là ba số thực dương thỏa mãn: x y z 3. Tìm giá trị nhỏ nhất của
biểu thức: P
x2
y2
z2
zx 8 y 3 xy 8 z3
-------------------------- Hết -------------------------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:..........................................................
Số báo danh:..................................
yz 8 x 3
Câu
1
(2.0 điểm)
Đáp án
Điểm
a. (1.0 điểm) Khảo sát vẽ đồ thị…
• Tập xác định: D .
• Sự biến thiên:
x 0 y 1
y ' 3x 2 6x; y ' 0
x 2 y 5
0.25
Giới hạn: lim y ; lim
x
x
Bảng biến thiên:
x
y'
-2
0
5
0
0
0.25
y
1
- H/s đb trên các khoảng (; 2), (0; ) và nb trên khoảng (2; 0).
- Hàm số đạt cực tại x 2; y CÑ 5 ; đạt cực tiểu tại x 0; y CT 1.
• Đồ thị:
x
1
y
1
5
3
0.25
b. (1.0 điểm) Viết phương trình tiếp tuyến…tính diện tích tam giác….
+ Ta có: y '(1) 9 phương trình tiếp tuyến của đồ thị (C) tại điểm A 1; 5 là:
y 9(x 1) 5 y 9x 4 (d)
+ Tọa độ điểm B là giao của d và (C) có hoành độ là nghiệm pt:
x 1
x 3 3x 2 1 9x 4 x 3 3x 2 9x 5 0 (x 1)2 (x 5) 0
x 5
Do B A nên B(5; 49) . Ta có: AB 6; 54 AB 6 82 ;
d O,d
4
82
0.25
0.25
Tìm giá trị lớn nhất và nhỏ nhất…
Ta có f (x) liên tục trên đoạn 2; 4 , f '(x)
x 2 2x 3
(x 1)2
0.25
Với x 2; 4 , f '(x) 0 x 3
0.25
10
3
0.25
Ta có: f (2) 4,f (3) 3,f (4)
Vậy Min f ( x) 3 tại x = 3; Max f ( x) 4 tại x = 2
2 ; 4
3
0.25
0.25
.
1
1 4
Suy ra: SOAB d O,d .AB .
.6 82 12 (đvdt)
2
2 82
2
(1 điểm)
0.25
a. Giải phương trình …
2 ; 4
0.25
(1.0 điểm)
cos4x 0
PT 2 cos4 x cos2 x cos4 x cos4x( 2 cos2x 1) 0
cos2x 1
2
x 8 k 4
4x 2 k
x k
2x k 2
3
6
0.25
0.25
b.Tính giá trị biểu thức…
nên sin 0,cos 0 . Ta có:
2
1 cos2 1
1
cos2
cos
,
2
10
10
Do
sin2 1 cos2
9
3
sin
sin
3
, tan
10
cos
10
Khi đó: P 1 tan .
4
(1.0 điểm)
0.25
1
2
1 1
3
2 5
5
2 10
10
cos sin 1 3 .
0.25
a.Tìm hệ số của số hạng chứa x 2010 trong khai triển…
k
2016
2016
2016
2
2
k
k
Xét khai triển: x 2 C2016
x 2016 k 2 2 k C2016
x 2016 3 k
x
k 0
k 0
x
2010
Số hạng chứa x
ứng với 2016 3k 2010 k 2 là 22 C22016 x 2010 có hệ số là
22 C22016 4C22016 .
b.Tính xác suất …
Gọi là không gian mẫu của phép thử: “Chọn ngẫu nhiên một số từ tập X”.
Khi đó: A 96 60480
0.25
0.25
0.25
Gọi A là biến cố: “Số được chọn chỉ chứa 3 chữ số lẻ”. Khi đó:
+ Chọn 3 chữ số lẻ đôi một khác nhau từ các chữ số 1, 3, 5, 7, 9 có C35 cách.
+Chọn 3 chữ số chẵn đội một khác nhau từ các chữ số 2, 4, 6, 8 có C34 cách.
+ Sắp xếp các chữ số trên để được số thỏa mãn biến cố A có 6! cách.
Do đó A C35 .C34 .6! 28800
Vậy xác suất cần tìm là: P(A)
5
(1.0 điểm)
A
28800 10
60480 21
Tìm tọa độ điểm M …
Giả sử M(2t 2; t) d MA (2t 3; 2 t) MA 2 5t 2 8t 13
MB (1 2t; 4 t) MB2 5t 2 12t 17
Ta có: MA 2 MB2 36 5t 2 8t 13 5t 2 12t 17 36 10t 2 4t 6 0
t 1 M(4;1)
4 3
3
t
M ;
5
5 5
6
0.25
16 3
Vậy tọa độ điểm M là: M(5;1),M ; .
