Tải bản đầy đủ (.pdf) (30 trang)

Xác định nguồn nhiệt trong phương trình truyền nhiệt bậc phân bằng phương pháp chặt cụt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (412.67 KB, 30 trang )



▼Ö❈ ▲Ö❈
❚r❛♥❣

▼Ö❈ ▲Ö❈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶
▲❮■ ◆➶■ ✣❺❯ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷
❈❤÷ì♥❣ ✶✳ ▼ët sè ❦✐➳♥ t❤ù❝ ❜ê trñ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹
✶✳✶ ❍➔♠ ●❛♠♠❛ ✈➔ ❤➔♠ ▼✐tt❛❣✲▲❡❢❢❧❡r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹
✶✳✷ ✣↕♦ ❤➔♠ ❜➟❝ ♣❤➙♥ ❈❛♣✉t♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✹
❈❤÷ì♥❣ ✷✳ ❳→❝ ✤à♥❤ ♥❣✉ç♥ ♥❤✐➺t tr♦♥❣ ♣❤÷ì♥❣ tr➻♥❤ tr✉②➲♥
♥❤✐➺t ❜➟❝ ♣❤➙♥ ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❝❤➦t ❝öt ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻
✷✳✶ ●✐î✐ t❤✐➺✉ ❜➔✐ t♦→♥ ✈➔ ✤→♥❤ ❣✐→ ê♥ ✤à♥❤ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻
✷✳✷ ❈❤➾♥❤ ❤â❛ ❝❤➦t ❝öt ✈➔ ✤→♥❤ ❣✐→ s❛✐ sè ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✶
❑➌❚ ▲❯❾◆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✾
❚⑨■ ▲■➏❯ ❚❍❆▼ ❑❍❷❖ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✵



r ỳ ữỡ tr r
t út ữủ sỹ q t ự ừ ồ
ổ sỷ ử ữỡ tr r ữủ ự
ử t ổ ổ t t tr s t t ỵ õ ồ
õ s t t tr tr
ữỡ tr t ữủ ự rở r ợ
ở ữ ỵ ỹ sỹ tỗ t t t
ữỡ số ữ ữỡ tỷ ỳ ữỡ
s ỳ ụ ữủ ử t tr
tr ởt số t ố ử t ởt tr tổ t
ỳ ỳ số t ỗ ổ
ữủ t ú t ú tứ ỳ ờ s


s ởt số t t ữủ
ởt số ổ tr t ỹ t ữủ ổ
tr ừ r ổ ố tr õ ởt số
ổ tr ừ t ụ ữủ t
ở sỹ t ởt t ữủ ợ ử ừ
số t tr ữỡ tr t
ữ r ởt t qừ t t
t t ữủ tớ ữỡ tr
t t tớ õ ụ
t ữỡ tr t t tớ
ữỡ õ rr ữỡ
ữỡ tr





ữợ ự t ữủt ự ụ ữ
ú t t t ữủ tr ữỡ tr
t tr ỡ s t sr
trt s qt trt t ừ
t tr t

tt

tts

ú tổ ỹ ồ t

ỗ t tr ữỡ tr tr

t ữỡ t ửt


ữủ tỹ t rữớ ồ ữợ sỹ ữợ
ừ t ự tọ ỏ t ỡ
s s ừ t t
ỡ Pỏ t ồ ừ ồ ỡ
t ổ tr ở ổ t ồ t t
ú ù t tr sốt tớ ồ t t
ữỡ ố ũ t ỡ ỗ
t tr ợ ồ t ở t
ú ù ở t tr sốt q tr ồ t ự
ũ õ ố ữ ổ tr ọ
ỳ t sõt ú tổ rt ữủ ỳ ỵ
õ õ ừ t ổ ữủ
t ỡ

t




❈❍×❒◆● ✶

▼❐❚ ❙➮ ❑■➌◆ ❚❍Ù❈ ❇✃ ❚❘Ñ
❈❤÷ì♥❣ ♥➔② ♥❤➡♠ ♠ö❝ ✤➼❝❤ tr➻♥❤ ❜➔② ♠ët sè ❦✐➳♥ t❤ù❝ ❧✐➯♥ q✉❛♥ ✤➳♥
♥ë✐ ❞✉♥❣ ❝❤÷ì♥❣ ✷✱ ❝❤õ ②➳✉ ✤÷ñ❝ ❝❤ó♥❣ tæ✐ t❤❛♠ ❦❤↔♦ tr♦♥❣ t➔✐ ❧✐➺✉ ❬✺❪✳

✶✳✶ ❍➔♠ ●❛♠♠❛ ✈➔ ❤➔♠ ▼✐tt❛❣✲▲❡❢❢❧❡r
✶✳✶✳✶ ✣à♥❤ ♥❣❤➽❛✳ ❍➔♠ ❣❛♠♠❛ Γ ❤❛② t➼❝❤ ♣❤➙♥ ❊✉❧❡r ❧♦↕✐ ✷ ❧➔ t➼❝❤

♣❤➙♥


Γ(z) =

e−t tz−1 dt

✭✶✳✶✮

0

✈î✐ z t❤✉ë❝ ♥û❛ ♠➦t ♣❤➥♥❣ ❜➯♥ ♣❤↔✐ ❝õ❛ ♠➦t ♣❤➥♥❣ ♣❤ù❝ ❘❡z > 0✳

✶✳✶✳✷ ◆❤➟♥ ①➨t✳ ❚➼❝❤ ♣❤➙♥ ✭✶✳✶✮ ❤ë✐ tö ✈î✐ ♠å✐ z ∈ C t❤ä❛ ♠➣♥ ❘❡z >
0✳ ❚❤➟t ✈➟②✱ ✈î✐ z ∈ C t❤ä❛ ♠➣♥ ❘❡z > 0✱ t❛ ❝â t❤➸ ❜✐➸✉ ❞✐➵♥ z = x + iy
✈î✐ x, y ∈ R ✈➔ x > 0✳ ❑❤✐ ✤â t❛ ❝â


Γ(z) = Γ(x + iy) =


=
0

=



e−t tx−1+iy dt


0

e−t tx−1 eiy ln t dt
e−t tx−1 (cos(y ln t) + i sin(y ln t)) dt.

✭✶✳✷✮

0

❱➻ ✤↕✐ ❧÷ñ♥❣ (cos(y ln t) + i sin(y ln t)) ❜à ❝❤➦♥ ♥➯♥ ❞➵ ♥❤➟♥ t❤➜② r➡♥❣ t➼❝❤
♣❤➙♥ ✭✶✳✷✮ ❤ë✐ tö ✈î✐ ♠å✐ x > 0 ✈➔ ♠å✐ y ∈ R✳

✶✳✶✳✸ ✣à♥❤ ❧þ✳ ❍➔♠ ❣❛♠♠❛ Γ ❝â ❝→❝ t➼♥❤ ❝❤➜t s❛✉





✶✮ Γ(z + 1) = zΓ(z), ∀z ∈ C, ❘❡z > 0✱
✷✮ Γ(1) = 1✱
✸✮ Γ(n + 1) = n!, ∀n ∈ N∗✱
✹✮ Γ 12 = √π✱

✺✮ Γ n + 12 = 2(2n)!
π✱
2n n!
✻✮ ❱î✐ ♠å✐ sè t❤ü❝ x > 0 t❛ ❝â


Γ(x) = 2


2

e−t t2x−1 dt.