5 5
Tính thể tích khối chóp S.ABC
0.25
0.25
0.25
0.25
(1.0 điểm)
S
SH vuông góc (ABC) góc giữa
60o
SA và (ABC) là: SAH
2 3
SH AH.tanSAH
K
D
0.25
E
H
A
C
B
ABC vuông tại B BC AC2 AB2 2 3 SABC
1
AB.BC 2 3
2
0.25
1
1
Vậy VS.ABC SH.SABC .2 3.2 3 4.
3
3
Dựng hình chữ nhật ABCD AB // CD AB // (SCD)
d(AB,SC) d(AB,(SCD)) d(A,(SCD)) 2d(H,(SCD)) (do AC 2HC )
Trong (ABCD), gọi E là trung điểm CD HE CD CD (SHE)
Trong (SHE), kẻ HK SE (K SE) HK (SCD) d(H,(SCD)) HK
Ta có: HE
0.25
1
AD 3
2
SHE vuông tại E
1
1
1
1 1 5
2 15
HK
2
2
2
5
HK
HS HE 12 3 12
0.25
4 15
5
Tìm tọa độ điểm A và viết phương trình cạnh BC.
Vậy d(AB,SC) 2HK
7
(1.0 điểm)
(T) có tâm I(3;1), bán kính R 5 .
ICA
(1)
Do IA IC IAC
Đường tròn đường kính AH cắt BC tại
M MH AB MH //AC (cùng vuông
ICA
(2)
góc AC) MHB
A
N
E
M
B
AHM
(chắn cung AM) (3)
Ta có: ANM
Từ (1), (2), (3) ta có:
ANM
ICA
AHM
IAC
H
I
C
0.25
AHM
90o
MHB
Suy ra: AI vuông góc MN
phương trình đường thẳng IA là: x 2y 5 0
Giả sử A(5 2a;a) IA.
a 0
Mà A (T) (5 2a)2 a2 6(5 2a) 2a 5 0 5a2 10a 0
a 2
Với a 2 A(1; 2) (thỏa mãn vì A, I khác phía MN)
Với a 0 A(5; 0) (loại vì A, I cùng phía MN)
0.25
8
(1.0 điểm)
9
Gọi E là tâm đường tròn đường kính AH E MN E t; 2t
10
38
Do E là trung điểm AH H 2t 1; 4t
10
58
48
AH 2t 2; 4t , IH 2t 4; 4t
10
10
272 896
Vì AH HI AH.IH 0 20t 2
t
0
5
25
8
11 13
H ; (thoû
a maõ
n)
t
5
5 5
28
31 17
H ; (loaïi )
t
25 25
25
11 13
8
Với t H ; (thỏa mãn)
5
5 5
6 3
Ta có: AH ; BC nhận n (2;1) là VTPT
5 5
phương trình BC là: 2x y 7 0
Giải hệ phương trình …
Điều kiện: x 0, 1 y 6, 2x 3y 7 0 (* )
x 0
Nhận thấy
không là nghiệm của hệ phương trình y 1 x 0
y 1
Khi đó, PT (1) x(y 1) (y 1)2
(y 1)(x y 1)
0.25
0.25
0.25
y 1 x
y 1 x
y 1 x
y 1 x
0.25
1
0
(x y 1) y 1
y 1 x
x y 1 0 y x 1 (do (*))
Thay vào PT (2) ta được: 3 5 x 3 5x 4 2x 7
ĐK: 4 / 5 x 5 (**)
3 5 x (7 x) 3( 5x 4 x) 0
4 5x x 2
3 5 x (7 x)
3(4 5x x 2 )
5x 4 x
0
0.25
1
3
(4 5x x 2 )
0
3 5 x (7 x)
5x 4 x
x 2 5x 4 0 (do (**)
x 1 y 2
(thỏa mãn (*),(**))
x 4 y 5
Vậy nghiệm của hệ phương trình là: (1; 2), (4; 5).
9
(1 điểm)
0.25
Tìm GTNN …
Ta có BĐT:
a2 b2 c2 (a b c)2
(* ) với a,b,c,x,y,z 0 và chứng minh.
x y z
xyz
0.25
(Học sinh không chứng minh (*) trừ 0.25)
Áp dụng (*) ta có: P
(x y z)2
xy yz zx 8 x 3 8 y 3 8 z3
2 x 4 2x x 2 6 x x 2
2
2
2
2 y 4 2y y
6 y y2
8 y 3 (2 y)(4 2y y 2 )
2
2
2
2 z 4 2z z
6 z z2
8 z3 (2 z)(4 2z z2 )
2
2
2
2(x y z)
Suy ra: P
2xy 2yz 2zx 18 (x y z) x 2 y 2 z2
Ta có:
8 x 3 (2 x)(4 2x x 2 )
0.25
2(x y z)2
(x y z)2 (x y z) 18
Đặt t x y z (t 3). Khi đó: P
2t 2
t 2 t 18
2t 2
Xét hàm số: f (t) 2
với t 3.
t t 18
2( t 2 36t)
Ta có: f '(t) 2
, f '(t) 0 t 36
(t t 18)
BBT:
x 3
36
y'
0
0.25
144/71
y
3/4
3
khi t 3.
4
Vậy GTNN của P là: 3/4 khi x y z 1.
Từ BBT ta có: GTNN của P là:
▪ Chú ý: Các cách giải đúng khác đáp án cho điểm tối đa.
2
0.25
TRƯỜNG THPT NGỌC TẢO
Năm học 2015-2016
ĐỀ KIỂM TRA CHẤT LƯỢNG KHỐI 12
Môn: TOÁN
Thời gian làm bài: 180 phút, không kể thời gian phát đề
x4
1
x 2 (1)
Câu 1 (2điểm) Cho hàm số y =
2
2
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1).
b) Tìm giá trị của m để phương trình x4 + 2x2 + m = 0 có hai nghiệm phân biệt.
Câu 2 (1điểm)
x
a) Tìm các số nguyên a, b biết rằng: x = a + b 2 và x + 2 2 =
+ ( 2 + 1)2 – 1.
1 2
3
b) Cho số thực x thỏa mãn x = 4. Tính giá trị biểu thức: M = 2 x
Câu 3 (1điểm)
3
4 x 16 .
1 3
2
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: f ( x) x 4 x 2 .
Câu 4 (1điểm)
Trong mặt phẳng Oxy , cho điểm A(1; –2), B(4; –4). Viết phương trình đường tròn tâm O và
tiếp xúc với đường thẳng AB.
Câu 5 (1điểm)
a) Giải phương trình: 2sin x(cos x 1) 3 cos 2 x .
n
1
b) Tìm số hạng không chứa x trong khai triển nhị thức Newton của Q(x) = 2 x 3 biết
x
2
n 1
rằng: An Cn 1 4n 6 .
Câu 6 (1điểm)
3a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD
. Hình chiếu vuông
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối
chóp S.ABCD và khoảng cách từ A đến mặt phẳng (SBD).
Câu 7 (1điểm)
Trong mặt phẳng Oxy , cho hình chữ nhật ABCD có diện tích bằng 2. Tâm I là giao của hai
đường thẳng d1 : x y 2 0 và d 2 : 2 x 4 y 13 0 . Trung điểm M của cạnh AD là giao
điểm của d1 với trục Ox . Tìm tọa độ các đỉnh của hình chữ nhật biết điểm A có tung độ
dương.
x3 3x
y4
Câu 8 (1điểm) Giải hệ phương trình 1 x 1
(x, y R).
x 1 y 1 1
3
Câu 9 (1điểm)Cho a, b, c là 3 số dương thỏa mãn a b c . Tìm giá trị nhỏ nhất của biểu
4
1
1
1
thức P 3
.
3
3
a 3b
b 3c
c 3a
----------Hết----------
Họ và tên thí sinh: ……………………………………………. SBD: ………………
SỞ GD&ĐT BẮC NINH
TRƯỜNG THPT HÀN THUYÊN
ĐỀ THI THỬ THPT QUỐC GIA LẦN I
NĂM HỌC 2015 – 2016
MÔN : TOÁN 12
Thời gian làm bài: 180 phút, không kể thời gian phát đề
(Đề thi có 01 trang)
Câu 1 (1,0 điểm). Cho hàm số y
2 x 3
. Khảo sát sự biến thiên và vẽ đồ thị hàm số.
x2
Câu 2 (1,0 điểm). Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y x3 3x 2 4 trên đoạn 2;1 .
Câu 3 (1,0 điểm). Giải phương trình 2sin x 1
3 sin x 2cos x 1 sin 2 x cos x
Câu 4 (1,0 điểm).
a) Tìm số nguyên dương n thỏa mãn An2 3Cn2 15 5n .
20
1
b) Tìm số hạng chứa x trong khai triển P x 2 x 2 , x 0.
x
5
Câu 5 (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho tam giác ABC , với A 2;5 , trọng tâm
4 5
G ; , tâm đường tròn ngoại tiếp I 2; 2 . Viết phương trình đường thẳng chứa cạnh BC.