0

❈❤ù♥❣ ♠✐♥❤✳ 1) ❱î✐ ♠å✐ z ∈ C, ❘❡z > 0 t❛ ❝â


Γ(z + 1) =

e−t tz dt

0
−t z

= −e t



t=∞

+z
t=0

e−t tx−1+iy dt

0


= zΓ(z).
2) ❚❛ ❝â


Γ(1) =

e−t t0 dt = −e−t

t=∞

= 1.
t=0

0

3) ❙û ❞ö♥❣ ❝→❝ t➼♥❤ ❝❤➜t 1) ✈➔ 2)✱ t❛ ❝â t❤➸ ❝❤ù♥❣ ♠✐♥❤ t➼♥❤ ❝❤➜t 3)
❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ q✉② ♥↕♣✳

4) ❚r÷î❝ ❤➳t t❛ t➼♥❤ t➼❝❤ ♣❤➙♥ I =
I=u

∞ −x2
dx✳
0 e

−u2 t2

e

✣➦t x = ut, u > 0✱ t❛ ❝â


dt.

✭✶✳✸✮

0
2

◆❤➙♥ ❤❛✐ ✈➳ ❝õ❛ ✭✶✳✸✮ ✈î✐ e−u ✈➔ ❧➜② t➼❝❤ ♣❤➙♥ tø 0 ✤➳♥ ∞ t❛ ✤÷ñ❝

2

I =

e

−u2

0


=
0

1
2

u

2 2


e−u t dt du

0


=




0

2

e−u

(1+t2 )

0

dt
π
= .
2
1+t
4

udu dt







π
✳ ❇➙② ❣✐í ð ❝æ♥❣ t❤ù❝ ✭✶✳✶✮✱ ❜➡♥❣ ❝→❝❤ t❤ü❝
2
❤✐➺♥ ♣❤➨♣ ✤ê✐ ❜✐➳♥ t = u2 t❛ s➩ t❤✉ ✤÷ñ❝

❉♦ ✤â I =

∞ −x2
dx
0 e

=



Γ(z) = 2

2

e−u u2z−1 du.

✭✶✳✹✮

0


❇➡♥❣ ❝→❝❤ t❤❛② z =

1
✈➔♦ ✭✶✳✹✮ t❛ ✤÷ñ❝
2


1
2

Γ

=2

2

e−u du = 2I =



π.

0

5) ❚ø t➼♥❤ ❝❤➜t 1) ✈➔ t➼♥❤ ❝❤➜t 4) t❛ ❝â
Γ n+

1
2


1
1
Γ n−
2
2
1
3
3
= n−
n−
Γ n−
2
2
2
1
3
3 1
1
n−
· · · . .Γ
= n−
2
2
2 2
2
(2n)! √
π.
= 2n
2 n!
=


n−

6) ❚❤❡♦ ✤à♥❤ ♥❣❤➽❛ ❝õ❛ ❤➔♠ ❣❛♠♠❛ t❛ ❝â


Γ(x) =

e−t tx−1 dt.

0

❚❤ü❝ ❤✐➺♥ ♣❤➨♣ ✤ê✐ ❜✐➳♥ t = u2 ✈î✐ u ❜✐➳♥ t❤✐➯♥ tø ✵ ✤➳♥ ∞ t❛ ❝â


Γ(x) =
0



=
0

e−t tx−1 dt



=2
0


=2
0

2

e−u (u2 )x−1 .2udu



2

e−u u2x−1 du
2

e−t t2x−1 dt.




✶✳✶✳✹ ✣à♥❤ ❧þ✳ ❱î✐ ♠å✐ z ∈ C t❤ä❛ ♠➣♥ ❘❡z > 0 t❛ ❝â
n!nz
.
n→∞ z(z + 1) · · · (z + n)

Γ(z) = lim

✭✶✳✺✮

❈❤ù♥❣ ♠✐♥❤✳ ✣➸ ❝❤ù♥❣ ♠✐♥❤ ❝æ♥❣ t❤ù❝ ✭✶✳✺✮✱ tr÷î❝ ❤➳t ❝❤ó♥❣ t❛ ①➨t ❤➔♠
n


fn (z) =
0

❇➡♥❣ ❝→❝❤ ✤ê✐ ❜✐➳♥ τ =

n

t
1−
n

tz−1 dt.

✭✶✳✻✮

s❛✉ ✤â sû ❞ö♥❣ t➼❝❤ ♣❤➙♥ tø♥❣ ♣❤➛♥ ❝❤ó♥❣ t❛

t
n

✤➦t ✤÷ñ❝
1

(1 − τ )n τ z−1 dτ

z

fn (z) = n


0
1

nz

=

z
= ···

(1 − τ )n−1 τ z dτ

n
0

n!nz
=
z(z + 1) · · · (z + n − 1)
n!nz
=
.
z(z + 1) · · · (z + n)

1

τ z+n−1 dτ
0

✭✶✳✼✮


❈❤ó þ r➡♥❣

lim

n→∞

n

t
1−
n

= e−t .

❉♦ ✤â ♠ö❝ ✤➼❝❤ t✐➳♣ t❤❡♦ ❝õ❛ ❝❤ó♥❣ t❛ ❧➔ ❝❤ù♥❣ ♠✐♥❤ ✤➥♥❣ t❤ù❝
n

t
1−
lim fn (z) = lim
n→∞
n→∞ 0
n

t
=
lim 1 −
n
0 n→∞


n

tz−1 dt
n


z−1

t

dt =

e−t tz−1 dt = Γ(z).

0

✭✶✳✽✮

✣➸ ✤↕t ✤÷ñ❝ ♠ö❝ ✤➼❝❤ ♥➔②✱ ❝❤ó♥❣ t❛ ❤➣② ✤→♥❤ ❣✐→ ✤↕✐ ❧÷ñ♥❣


∆ = Γ(z) − fn (z) =
0
n

=

−t

e

0

t
− 1−
n

e−t tz−1 dt − fn (z)
n


z−1

t

dt +
n

e−t tz−1 dt.

✭✶✳✾✮




> 0 tũ ỵ ứ sỹ ở tử ừ t ợ ồ z C tọ
z > 0 t s r tỗ t số tỹ n0 s ợ ồ n N

n0 t õ

n




t z1

e t




et tx1 dt < , (x = z).
3

dt

n

n



ợ ồ n N n > n0 t t t tờ ừ t s
N

=

e

t


0
n

e
N

õ
n

e
N

t

tz1 dt
n

t
1
n

t

+

n

t
1
n


n

t
1
n


z1

t

dt +

t



n
n

n

z1

et tz1 dt.

t
e 1
dt

tx1 dt
n
N


<
et tx1 dt < , (x = z).
3
n

t

t tự t t t tự ờ tr
s
t

0
t
1
n

n

t2
<
, 0 < t < n.
2n




t t tự ữủ s r tứ ố q
t

e

t
1
n

n

t

e 1

=
0


n

n


d
n

t tự
t



1
n



0<

e
0

n


d <
n

t
0

t2
e d = e
.
n
2n


t


ỷ ử t tự t õ s ợ n ừ ợ
N

e
0

t

t
1
n

n

t

z1

1
dt <
2n

N
0


tx+1 dt < , (x = z).
3

tự ớ ữủ s r tứ

ỵ ữủ ự




✶✳✶✳✺ ◆❤➟♥ ①➨t✳ ◆❤í t➼♥❤ ❝❤➜t 1) tr♦♥❣ ✣à♥❤ ❧þ ✶✳✶✳✸✱ ♥❣÷í✐ t❛ ❝â t❤➸
✤à♥❤ ♥❣❤➽❛ ❤➔♠ ❣❛♠♠❛ Γ(z) ❝❤♦ ♠å✐ z ∈ C ♠➔ z = 0, −1, −2, · · · ❈ö
t❤➸✱ ♥➳✉ z ∈ C ♠➔ −m < ❘❡z

−m + 1 ✈î✐ m ❧➔ ♠ët sè ♥❣✉②➯♥ ❞÷ì♥❣

♥➔♦ ✤â t❤➻ t❛ ①→❝ ✤à♥❤ Γ(z) t❤❡♦ ❝æ♥❣ t❤ù❝

Γ(z) =

Γ(z + m)
.
z(z + 1) · · · (z + m − 1)