3 3
Câu 6 (1,0 điểm).
sin cos
a) Cho tan 2 . Tính giá trị của biểu thức: P
4cot 2 .
sin cos
b) Nhà trường tổ chức tham quan dã ngoại cho 10 thành viên tiêu biểu của Câu lạc bộ Toán học và 10
thành viên tiêu biểu của Câu lạc bộ Tiếng Anh. Trong một trò chơi, ban tổ chức chọn ngẫu nhiên 5
thành viên tham gia trò chơi. Tính xác suất sao cho trong 5 thành viên được chọn, mỗi Câu lạc bộ có ít
nhất 1 thành viên.
Câu 7 (1,0 điểm). Cho hình chóp S. ABCD, có đáy ABCD là hình chữ nhật với AD 2 AB 2a.
Tam giác SAD là tam giác vuông cân tại đỉnh S và nằm trên mặt phẳng vuông góc với mặt đáy
ABCD . Tính thể tích khối chóp
S. ABCD và khoảng cách giữa hai đường thẳng SA và BD.
Câu 8 (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD, có AD 2 AB. Điểm
31 17
H ; là điểm đối xứng của điểm B qua đường chéo AC . Tìm tọa độ các đỉnh của hình chữ
5 5
nhật ABCD , biết phương trình CD : x y 10 0 và C có tung độ âm.
8 x3 y 2 y y 2 2 x
Câu 9 (1,0 điểm). Giải hệ phương trình
y 2 1 2 x 1 8 x3 13 y 2 82 x 29
Câu 10 (1,0 điểm). Cho các số thực x, y, z thỏa mãn x 2, y 1, z 0. Tìm giá trị lớn nhất của biểu
thức: P
1
2 x y z 2 2 x y 3
2
2
2
1
.
y x 1 z 1
----------- Hết ---------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh:...............................................................................; Số báo danh:................................
SỞ GD&ĐT BẮC NINH
TRƯỜNG THPT HÀN THUYÊN
(Hướng dẫn chấm – thang điểm 10 có 04 trang)
Câu
HƯỚNG DẪN CHẤM
ĐỀ THI THỬ THPT QUỐC GIA LẦN I
NĂM HỌC 2015 – 2016
MÔN TOÁN 12
Nội dung – đáp án
Điểm
\ 2
Tập xác định D
Ta có lim y 2; lim y 2
x
x
0,25
lim y ; lim y
x 2
1
2
x 2
Đồ thị có tiệm cận đứng x 2; tiệm cận ngang y 2.
7
y'
0x 2 Hàm số đồng biến trên các khoảng ; 2 , 2; và
2
x 2
không có cực trị.
Bảng biến thiên
2
x
y'
y
2
2
Đồ thị
Hàm số y f x x3 3x 2 4 xác định và liên tục trên đoạn 2;1 và y ' 3x 2 6 x
x 0 2;1
y' 0
x 2 2;1
f 2 16; f 0 4; f 1 2
2sin x 1
3
4
0,25
0,25
0,25
0,25
Vậy Giá trị lớn nhất 4 là khi x 0 , giá trị nhỏ nhất là 16 khi x 2.
PT 2sin x 1
0,25
0,25
0,25
3 sin x 2cos x 1 cos x 2sin x 1
0,25
3 sin x cos x 1 0
2sin x 1 0
3 sin x cos x 1 0
0,25
x k 2
1
6
+) 2sin x 1 0 sin x
2
x 7 k 2
6
0,25
x k 2
1
+) 3 sin x cos x 1 0 cos x
x 2 k 2
3 2
3
Điều kiện: n , n 2
n!
An2 3Cn2 15 5n n n 1 3
15 5n
2!
n
2
!
a)
n 5
n2 11n 30 0
.
n 6
b)
1/4
20 k
0,25
0,25
k
k 20 k 20 3k
1
k
2 C20 1 2 x
x
5 15 5
Ta phải có 20 3k 5 k 5 Số hạng chứa x 5 là C20
2 x
Khai triển P x có số hạng tổng quát C20k 2 x
0,25
0,25
0,25
5
10 10
Gọi M là trung điểm của BC . Ta có AG ; .
3
3
10
4
3 2 xM 3
xM 3
AG 2GM
M 3;0
10 2 y 5 yM 0
M
3
3
0,25
0,25
IM 1; 2 là véc tơ pháp tuyến của BC
0,25
Phương trình BC : x 3 2 y 0 x 2 y 3 0.
0,25
a)
6
b)
tan 1
4
tan 1 tan 2
2 1 4
P
2.