✭✶✳✶✺✮

✶✳✶✳✻ ◆❤➟♥ ①➨t✳ ❈æ♥❣ t❤ù❝ ✭✶✳✺✮ ❦❤æ♥❣ ❝❤➾ ✤ó♥❣ ✈î✐ ♠å✐ z ∈ C t❤ä❛
♠➣♥ ❘❡z > 0 ♠➔ ❝á♥ ✤ó♥❣ ✈î✐ ♠å✐ z ∈ C ♠➔ z = 0, −1, −2, · · · ❚❤➟t
✈➟②✱ tø ❝æ♥❣ t❤ù❝ ✭✶✳✶✺✮ ✈➔ ✣à♥❤ ❧þ ✶✳✶✳✹ t❛ ❝â

Γ(z + m)
z(z + 1) · · · (z + m − 1)
1
nz+m n!
=

lim
z(z + 1) · · · (z + m − 1) n→∞ (z + m) · · · (z + m + n)
1
nz n!
=
lim
z(z + 1) · · · (z + m − 1) n→∞ (z + m)(z + m + 1) · · · (z + n)
nm
× lim
n→∞ (z + n)(z + n + 1) · · · (z + n + m)

Γ(z) =

nz n!
1
=
lim
z(z + 1) · · · (z + m − 1) n→∞ (z + m)(z + m + 1) · · · (z + n)
nz n!
1
= lim
n→∞ z(z + 1) · · · (z + m − 1) (z + m)(z + m + 1) · · · (z + n)
n!nz
= lim
.
n→∞ z(z + 1) · · · (z + n)

✶✳✶✳✼ ✣à♥❤ ♥❣❤➽❛✳ ❍➔♠ ▼✐tt❛❣✲▲❡❢❢❧❡r ♠ët t❤❛♠ sè



Eα (z) =
k=0

zk
, α > 0, z ∈ C.
Γ(αk + 1)

❍➔♠ ▼✐tt❛❣✲▲❡❢❢❧❡r ❤❛✐ t❤❛♠ sè


Eα,β (z) =
k=0

❧➔ ❤➔♠ ❝â ❞↕♥❣
✭✶✳✶✻✮

❧➔ ❤➔♠ ❝â ❞↕♥❣

zk
, α > 0, β > 0, z ∈ C.
Γ(αk + β)

✭✶✳✶✼✮




t ợ ồ z C z = 0 t õ



zk
= E (z), > 0,
(k + 1)

1) E,1 (z) =
k=0


2) E1,1 (z) =
k=0


3) E1,2 (z) =
k=0


zk
=
(k + 1)
zk
=
(k + 2)

2

4) E2,1 (z ) =
k=0

2


5) E2,2 (z ) =
k=0




k=0


zk
= ez ,
k!

k=0


z 2k
=
(2k + 1)

k=0

z 2k+1
sinh(z)
=
,
(2k + 1)
z



zk

6) E1/2,1 (z) =
k=0

k=0

z (k+1)
ez 1
=
,
(k + 1)!
z

z 2k
= cosh(z),
(2k)!

k=0


z 2k
1
=
(2k + 2) z



zk
1

=
(k + 1)! z

2 z2

=
e

( k2 + 1)

2

2

et dt = ez r(z).

z

ú t (, ) ( > 0, 0 <

) ữớ ỗ t

s
arg = | |


arg




| | =

arg = | |



ữớ (, ) ( > 0, 0 <

) t ự t

t G (, ) G+ (, ) ữủt tr
ừ ữớ (, )
0 < < t G (, ) G+ (, )
ổ = t G (, ) tr t trỏ

| | <

ỵ 0 < < 2 số ự tũ ỵ à số tỹ tọ



< à < min{, }.
2




✶✶

❑❤✐ ✤â ✈î✐ ε > 0 tò② þ t❛ ❝â

exp(ζ 1/α )ζ (1−β)/α
1
dζ, z ∈ G− (ε, µ)
2απi γ(ε,µ)
ζ −z
1
Eα,β (z) = z (1−β)/α exp z 1/α
α
1
exp(ζ 1/α )ζ (1−β)/α
dζ, z ∈ G+ (ε, µ).
+
2απi γ(ε,µ)
ζ −z
Eα,β (z) =

✭✶✳✶✾✮

✭✶✳✷✵✮

❈❤ù♥❣ ♠✐♥❤✳ ◆➳✉ |z| < ε t❤➻
z
< 1, ζ ∈ γ(ε, µ).
ζ

✭✶✳✷✶✮

❉♦ ✤â ✈î✐ 0 < α < 2 ✈➔ |z| < ε t❛ ❝â



Eα,β (z) =
k=0

1
2απi

1
=
2απi
=

1
2απi

exp(ζ 1/α )ζ (1−β)/α−k−1 dζ
γ(ε,µ)


exp(ζ

1/α



(1−β)/α−1

γ(ε,µ)

k=0


exp(ζ 1/α )ζ (1−β)/α
γ(ε,µ)

zk

ζ −z

z
ζ

dζ.


✭✶✳✷✷✮

◆❤í ✤✐➲✉ ❦✐➺♥ ✭✶✳✶✽✮✱ t➼❝❤ ♣❤➙♥ ð ✭✶✳✷✷✮ ❤ë✐ tö t✉②➺t ✤è✐ ✈➔ ①→❝ ✤à♥❤ ♠ët
❤➔♠ ❜✐➳♥ z ❣✐↔✐ t➼❝❤ tr♦♥❣ ❝→❝ ♠✐➲♥ G− (ε, µ) ✈➔ G+ (ε, µ)✳ ▼➦t ❦❤→❝✱ ✈î✐
πα
, min{π, πα} ✱ ❤➻♥❤ trá♥ |z| < ε ♥➡♠ tr♦♥❣ ♠✐➲♥ G− (ε, µ)✳
♠é✐ µ ∈
2
❉♦ ✤â✱ t➼❝❤ ♣❤➙♥ ✭✶✳✷✷✮ ❜➡♥❣ Eα,β (z) ❦❤æ♥❣ ❝❤➾ tr♦♥❣ ♠✐➲♥ ❤➻♥❤ trá♥

|z| < ε ♠➔ tr♦♥❣ t♦➔♥ ❜ë ♠✐➲♥ G− (ε, µ) ♥➯♥ t❛ ❝â ❝æ♥❣ t❤ù❝ ✭✶✳✶✾✮✳
❇➙② ❣✐í ❝❤ó♥❣ t❛ ❧➜② z ∈ G+ (ε, µ)✳ ❑❤✐ ✤â ✈î✐ ❜➜t ❦ý ε1 > |z| t❛ ❝â

z ∈ G− (ε1 , µ)✳ ❙û ❞ö♥❣ ❝æ♥❣ t❤ù❝ ✭✶✳✶✾✮ t❛ ❝â
Eα,β (z) =

1

2απi

exp(ζ 1/α )ζ (1−β)/α
dζ, z ∈ G− (ε1 , µ).
ζ −z
γ(ε1 ,µ)

✭✶✳✷✸✮

▼➦t ❦❤→❝✱ ♥➳✉ ε < |z| < ε1 ✈➔ −µ < arg(z) < µ t❤➻ t❤❡♦ ✤à♥❤ ❧þ ❈❛✉❝❤②


✶✷

t❛ ❝â

1
2απi

exp(ζ 1/α )ζ (1−β)/α
1
dζ = z (1−β)/α exp z 1/α .
ζ −z
α
γ(ε1 ,µ)−γ(ε,µ)
✭✶✳✷✹✮

❚ê ❤ñ♣ ✭✶✳✷✸✮ ✈➔ ✭✶✳✷✹✮ t❛ ✤↕t ✤÷ñ❝ ❝æ♥❣ t❤ù❝ ✭✶✳✷✵✮✳

✶✳✶✳✶✵ ✣à♥❤ ❧þ✳ ◆➳✉ 0 < α < 2✱ β ❧➔ sè ♣❤ù❝ tò② þ ✈➔ µ ❧➔ sè t❤ü❝ t❤ä❛


♠➣♥

πα
< µ < min{π, πα}
2

t❤➻ ✈î✐ sè ♥❣✉②➯♥ ❞÷ì♥❣ p tò② þ t❛ ❝â ✤→♥❤ ❣✐→
1
Eα,β (z) = z (1−β)/α exp z 1/α −
α
|z| → ∞, | arg(z)|

p

k=1

z −k
+ O |z|−1−p
Γ(β − αk)

✭✶✳✷✺✮

µ.