2 1 4
5
Số phần tử của không gian mẫu là n C20
P
0,25
0,25
Gọi A là biến cố “Chọn được 5 thành viên, sao cho mỗi câu lạc bộ có ít nhất 1
thành viên”
Số kết quả thuận lợi cho A là C105 C105 504.
504 625
Xác suất của biến cố A là P A 1 5
.
C20 646
Gọi I là trung điểm của AD. Tam giác SAD là
S
tam giác vuông cân tại đỉnh S SI AD .
Mà SAD ABCD SI ABCD .
0,25
0,25
S ABCD AB.BC a.2a 2a 2
K
AD
a
2
1
1
2a 3
VS . ABCD SI .S ABCD a.2a 2
.
3
3
3
Dựng đường thẳng d đi qua A và song song với
SI
H
D
A
I
O
7
0,25
C
B
BD. Gọi H là hình chiếu vuông góc của I trên
d .
BD / / SAH d BD, SA d BD, SAH
0,25
0,25
d D, SAH 2d I , SAH
Gọi K là hình chiếu vuông góc của I trên SH IK SAH d I , SAH IH
Ta có IH
5
a 6
a 6
a IK
d SA, BD
.
5
6
3
H
D
A
8
tan ACB
N
1
2 5
cos ACD
cos ACH
2
5
và sin ACH
sin ACD
B
0,25
C
2/4
5
5
cos ACD
5
5
2 5
5
0,25
sin HCD sin ACD ACH
Ta có d H , CD
3
5
18 2
18 2 5
HC
. 6 2.
5
5 3
65
31
Gọi C c; c 10 CH c; c .
5
5
0,25
c 5
2
2
31 67
Ta có: c c 72
C 5; 5 .
c 73
5
5
5
Phương trình BC : x 5 y 5 0 x y 0 .
Gọi B b; b , ta có BC CH 6 2 BC 2 72 b 5 b 5 72
2
2
0,25
b 11 loai
B 1;1 .
b 1
Tìm được A 2;4 , D 8; 2 .
0,25
1
2 x 1 0
x
Điều kiện:
2
y 2 0
y 2
Phương trình 8x3 y 2 y y 2 2 x 2 x 2 x
3
3
y2 y2
0,25
Xét hàm đặc trưng: f t t 3 t , f ' t 3t 2 1 0t
Hàm số f t liên tục và đồng biến trên R. Suy ra: 2 x y 2
Thế 2 x y 2 vào phương trình thứ hai ta được:
2 x 1
2 x 1
2 x 1
9
2 x 1 8x3 52 x 2 82 x 29
2 x 1 2 x 1 4 x 2 24 x 29
2 x 1 4 x 2 24 x 29 0 2 x 1
2 x 1 4 x 2 24 x 29 0
0,25
1
2x 1 0 x y 3
2
2
2 x 1 4 x 24 x 29 0
Giải phương trình: 2 x 1 4 x2 24 x 29 0
Đặt t 2 x 1, t 0 2 x t 2 1.
Ta được phương trình: t t 2 1 12 t 2 1 29 0 t 4 14t 2 t 42 0
2
t 2
t 3 loai
t 2 t 3 t 2 t 7 0 t 1 29 loai
2
1 29
t
2
3/4
0,25
3
y 11
2
1 29
13 29
103 13 29
Với t
x
y
2
4
2
Với t 2 x
0,25
1 3 13 29 103 13 29
Vậy hệ phương trình đã cho có 3 cặp nghiệm: ;3 ; ;11 ;
;
.
4
2
2 2
Đặt a x 2, b y 1, c z .
Ta có a, b, c 0 và P
1
1
2 a b c 1 a 1 b 1 c 1
2
2
a b
a 2 b2 c 2 1
2
2
c 1
0,25
2
1
2
Ta có
a b c 1
2
2
4
Dấu "=" xảy ra khi và chỉ khi a b c 1 .
Mặt khác a 1 b 1 c 1
a b c 3
3
27
1
27
Khi đó : P
. Dấu " " a b c 1
a b c 1 a b c 13
0,25
1
27
Đặt t a b c 1 t 1. Khi đó P
, t 1.
t (t 2)3
1
27
1
81
Xét hàm f (t )
;
, t 1 ; f '(t ) 2
3
t (t 2)
t
(t 2)4
10
0,25
f '(t ) 0 (t 2)4 81.t 2 t 2 5t 4 0 t 4 ( Do t 1 ).
lim f (t ) 0
t
Ta có BBT.
t
1
f ' t
+
4
0
-
1
8
f t
0
0
Từ bảng biến thiên ta có
1
max f (t ) f (4) t 4
8
a b c 1
1
maxP f (4)
a b c 1 x 3; y 2; z 1
8
a b c 4
Vậy giá trị lớn nhất của P là
1
, đạt được khi x; y; z 3; 2;1 .