❈❤ù♥❣ ♠✐♥❤✳ ❈❤ó♥❣ t❛ ❜➢t ✤➛✉ ❝❤ù♥❣ ♠✐♥❤ ❝æ♥❣ t❤ù❝ ✭✶✳✷✺✮ ❜➡♥❣ ❝→❝❤
❝❤å♥ ϕ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥

πα
< µ < ϕ < min{π, πα}.

2

✭✶✳✷✻✮

❚✐➳♣ t❤❡♦ ❝❤å♥ ε = 1 ✈➔ t❤❛② t❤➳

1
=−
ζ −z

p

k=1

ζp
ζ k−1
+ p
z (ζ − z)
zk

✭✶✳✷✼✮

tr♦♥❣ ❝æ♥❣ t❤ù❝ ✭✶✳✷✵✮ ❝õ❛ ✣à♥❤ ❧þ ✶✳✶✳✾ ❝❤ó♥❣ t❛ ❝â ❝æ♥❣ t❤ù❝ ❜✐➸✉ ❞✐➵♥
s❛✉ ✤➙② ❝❤♦ ❤➔♠ ▼✐tt❛❣✲▲❡❢❢❧❡r Eα,β (z) tr♦♥❣ ♠✐➲♥ G+ (1, ϕ) ✭♥❣❤➽❛ ❧➔
♠✐➲♥ ❜➯♥ ♣❤↔✐ ❝õ❛ ✤÷í♥❣ γ(1, ϕ)✮✳

Eα,β (z) =

1 (1−β)/α
z

exp z 1/α
α
p
1

exp(ζ 1/α )ζ (1−β)/α+k−1 dζ
2απi γ(1,ϕ)

z −k

k=1

+

1
2απiz p

exp(ζ 1/α )ζ (1−β)/α+p ζ.
γ(1,ϕ)

✭✶✳✷✽✮


✶✸

❈❤ó þ r➡♥❣

1
2απi


exp(ζ 1/α )ζ (1−β)/α+k−1 dζ =
γ(1,ϕ)

1
, k ∈ N∗ .
Γ(β − αk)

✭✶✳✷✾✮

❚❤❛② t❤➳ ✭✶✳✷✾✮ ✈➔♦ ✭✶✳✷✽✮ t❛ ✤↕t ✤÷ñ❝

1
Eα,β (z) = z (1−β)/α exp z 1/α −
α
1
2απiz p
(| arg(z)|

p

k=1

z −k
Γ(β − αk)

exp(ζ 1/α )ζ (1−β)/α+p ζ,

+

✭✶✳✸✵✮


γ(1,ϕ)

µ, |z| > 1).

❈❤ó♥❣ t❛ ❤➣② ✤→♥❤ ❣✐→ t➼❝❤ ♣❤➙♥

Ip (z) =

1
2απiz p

✈î✐ |z| ✤õ ❧î♥ ✈➔ | arg(z)|

exp(ζ 1/α )ζ (1−β)/α+p ζ,

✭✶✳✸✶✮

γ(1,ϕ)

µ✳ ❱î✐ |z| ✤õ ❧î♥ ✈➔ | arg(z)|

µ t❛ ❝â

min |ζ − z| = |z| sin(ϕ − µ).
ζ∈γ(1,ϕ)

❉♦ ✤â ✈î✐ |z| ✤õ ❧î♥ ✈➔ | arg(z)|

|Ip (z)|


|z|−1−p
2πα sin(ϕ − µ)

µ t❛ ✤↕t ✤÷ñ❝
exp(ζ 1/α ) ζ (1−β)+p ζ.

✭✶✳✸✷✮

γ(1,ϕ)

❚➼❝❤ ♣❤➙♥ ð ✈➳ ♣❤↔✐ ❝õ❛ ✭✶✳✸✷✮ ❤ë✐ tö✱ ❜ð✐ ✈➻ ✈î✐ ζ t❤ä❛ ♠➣♥ arg(ζ) = ±ϕ
✈➔ |ζ|

1 t❛ ❝â
exp(ζ 1/α ) = exp |ζ|1/α cos

ϕ
α

ϕ
< 0 ❞♦ ✤✐➲✉ ❦✐➺♥ ✭✶✳✷✻✮✳ ❚ê ❤ñ♣ ✭✶✳✸✵✮ ✈➔ ✭✶✳✸✷✮ t❛ ✤↕t ✤÷ñ❝
α
❝æ♥❣ t❤ù❝ ✭✶✳✷✺✮✳
✈➔ cos

✶✳✶✳✶✶ ✣à♥❤ ❧þ✳ ◆➳✉ 0 < α < 2✱ β ❧➔ sè ♣❤ù❝ tò② þ ✈➔ µ ❧➔ sè t❤ü❝ t❤ä❛

♠➣♥


πα
< µ < min{π, πα}
2


✶✹

t❤➻ ✈î✐ sè ♥❣✉②➯♥ ❞÷ì♥❣ p tò② þ t❛ ❝â ✤→♥❤ ❣✐→
p

Eα,β (z) = −
k=1

z −k
+ O |z|−1−p
Γ(β − αk)

|z| → ∞, µ

| arg(z)|

✭✶✳✸✸✮

π.

❈❤ù♥❣ ♠✐♥❤✳ ❚r÷î❝ ❤➳t✱ ❝❤ó♥❣ t❛ ❧➜② ϕ t❤ä❛ ♠➣♥
πα
< ϕ < µ < min{π, πα}.
✭✶✳✸✹✮
2

❚✐➳♣ t❤❡♦ ❝❤å♥ ε = 1 tr♦♥❣ ❝æ♥❣ t❤ù❝ ✭✶✳✷✵✮ ❝õ❛ ✣à♥❤ ❧þ ✶✳✶✳✾ ✈➔ sû ❞ö♥❣
❝æ♥❣ t❤ù❝ ✭✶✳✷✼✮ t❛ ✤↕t ✤÷ñ❝
p

Eα,β (z) = −
k=1

z −k
+ Ip (z), z ∈ G− (1, ϕ)
Γ(β − αk)

✭✶✳✸✺✮

✈î✐ Ip (z) ✤➣ ✤÷ñ❝ tr➻♥❤ ❜➔② tr♦♥❣ ❝❤ù♥❣ ♠✐♥❤ ❝õ❛ ✣à♥❤ ❧þ ✶✳✶✳✶✵✳ ❱î✐ |z|
✤õ ❧î♥ ✈➔ µ

| arg(z)|

π t❛ ❝â

min |ζ − z| = |z| sin(ϕ − µ).
ζ∈γ(1,ϕ)

❍ì♥ ♥ú❛✱ ♠✐➲♥ µ

π ♥➡♠ tr♦♥❣ ♠✐➲♥ G− (1, ϕ) ♥➯♥ ✤➥♥❣

| arg(z)|

t❤ù❝ ✭✶✳✸✺✮ ✤ó♥❣ ✈î✐ z t❤ä❛ ♠➣♥ µ

✈➔ µ

| arg(z)|
|Ip (z)|

| arg(z)|

π ✳ ❉♦ ✤â ✈î✐ |z| ✤õ ❧î♥

π t❛ ✤↕t ✤÷ñ❝

|z|−1−p
2πα sin(ϕ − µ)

exp(ζ 1/α ) ζ (1−β)+p ζ.

✭✶✳✸✻✮

γ(1,ϕ)

❚ê ❤ñ♣ ✭✶✳✸✺✮ ✈➔ ✭✶✳✸✻✮ t❛ ✤↕t ✤÷ñ❝ ❝æ♥❣ t❤ù❝ ✭✶✳✸✸✮✳

✶✳✷ ✣↕♦ ❤➔♠ ❜➟❝ ♣❤➙♥ ❈❛♣✉t♦
✶✳✷✳✶ ✣à♥❤ ♥❣❤➽❛✳ ❈❤♦ f ❧➔ ♠ët ❤➔♠ sè ❦❤↔ ✈✐ ❧✐➯♥ tö❝ ❝➜♣ n ∈ N∗
tr➯♥ [a, T ] (T > a)✳

✣↕♦ ❤➔♠ ❜➟❝ ♣❤➙♥ ❈❛♣✉t♦ ✈î✐ ❜➟❝ α > 0 ❝õ❛ ♠ët

❤➔♠ f tr➯♥ ✤♦↕♥ [a, T ] ✤÷ñ❝ ①→❝ ✤à♥❤ ♥❤÷ s❛✉
C (α)

a Dt f (t)

1
=
Γ(n − α)

C (n)
a Dt f (t)

= f (n) (t), a

t
a

f (n) (s)
ds, a
(t − s)α+1−n

t

T, α = n.

t

T, n − 1 < α < n,


✶✺

✶✳✷✳✷ ◆❤➟♥ ①➨t✳ ✶✮ ❚r♦♥❣ tr÷í♥❣ ❤ñ♣ n = 1✱ t❛ ❝â

C (α)
a Dt f (t)

1
=
Γ(1 − α)

t
a

f (s)
ds, a
(t − s)α

t

T, 0 < α < 1.

✭✶✳✸✼✮

✷✮ ❱î✐ n ∈ N∗ ✱ α ∈ R t❤ä❛ ♠➣♥ n − 1 < α < n✱ m ∈ N ✈➔ f ❧➔ ❤➔♠ ❦❤↔
✈✐ ❧✐➯♥ tö❝ ❝➜♣ n + m t❤➻ t❛ ❝â
C (α) C m
a Dt f (t)
a Dt

(α+m)

=C
a Dt


f (t).

✶✳✷✳✸ ◆❤➟♥ ①➨t✳ ●✐↔ sû n ∈ N∗ ✈➔ α ❧➔ sè t❤ü❝ t❤ä❛ ♠➣♥
0

n − 1 < α < n.

❍ì♥ ♥ú❛ f ❧➔ ❤➔♠ ❦❤↔ ✈✐ ❧✐➯♥ tö❝ ❝➜♣ n + 1 tr➯♥ ✤♦↕♥ [a, T ] ✈î✐ T > a
t❤➻
(α)

n
lim C
a Dt f (t) = f (t), ∀t ∈ [a, T ].

α→n

✭✶✳✸✽✮

❈❤ù♥❣ ♠✐♥❤✳ ❚❛ ❝â
(α)

f (n) (a)(t − a)n−α
α→n
Γ(n − α + 1)
t
1
(t − τ )n−α f (n+1) (τ )dτ
+ lim

α→n Γ(n − α + 1) a

lim C
a Dt f (t) = lim

α→n

t

=f

(n)
n

f (n+1) (τ )dτ

(a) +
a

= f (t), ∀t ∈ [a, T ].


❈❍×❒◆● ✷

❳⑩❈ ✣➚◆❍ ◆●❯➬◆ ◆❍■➏❚ ❚❘❖◆● P❍×❒◆● ❚❘➐◆❍
❚❘❯❨➋◆ ◆❍■➏❚ ❇❾❈ P❍❹◆ ❇➀◆● P❍×❒◆● P❍⑩P
❈❍➄❚ ❈Ö❚
❈❤÷ì♥❣ ♥➔② ❝❤ó♥❣ tæ✐ tr➻♥❤ ❜➔② ❝→❝ ❦➳t qõ❛ tr♦♥❣ ❜➔✐ ❜→♦ ❬✹❪ ❝ô♥❣
♥❤÷ ✤➲ ①✉➜t ✈➔ ❝❤ù♥❣ ♠✐♥❤ ♠ët ✈➔✐ ❦➳t qõ❛ ♠î✐✳


✷✳✶ ●✐î✐ t❤✐➺✉ ❜➔✐ t♦→♥ ✈➔ ✤→♥❤ ❣✐→ ê♥ ✤à♥❤
❳➨t ❜➔✐ t♦→♥ tr✉②➲♥ ♥❤✐➺t ❜➟❝ ♣❤➙♥

 α
0 ∂t u = uxx + f (x), 0 < x < 1, 0 < t < T,
u(0, t) = u(1, t) = 0, 0 t T,

u(x, 0) = 0, 0 x 1,

✭✷✳✶✮

γ

tr♦♥❣ ✤â 0 ∂t u ❧➔ ✤↕♦ ❤➔♠ ❜➟❝ ♣❤➙♥ ❈❛♣✉t♦ ❜➟❝ α ✤è✐ ✈î✐ t ✈➔ ✤÷ñ❝ ①→❝
✤à♥❤ ❜ð✐ ✭①❡♠ ❬✺❪✮
α
0 ∂t u

1
=
Γ(1 − α)

t
0

∂u(x, s) ds
, 0 < α < 1,
∂s (t − s)α

✈î✐ Γ(·) ❧➔ ❤➔♠ ●❛♠♠❛✳

❇➔✐ t♦→♥ ✭✷✳✶✮ ❧➔ ❜➔✐ t♦→♥ t❤✉➟♥ ❦❤✐ f (x) ✤➣ ✤÷ñ❝ ❝❤♦ t❤➼❝❤ ❤ñ♣✳
❚r♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔②✱ ❝❤ó♥❣ tæ✐ q✉❛♥ t➙♠ tî✐ ✧❜➔✐ t♦→♥ ♥❣✉ç♥ ♥❣÷ñ❝✧
❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮✳ ❚ù❝ ❧➔ ❜➔✐ t♦→♥ ①→❝ ✤à♥❤ ♥❣✉ç♥ ♥❤✐➺t ❝❤÷❛ ✤÷ñ❝
❜✐➳t f (x) ❞ü❛ ✈➔♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮ ✈➔ ♠ët t❤æ♥❣ t✐♥ ❜ê s✉♥❣ ✈➲ ♥❣❤✐➺♠
❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✮ t↕✐ t❤í✐ ✤✐➸♠ t = T

u(x, T ) = g(x), 0 < x < 1.
✶✻

✭✷✳✷✮


✶✼

❚r♦♥❣ ❝→❝ ù♥❣ ❞ö♥❣ ❝ö t❤➸✱ ❞ú ❦✐➺♥ ✤➛✉ ✈➔♦ g(x) ✤÷ñ❝ ❝✉♥❣ ❝➜♣ ❜ð✐
✤♦ ✤↕❝ ♥➯♥ ❦❤æ♥❣ tr→♥❤ ❦❤ä✐ s❛✐ sè✳ ❉♦ ✤â✱ t❤❛② ✈➻ ❜✐➳t ❝❤➼♥❤ ①→❝ g(x)
t❛ ❝❤➾ ❜✐➳t ❞ú ❦✐➺♥ ✤♦ ✤↕❝ g δ ∈ L2 (0, 1) t❤ä❛ ♠➣♥

gδ − g
✈î✐

·

✭✷✳✸✮

δ,

❧➔ ❝❤✉➞♥ L2 ✈➔ ♠ù❝ s❛✐ sè δ > 0 ✤➣ ✤÷ñ❝ ❜✐➳t✳

✷✳✶✳✶ ✣à♥❤ ♥❣❤➽❛✳ ✭❬✹❪✮✣↕♦ ❤➔♠ ❈❛♣✉t♦ ❜➟❝ α ✤÷ñ❝ ①→❝ ✤à♥❤ t❤❡♦ ❝æ♥❣

t❤ù❝
α
σ ∂t z(t)