8
Chú ý:
- Các cách giải khác đúng, cho điểm tương ứng như đáp án.
- Câu 7. Không vẽ hình không cho điểm.
4/4
0,25
Luyenthipro.vn
TRƯỜNG THPT KHOÁI CHÂU
ĐỀ CHÍNH THỨC
ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN I
Năm học 2015 – 2016.
MÔN: TOÁN. LỚP 12
Thời gian làm bài: 150 phút, không kể thời gian giao đề
( Đề thi gồm 01 trang)
Câu 1( 2,0 điểm). Cho hàm số y x3 3x2 (C).
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C).
b) Tìm m để đường thẳng đi qua 2 điểm cực trị của đồ thị (C) tạo với đường
4
5
thẳng : x my 3 0 một góc biết cos .
Câu 2(1,0 điểm ). Tìm các đường tiệm cận của đồ thị hàm số y
2x 3
.
x 2015
9
5
Câu 3( 1,0 điểm). Xác định hệ số của số hạng chứa x trong khai triển x5 2 .
x
3
Câu 4(1,0 điểm). Giải phương trình sin2 x sin x cos x 2cos2 x 0 .
a
2
Câu 5(1,0 điểm). Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a, SA ,
SB
a 3
, BAD 600 và mặt phẳng (SAB) vuông góc với đáy. Gọi H, K lần lượt là
2
trung điểm của AB, BC. Tính thể tích tứ diện KSDC và tính cosin của góc giữa
đường thẳng SH và DK.
Câu 6(2,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có
DC BC 2 , tâm I( - 1 ; 2 ). Gọi M là trung điểm của cạnh CD, H( - 2; 1 ) là giao
điểm của hai đường thẳng AC và BM.
a) Viết phương trình đường thẳng IH.
b) Tìm tọa độ các điểm A và B.
Câu 7( 1,0 điểm). Giải phương trình
2x 1 3 2x 4 2 3 4 x 4 x2
2
1
4x2 4x 3 2x 1 trên tập số thực.
4
x y z 0
Câu 8( 1,0 điểm). Cho ba số thực x, y, z thay đổi thỏa mãn 2 2 2
x y z 2
.Tìm giá trị
lớn nhất của biểu thức P x3 y3 z3 .
------------------- Hết ------------------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: ………………………………………………; Số báo danh:………
TRƯỜNG THPT KHOÁI CHÂU
HƯỚNG DẪN CHẤM ĐỀ KSCL LẦN I
MÔN: TOÁN. LỚP 12
(Hướng dẫn gồm 04 trang)
Chú ý:
Học sinh làm cách khác mà đúng thì cho điểm tối đa phần đó.
Điểm toàn bài không làm tròn.
CÂU
ĐÁP ÁN
TXĐ: D
Sự biến thiên: y 3x2 6x 3x x 2
ĐIỂM
0.25
x 0
y 0
x 2
Hàm số đồng biến trên các khoảng ; 0 và 2;
Hàm số nghịch biến trên khoảng 0;2 .
Hàm số đạt cực tiểu tại x = 2 yCT 4 , cực đại tại x = 0 yCÑ 0
0.25
Giới hạn lim y , lim y
x
Bảng biến thiên
x
x
-∞
y’
0
0
0
+
’
1a)
(1,0 đ)
+∞
2
0
-
+
+∞
0.25
y
-4
-∞
Đồ thị
6
y
f(x)=x^3-3*x^2
4
2
0.25
x
-4
-2
2
4
6
-2
-4
-6
Đường thẳng đi qua CĐ, CT là 1 : 2x y 0 VTPT n1 2;1
Đường thẳng đã cho : x my 3 0 có VTPT n2 1; m
1b)
(1,0 đ)
Yêu cầu bài toán cos ; 1 cos n1; n2
25 m2 4m 4 5.16. m2 1
11m2 20m 4 0
m 2
5. m 1
2
4
5
0.25
0.25
0.25
1
2
(1,0 đ)
m 2
2
m
11
2x 3
2x 3
( hoặc lim
) nên x 2015 là
Vì lim
x2015 x 2015
x2015 x 2015
tiệm cận đứng của đồ thị hàm số.