✈➔

1
=
Γ(1 − α)

t
σ

z (s)
ds,
(t − s)α

0<α<1

✭✷✳✹✮

✤↕♦ ❤➔♠ ❘✐❡♠❛♥♥✲▲✐♦✉✈✐❧❧❡ ❜➟❝ α ✤÷ñ❝ ①→❝ ✤à♥❤ t❤❡♦ ❝æ♥❣ t❤ù❝
α
σ Dt z(t)


1
=
Γ(1 − α) ∂t


t
σ

z(s)
ds, 0 < α < 1.
(t − s)α

✭✷✳✺✮

✷✳✶✳✷ ▼➺♥❤ ✤➲✳ ✭❬✺❪✮ ●✐ú❛ ✤↕♦ ❤➔♠ ❜➟❝ ♣❤➙♥ ❈❛♣✉t♦ ✈➔ ✤↕♦ ❤➔♠ ❜➟❝
♣❤➙♥ ❘✐❡♠❛♥♥✲▲✐♦✉✈✐❧❧❡ ❝â ♠è✐ q✉❛♥ ❤➺ s❛✉
α
σ Dt z(t)

=

z(σ)
1
+σ ∂tα z(t).
α
Γ(1 − α) (t − σ)

✷✳✶✳✸ ✣à♥❤ ♥❣❤➽❛✳ ✭❬✹❪✮❍➔♠ ▼✐tt❛❣✲▲❡❢❢❧❡r ❤❛✐ t❤❛♠ sè

✭✷✳✻✮
✤÷ñ❝ ①→❝ ✤à♥❤

❜ð✐



Eα,β (z) =
k=0

zk
, ∀α > 0, β > 0.
Γ(αk + β)

✭✷✳✼✮

✷✳✶✳✹ ▼➺♥❤ ✤➲✳ ✭❬✹❪✮ ❱î✐ λ > 0 t❛ ❝â ❝→❝ ✤➥♥❣ t❤ù❝ s❛✉
α
α
0 ∂t Eα,1 (−λt )

= −λEα,1 (−λtα ), t > 0, 0 < α < 1,

d
Eα,1 (−λtα ) = −λtα−1 Eα,α (−λtα ), t > 0, α > 0.
dt
✭❬✹❪✮ ❍➔♠ Eα,1 (−t) ❧➔ ♠ët ❤➔♠ t❤ä❛ ♠➣♥

✭✷✳✽✮
✭✷✳✾✮

✷✳✶✳✺ ▼➺♥❤ ✤➲✳

dn
(−1) n Eα,1 (−t) 0
dt
n = 0, 1, 2, · · · ❉♦ ✤â t❛ ❝â

n

✈î✐ ♠å✐ t

0

✈➔

1 = Eα,1 (0) > Eα,1 (−t) > 0, t > 0.

✭✷✳✶✵✮


✶✽

❈❤ó þ r➡♥❣ ♥❣❤✐➺♠ u(x, t) ❝õ❛ ❜➔✐ t♦→♥ ✭✷✳✶✮ ❝â t❤➸ ❜✐➸✉ ❞✐➵♥ ❞÷î✐
❞↕♥❣
t

u(x, t) =

v(x, t; τ )dτ,

✭✷✳✶✶✮

0

tr♦♥❣ ✤â v(x, t; τ ) ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ s❛✉

 α

τ ∂t v(x, t; τ ) = vxx (x, t; τ ), (x, t) ∈ (0, 1) × (τ, T ),
v(x, t; τ ) |t=τ =0 Dτ1−α f (x), 0 x 1,

v(1, t; τ ) = v(0, t; τ ) = 0, τ t T

✭✷✳✶✷✮

✈î✐ 0 Dτ1−α ❧➔ ✤↕♦ ❤➔♠ ❘✐❡♠❛♥♥✲▲✐♦✉✈✐❧❧❡ ✤÷ñ❝ ✤à♥❤ ♥❣❤➽❛ t❤❡♦ ❝æ♥❣ t❤ù❝
✭✷✳✺✮✳ ❇➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ t→❝❤ ❜✐➳♥ ✈➔ sû ❞ö♥❣ ❝æ♥❣ t❤ù❝ ✭✷✳✽✮ t❛ ❝â

1−α
1Eα,1 (−k 2 π 2 (t − τ )α )fk Xk
0 Dτ

v(x, t; τ ) =
k=1

tr♦♥❣ ✤â {Xk =



2 sin(kπx), k = 1, 2, ...} ❧➔ ♠ët ❝ì sð trü❝ ❝❤✉➞♥ tr♦♥❣
1

2
L (0, 1) ✈➔ fk := (f, Xk ) = 2
f (x) sin(kπx)dx✳ ❑❤✐ ✤â ♥❣❤✐➺♠ ❝õ❛
0

❜➔✐ t♦→♥ ✭✷✳✶✮ ✤÷ñ❝ ✈✐➳t ❧↕✐ t❤➔♥❤

t

v(x, t; τ )dτ

u(x, t) =
0


t
1−α
1Eα,1 (−k 2 π 2 (t − τ )α )dτ fk Xk .
0 Dτ

=

✭✷✳✶✸✮

0

k=1

▼➦t ❦❤→❝✱ t❛ ❜✐➳t r➡♥❣ ✭①❡♠ ❬✸❪✮
t
1−α
1Eα,1 (−k 2 π 2 (t − τ )α )dτ fk Xk
0 Dτ
0
t

(t − τ )α−1 Eα.α (−k 2 π 2 (t − τ )α )dτ fk Xk .


=

✭✷✳✶✹✮

0

❙û ❞ö♥❣ ❝æ♥❣ t❤ù❝ ✭✷✳✾✮ t❛ ✤↕t ✤÷ñ❝


u(x, t) =
k=1

1 − Eα,1 (−k 2 π 2 τ α )
(f, Xk )Xk .
k2π2

✭✷✳✶✺✮


✶✾

✣à♥❤ ♥❣❤➽❛ t♦→♥ tû A : f → g ✳ ❑❤✐ ✤â ❝❤ó♥❣ t❛ ❝â


Af (x) =
k=1

1 − Eα,1 (−k 2 π 2 τ α )
(f, Xk )Xk = g(x).

k2π2

❉➵ t❤➜② r➡♥❣ A ❧➔ t♦→♥ tû ❝♦♠♣❛❝t ✈î✐ ❝→❝ ❣✐→ trà ❦ý ❞à {σk }∞
k=1 ✤÷ñ❝
①→❝ ✤à♥❤ ❜ð✐

1 − Eα,1 (−k 2 π 2 τ α )
σk =
k2π2

✈➔

1 − Eα,1 (−k 2 π 2 τ α )
(g, Xk ) =
(f, Xk ).
k2π2
1
❉♦ ✤â t❛ ❝â (f, Xk ) = (g, Xk ) ✈➔
σk

−1

f (x) = A

g(x) =
k=1

k2π2
(g, Xk )Xk .
1 − Eα,1 (−k 2 π 2 τ α )


✭✷✳✶✻✮

1
= O(k 2 ) ❧➔ ✤↕✐ ❧÷ñ♥❣ ❦❤æ♥❣ ❜à ❝❤➦♥ ❦❤✐ k → ∞ ✈➔ ♥❣❤✐➺♠ f
σk
✤÷ñ❝ ❣✐↔ t❤✐➳t t❤✉ë❝ ❦❤æ♥❣ ❣✐❛♥ L2 (0, 1) ♥➯♥ ❞ú ❦✐➺♥ ❝❤➼♥❤ ①→❝ g ♣❤↔✐
❱➻

❣✐↔♠ ♥❤❛♥❤ ❝ï O(k −2 )✳ ❚✉② ♥❤✐➯♥ ❞ú ❦✐➺♥ g ♥❤➻♥ ❝❤✉♥❣ ❝â ✤÷ñ❝ ❞♦ q✉❛♥
s→t✱ ✤♦ ✤↕❝ ♥➯♥ ❝❤ó♥❣ t❛ ❝❤➾ ❝â ✤÷ñ❝ ❞ú ❦✐➺♥ ❜à ♥❤✐➵✉ g δ ∈ L2 (0, 1) ✈î✐

g − gδ

δ ✳ ❱➻ ❝❤ó♥❣ t❛ ❦❤æ♥❣ ❤✐ ✈å♥❣ r➡♥❣ ❞ú ❦✐➺♥ ❜à ♥❤✐➵✉ g δ ❣✐↔♠

♥❤❛♥❤ ♥❤÷ ❞ú ❦✐➺♥ ❝❤➼♥❤ ①→❝ g ♥➯♥ ♥❣❤✐➺♠ t÷ì♥❣ ù♥❣ ♥❤➻♥ ❝❤✉♥❣ s➩
❦❤æ♥❣ t❤✉ë❝ ✈➔♦ ❦❤æ♥❣ ❣✐❛♥ L2 (0, 1)✳ ❉♦ ✤â ❜➔✐ t♦→♥ ♥➔② ❧➔ ❜➔✐ t♦→♥ ✤➦t
❦❤æ♥❣ ❝❤➾♥❤✱ ♥❣❤✐➺♠ ❝õ❛ ❜➔✐ t♦→♥ ❦❤æ♥❣ ♣❤ö t❤✉ë❝ ❧✐➯♥ tö❝ ✈➔♦ ❞ú ❦✐➺♥✳
◆❤÷ ❝❤ó♥❣ t❛ ✤➣ ❜✐➳t ✤è✐ ✈î✐ ❜➜t ❦ý ♠ët ❜➔✐ t♦→♥ ✤➦t ❦❤æ♥❣ ❝❤➾♥❤✱
♠ët ❣✐↔ t❤✐➳t ✈➲ ❣✐î✐ ❤↕♥ t✐➯♥ ♥❣❤✐➺♠ ✤è✐ ✈î✐ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ❝➛♥ ✤÷ñ❝
✤➦t r❛✳ ◆➳✉ ❦❤æ♥❣ ❝â ❣✐↔ t❤✐➳t ♥➔②✱ sü ❤ë✐ tö ❝õ❛ ♥❣❤✐➺♠ ❝❤➾♥❤ ❤â❛ s➩
❦❤æ♥❣ ✤↕t ✤÷ñ❝ ❤♦➦❝ tè❝ ✤ë ❤ë✐ tö ❝â t❤➸ ❝❤➟♠ tò② þ✳ ❚r♦♥❣ ❧✉➟♥ ✈➠♥
♥➔②✱ ❝❤ó♥❣ t❛ ❣✐↔ t❤✐➳t ❣✐î✐ ❤↕♥ t✐➺♥ ♥❣❤✐➺♠ ♥❤÷ s❛✉

f

H p (0,1)

E, p > 0,


✭✷✳✶✼✮




tr õ E số ữỡ

ã

ỵ tr ổ

H p (0,1)

H p (0, 1) ữủ
1
2



f

H p (0,1)

(1 + k 2 )p | fk |2

=




.

k=1

ớ ú t t ỵ ờ õ
t

ỵ sỷ r f (x) ừ t ỗ
ữủ ữủ tọ t s ú
p
p+2

2
1 E,1 ( 2 T )

f

2

E p+2

p
p+2

g



.


ự ỷ ử t tự r t
õ


f

2

=
k=1


=
k=1


=
k=1






k=1

k=1

k=1


2

k22
1 E,1 (k 2 2 T )

2

| gk |

2
1 E,1 ( 2 T )

4
p+2

2
p+2

p
p+2



(| gk |


2
p+2

| gk |2


gk

2p
p+2

2
p+2

p

1 E,1 (k 2 2 T )

2p

4

| gk | p+2 | gk | p+2

k=1

1 E,1 (k 2 2 T )
k22

2

| gk |2

p+2
2


2

p+2

k22



=

k22
1 E,1 (k 2 2 T )

k22
1 E,1 (k 2 2 T )



=

k22
(g, Xk )Xk
1 E,1 (k 2 2 T )

| fk |2

gk

2

p+2



(1 + k 2 )p | fk |2
k=1

2p
p+2

gk

2p
p+2

2p
p+2

)

p+2
p

p
p+2



2p
p+2


2
1 E,1 ( 2 T )
õ t õ
f

4

E p+2

g

2p
p+2

2
1 E,1 ( 2 T )

.
p
p+2

2

E p+2

g

p
p+2


.

t f1(x) f2(x) ừ t ỗ
ữủ ợ ỳ g1 (x) g2 (x) tữỡ ự t s
ú

f1 (ã) f2 (ã)
2
1 E,1 ( 2 T )

p
p+2

f1 (ã) f2 (ã)

2
p+2
H p (0,1)

g1 (ã) g2 (ã)

p
p+2

.

ó r r g1 (ã) g2 (ã) 0 t f1 (ã) f2 (ã) 0
t qừ ờ õ ổ sỹ ờ ừ
số tr t ợ ỳ


õ t ửt s số
ó r ừ t ổ ờ t

k ợ tr ổ tự ởt tỹ ỷ tt
t k ợ tr ổ tự
õ t ửt ữ s
K

f,K =
k=1

k22
(g , Xk )Xk ,
2
2

1 E,1 (k T )



tr õ K số ữỡ õ trỏ õ
r ú t t t ồ t số t
t số õ ữ r
s số ừ ữỡ t ú tổ tr t ồ t
số t ỵ s


✷✷


✷✳✷✳✶ ✣à♥❤ ❧þ✳ ✭❬✹❪✮ ●✐↔ sû fδ,K (x) ❧➔ ♥❣❤✐➺♠ ❝❤➾♥❤ ❤â❛ ❝õ❛ ❜➔✐ t♦→♥
✭✷✳✶✮✲✭✷✳✷✮

✈î✐ ❞ú ❦✐➺♥ ❜à ♥❤✐➵✉ gδ (x) ✈➔ f (x) ❧➔ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ✈î✐ ❞ú
❦✐➺♥ ❝❤➼♥❤ ①→❝ g(x)✳ ◆❣♦➔✐ r❛ t❛ ❣✐↔ t❤✐➳t t❤➯♠ r➡♥❣ ❝→❝ ✤✐➲✉ ❦✐➺♥ ✭✷✳✸✮
✈➔ ✭✷✳✶✼✮ ✤÷ñ❝ t❤ä❛ ♠➣♥✳ ◆➳✉ t❤❛♠ sè ❝❤➾♥❤ ❤â❛ ✤÷ñ❝ ❝❤å♥ ❧➔ K = [γ]
✭[γ] ❧➔ ❦þ ❤✐➺✉ ♣❤➛♥ ♥❣✉②➯♥ ❝õ❛ γ ✮ ✈î✐
E
δ

γ=

1
p+2

✭✷✳✷✶✮

t❤➻ ✤→♥❤ ❣✐→ s❛✉ ✤➙② ✤ó♥❣
f (·) − fδ,K (·)

1+

π2
1 − Eα,1 (−π 2 T α )

2

p

E p+2 δ p+2 .