2x 3
2 nên y = 2 là tiệm cận ngang của đồ thị hàm số
Vì lim
x x 2015
Xét số hạng thứ k + 1 trong khai triển Tk 1 C . x
k
9
3
(1,0 đ)
k
5
. 2
x
0.5
0.5
9 k
0.25
Tk1 C9k .59k.x7k18
Vì số hạng chứa x3 nên 7k 18 3 k 3
Vậy hệ số của số hạng chứa x3 trong khai triển là C93.56 1.312.500
0.25
0.25
0.25
PT sin2 x cos2 x sin x cos x cos2 x 0
0.25
sin x cos x sin x 2cos x 0
4
(1,0 đ)
5
0.25
sin x cos x 0 1
sin x 2cos x 0 2
0.25
1 tan x 1 x 4 k k
2 tan x 2 x arctan2 k k
0.25
0.25
S
0.25
B
C
K
H
M
5
(1,0 đ)
A
Từ giả thiết ta có AB = a, SA
D
a 3
a
, SB
nên ASB vuông tại S
2
2
AB
SAH đều. Gọi M là trung điểm của AH thì SM AB . Do
2
SAB ABCD SM ABCD .
SH
0.25
1
1
1
Vậy VKSDC VS.KCD .SM .SKCD .SM . SBAD
3
3
2
1 a 3 1 a.a. 3 a3
.
. .
(đvtt)
3 4 2 2.2
32
0.25
2
Gọi Q là điểm thuộc AD sao cho AD = 4 AQ HQ KD nên
SH , DK SH , QH
Gọi I là trung điểm HQ MI AD nên MI HQ
.
Mà SM ABCD SI HQ SH ,QH SHI
0.25
Trong tam giác vuông SHI có:
6a
(1,0 đ)
1
1
1 a 3
HQ
DK
.
HI 2
4
4
2 3.
cosSHI
a
a
a
SH
4
2
2
2
IH 1; 1
0.25
0.5
Nên đường thẳng IH có phương trình x y 3 0 .
A
0.5
B
I
H
D
C
M
Từ giả thiết ta suy ra H là trọng tâm của BCD IA 3HI A(2;5) .
6b
(1,0 đ)
2
2
BC 6
1
BC 3
BM
BC2 MC 2
, HC AC
3
3
3
3
3
2
2
2
HB HC BC nên BM AC
BM đi qua H( -2; 1 ), nhận IH 1; 1 làm VTPT có phương trình
Ta có HB
x y 1 0 tọa độ B có dạng B( t; - t - 1 ).
0.25
0.25
0.25
Lại có IA IB nên 18 t 1 t 3 t 4t 4 0
2
t 2 8
. Do đó
t 2 8
2
2
B 2 2 2;1 2 2
.
B 2 2 2;1 2 2
0.25
1
3
ĐK: x . Phương trình
2
2
7
(1,0 đ)
2x 1 3 2x
2
2
2x 12 2x 12
(*)
2x 1 3 2x
2
2
0.25
Xét hàm số f t t 2 t trên 0; có f t 2t 1 0 t 0; nên
hàm số f(t) đồng biến trên 0;
2x 12
Do đó pt (*) trở thành f 2x 1 3 2x f 2
f ñoà
ng bieá
n
0.25
3
2x 1
8
2x 1
3 2x
2
8
2
2x 1 3 2x 4 2x 1
2
2x 1 3 2x 2x 1 3 2x ( **)
2
2x 1 a 0
Đặt
thì phương trình (**) trở thành
3
2
x
b
0
8 a b a2 b2 2 4a2b2 (1)
8 a b a2 b2 2
a2 b2 4
a2 b2 4
2
0.25
Từ (1) 8 a b 16 4a2b2 2 a b 4 a2b2
4 a2 b2 2ab 16 8a2b2 a4b4 (***)
Đặt ab = t 0 t 2 thì pt (***) trở thành
16 8t 16 8t 2 t 4 t t 2 t 2 2t 4 0
t 0
x 1
t 2 loaïi
2x 1 3 2x 2
2
. Vậy t = 0
t
1
5
loaï
i
3
x
2x 1. 3 2x 0
2
t 1 5 loaïi
0.25
Chú ý: HS có thể giải theo cách khác như sau
Đặt a 2 x 1 3 2 x . Phương trình đã cho trở thành
a a 2 a 2 2a 4 a 4 8a 2 8a 8 0
Có x y z 0 z x y P x3 y3 x y 3xyz
3
Từ x2 y2 z2 2 x y 2xy z2 2 2z2 2xy 2 xy z2 1
2
0.25
Vậy P 3z z2 1
2
1
3
4
4
x y z2 z2
z
2
2
3
3
4 4
Đặt P f z 3z3 3z với z ;
K
3
3
z 1 K
3
2
Có f z 9z 3 , f z 0
z 1 K
3
Do 2 x2 y2 z2
8
(1,0 đ)
4
4
Ta có: f
,f
3
3
2
Do vậy max P
khi z
3
1
4
4 1 2
2
, f
,f
3
3
3
3 3
3
2
3
;x y
0.25
0.25
0.25
1
3
4
TRƯỜNG THPT THẠCH THÀNH I
ĐỀ THI MÔN TOÁN_KHỐI 12 (lần 1)
Năm học: 2015-2016
Thời gian: 180 phút
Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số y x3 3x 2 4 .