✭✷✳✷✷✮

❈❤ù♥❣ ♠✐♥❤✳ ❚ø ✭✷✳✶✻✮ ✈➔ ✭✷✳✷✵✮ t❛ ❝â
f (·) − fδ,K (·)


k2π2
(g, Xk )Xk −
1 − Eα,1 (−k 2 π 2 T α )

=
k=1


k=1
K

+

k2π2
(g, Xk )Xk −
1 − Eα,1 (−k 2 π 2 T α )
k2π2
(g, Xk )Xk −
1 − Eα,1 (−k 2 π 2 T α )

k=1



=
k=K+1
K

+
k=1


K

k2π2
(g δ , Xk )Xk
2
2
α
1 − Eα,1 (−k π T )

k=1
K

k=1
K

k=1

k2π2
(g, Xk )Xk
1 − Eα,1 (−k 2 π 2 T α )
k2π2
(g δ , Xk )Xk

2
2
α
1 − Eα,1 (−k π T )

k2π2
(g, Xk )Xk
1 − Eα,1 (−k 2 π 2 T α )

k2π2
(g − g δ , Xk )Xk
2
2
α
1 − Eα,1 (−k π T )
−p

p

(1 + k 2 ) 2 (1 + k 2 ) 2 (f, Xk )Xk
k=K+1

k2π2
+ sup
2 2 α
1 k K 1 − Eα,1 (−k π T )
(K + 1)−p E +

K


(g − g δ , Xk )Xk
k=1

k2π2
1 − Eα,1 (−π 2 T α )

δ.




K

K + 1 t t ữủ



22

1 E,1 ( 2 T )
2
2
2
p+2 p+2 .
1+
E
1 E,1 ( 2 T )

p E +


f (ã) f,K (ã)
=

t ú t ồ p = 0 tt t
ữủ t t f

E t ú t t ữủ t

ổ t ữủ sỹ ở tử ổ ợ tố ở õ
p

C p+2 C số ữ ỵ tr

t r tỹ ữủ

f

H p (0,1)

tữớ
1

ổ ữủ t r trữớ ủ ú t ồ = ( 1 ) p+2
t s ú

f (ã) f,K (ã)
tr õ số D ử tở f

p


D p+2 ,



H p (0,1)

p ồ ữ

t ỳ tr t t ử t
t ú tổ tr t ồ t số

m


(g , Xk )Xk

Pm g =



k=1

K = K(, g ) ừ t

(I PK )g



(I PK1 )g , > 1.




ờ sỷ ữủ tọ
K ừ t t õ s
K

E
( 1)

1
p+2

.




✷✹

❈❤ù♥❣ ♠✐♥❤✳ ❚ø ✭✷✳✸✮ ✈➔ ✭✷✳✷✺✮ t❛ ❝â
PK−1 g − g = (PK−1 − I)g δ − (I − PK−1 )(g − g δ )
(PK−1 − I)g δ − (I − PK−1 )(g − g δ )
✭✷✳✷✼✮

(τ − 1)δ.
▼➦t ❦❤→❝✱ t❛ ❝â


PK−1 g − g =


(g, Xk )Xk
k=K


=
k=K


=
k=K

1 − Eα,1 (−k 2 π 2 T α )
(f, Xk )Xk
k2π2
1 − Eα,1 (−k 2 π 2 T α )
2 −p
2 p
2 (1 + k ) 2 (f, X )X
(1
+
k
)
k
k
k2π2

1 − Eα,1 (−k 2 π 2 T α )
2 −p
sup
(1

+
k
)2E
2π2
k
k K
E
.
K p+2
❚ê ❤ñ♣ ❝→❝ ✤→♥❤ ❣✐→ ✭✷✳✷✼✮ ✈➔ ✭✷✳✷✽✮ t❛ ✤↕t ✤÷ñ❝
(τ − 1)δ

E
.
K p+2

✭✷✳✷✽✮

✭✷✳✷✾✮

✣✐➲✉ ♥➔② ❦➨♦ t❤❡♦ r➡♥❣

K

E
(τ − 1)δ

1
p+2


.

❇ê ✤➲ ✤÷ñ❝ ❝❤ù♥❣ ♠✐♥❤✳

✷✳✷✳✺ ✣à♥❤ ❧þ✳ ✭❬✹❪✮ ●✐↔ sû fδ,K (x) ❧➔ ♥❣❤✐➺♠ ❝❤➾♥❤ ❤â❛ ❝õ❛ ❜➔✐ t♦→♥

✭✷✳✶✮✲✭✷✳✷✮

✈î✐ ❞ú ❦✐➺♥ ❜à ♥❤✐➵✉ gδ (x) ✈➔ f (x) ❧➔ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ✈î✐ ❞ú
❦✐➺♥ ❝❤➼♥❤ ①→❝ g(x)✳ ◆❣♦➔✐ r❛ t❛ ❣✐↔ t❤✐➳t t❤➯♠ r➡♥❣ ❝→❝ ✤✐➲✉ ❦✐➺♥ ✭✷✳✸✮
✈➔ ✭✷✳✶✼✮ ✤÷ñ❝ t❤ä❛ ♠➣♥✳ ◆➳✉ t❤❛♠ sè ❝❤➾♥❤ ❤â❛ K ✤÷ñ❝ ❝❤å♥ ❧➔ ♥❣❤✐➺♠
❝õ❛ ✭✷✳✷✺✮ t❤➻ t❛ ❝â ✤→♥❤ ❣✐→ s❛✉
f (·) − fδ,K (·)

2

p

CE p+2 δ p+2 ,

✭✷✳✸✵✮


✷✺

tr♦♥❣ ✤â
p
−2
π2
π 2 (τ + 1)

p+2
p+2 .
+
C=(
)


1)
1 − Eα,1 (−π 2 T α )
1 − Eα,1 (−π 2 T α )

❈❤ù♥❣ ♠✐♥❤✳ ❚ø ❜➜t ✤➥♥❣ t❤ù❝ t❛♠ ❣✐→❝ ❝õ❛ ❝❤✉➞♥✱ t❛ ❝â
f (·) − fδ,K (·)

✭✷✳✸✶✮

f (·) − fK (·) + fK (·) − fδ,K (·) ,
k2 π2
2 2 α gk Xk ✳
α,1 (−k π T )

tr♦♥❣ ✤â fk = ΣK
k=1 1−E

❚r÷î❝ ❤➳t✱ t❛ ✤→♥❤ ❣✐→ sè ❤↕♥❣

t❤ù ♥❤➜t ð ✈➳ ♣❤↔✐ ❝õ❛ ✭✷✳✸✶✮✳ ❉➵ t❤➜② r➡♥❣


f (·) − fK (·)


H p (0,1)

=

f k Xk
k=K+1

H p (0,1)



(1 + k 2 )p fk2

=

1
2

✭✷✳✸✷✮

E.

k=K+1

❙û ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ t❛♠ ❣✐→❝ ✈➔ ✭✷✳✷✺✮ t❛ ❝â

Af − AfK = (I − PK )g
(I − PK )g δ + (I − PK )(g − g δ )
(I − PK )g δ + (I − PK )(g − g δ )

✭✷✳✸✸✮

(τ + 1)δ.
❑➳t ❤ñ♣ ✈î✐ ✤→♥❤ ❣✐→ ✭✷✳✶✾✮ t❛ ❝â

f (·) − fK (·)

π2
1 − Eα,1 (−π 2 T α )

p
p+2

2

p

E p+2 ((τ + 1)δ) p+2 .

✭✷✳✸✹✮

❚✐➳♣ t❤❡♦ t❛ ✤→♥❤ ❣✐→ sè ❤↕♥❣ t❤ù ❤❛✐ ð ✈➳ ♣❤↔✐ ❝õ❛ ✭✷✳✸✶✮✳ ❚❤❡♦ ▼➺♥❤
✤➲ ✷✳✶✳✺ ✈➔ ❇ê ✤➲ ✷✳✷✳✹ t❛ ❝â


×