Câu 2 (1,0 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
f x x 2
x 2 trên đoạn 12 ; 2 .
2
2
Câu 3 (1,0 điểm).
a) Giải phương trình sin 3x cos 2 x 1 2sin x cos 2 x
4
b) Giải phương trình 2 log8 2 x log8 x 2 2 x 1
Câu 4 (1,0 điểm). Tìm m để đường thẳng
y
x 1
x 1
3
d : y x m
cắt đồ thị C của hàm số
tại hai điểm A, B sao cho AB 3 2
Câu 5 (1,0 điểm).
a) Cho
cot a 2 .
Tính giá trị của biểu thức P sin 2 a cos2 a .
4
4
sin a cos a
b) Một xí nghiệp có 50 công nhân, trong đó có 30 công nhân tay nghề loại A,
15 công nhân tay nghề loại B, 5 công nhân tay nghề loại C. Lấy ngẫu
nhiên theo danh sách 3 công nhân. Tính xác suất để 3 người được lấy ra
có 1 người tay nghề loại A, 1 người tay nghề loại B, 1 người tay nghề loại
C.
Câu 6 (1,0 điểm). Cho hình chóp S . ABC có đường cao SA bằng 2a , tam giác
30 . Gọi H là hình chiếu vuông của A trên
ABC vuông ở C có AB 2a, CAB
SC. Tính theo a thể tích của khối chóp H . ABC . Tính cô-sin của góc giữa hai mặt
phẳng SAB , SBC .
Câu 7 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho hình thang OABC ( O
là gốc tọa độ) có diện tích bằng 6, OA song song với BC , đỉnh A 1; 2 , đỉnh
B thuộc đường thẳng d1 : x y 1 0 , đỉnh C thuộc đường thẳng d 2 : 3 x y 2 0 .
Tìm tọa độ các đỉnh B, C .
Câu 8 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC cân tại
A có phương trình AB, AC lần lượt là x 2 y 2 0, 2 x y 1 0 , điểm M 1; 2 thuộc
đoạn thẳng BC . Tìm tọa độ điểm D sao cho tích vô hướng DB.DC có giá trị nhỏ
nhất.
Câu 9 (1,0 điểm). Giải bất phương trình
x2 x 2
x2
x3
2
x 3
2
1
trên tập số
thực.
Câu 10 (1,0 điểm). Cho các số thực x, y thỏa mãn x 4 2 y 4 2 2 xy 32 . Tìm
giá trị nhỏ nhất của biểu thức A x3 y 3 3 xy 1 x y 2 .
-----------Hết----------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: .............................................; Số báo danh..........................
Câu
1
ĐÁP ÁN TOÁN 12, lần 1, 2015-2016
Nội dung
Tập xác đinh: D .
Sự biến thiên:
- Chiều biến thiên: y ' 3x 2 6 x ; y ' 0 x 0; x 2
Các khoảng đồng biến ; 2 và 0; ; khoảng nghịch biến 2;0 .
- Cực trị: Hàm số đạt cực đại tại x 2, yCD 0 ; đạt cực tiểu tại
Điểm
0,25
x 0, yCT 4
y ; lim y
- Giới hạn tại vô cực: xlim
x
0,25
Bảng biến thiên
x
2
y'
0
y
0
0
0
4
0,25
Đồ thị
f x = x3+3x2-4
8
6
4
2
-15
-10
-5
5
10
15
-2
-4
-6
-8
0,25
2
1
Ta có f x x 4 4 x 2 4 ; f x xác định và liên tục trên đoạn ;0 ;
f
'
x 4x
2
3
8 x.
0,25
Với x ; 2 , f ' x 0 x 0; x 2
2
1
Ta có f 3 , f 0 4, f 2 0, f 2 4 .
16
2
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số f x trên đoạn
1
3
0,25
1
1
2 ;0 lần lượt là 4 và 0.
sin 3 x cos 2 x 1 2sin x cos 2 x sin 3 x cos 2 x 1 sin x sin 3 x
a)
cos 2 x 1 sin x
0,25
0,25
0,25