SỞ GD&ĐT BẮC NINH
TRƯỜNG THPT HÀN THUYÊN
ĐỀ THI THỬ THPT QUỐC GIA LẦN I
NĂM HỌC 2015 – 2016
MÔN : TOÁN 12
Thời gian làm bài: 180 phút, không kể thời gian phát đề
(Đề thi có 01 trang)
Câu 1 (1,0 điểm). Cho hàm số y
2 x 3
. Khảo sát sự biến thiên và vẽ đồ thị hàm số.
x2
Câu 2 (1,0 điểm). Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y x3 3x 2 4 trên đoạn 2;1 .
Câu 3 (1,0 điểm). Giải phương trình 2sin x 1
3 sin x 2 cos x 1 sin 2 x cos x
Câu 4 (1,0 điểm).
a) Tìm số nguyên dương n thỏa mãn An2 3Cn2 15 5n .
20
1
b) Tìm số hạng chứa x trong khai triển P x 2 x 2 , x 0.
x
5
4 5
Câu 5 (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, với A 2;5 , trọng tâm G ; ,
3 3
tâm đường tròn ngoại tiếp I 2; 2 . Viết phương trình đường thẳng chứa cạnh BC.
Câu 6 (1,0 điểm).
sin cos
4 cot 2 .
sin cos
b) Nhà trường tổ chức tham quan dã ngoại cho 10 thành viên tiêu biểu của Câu lạc bộ Toán học và 10
a) Cho tan 2 . Tính giá trị của biểu thức: P
thành viên tiêu biểu của Câu lạc bộ Tiếng Anh. Trong một trò chơi, ban tổ chức chọn ngẫu nhiên 5
thành viên tham gia trò chơi. Tính xác suất sao cho trong 5 thành viên được chọn, mỗi Câu lạc bộ có ít
nhất 1 thành viên.
Câu 7 (1,0 điểm). Cho hình chóp S. ABCD, có đáy ABCD là hình chữ nhật với AD 2 AB 2a. Tam
giác SAD là tam giác vuông cân tại đỉnh S và nằm trên mặt phẳng vuông góc với mặt đáy ABCD .
Tính thể tích khối chóp S. ABCD và khoảng cách giữa hai đường thẳng SA và BD,
Câu 8 (1,0 điểm). Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD, có AD 2 AB. Điểm
31 17
H ; là điểm đối xứng của điểm B qua đường chéo AC . Tìm tọa độ các đỉnh của hình chữ nhật
5 5
ABCD , biết phương trình CD : x y 10 0 và C có tung độ âm.
8 x3 y 2 y y 2 2 x
Câu 9 (1,0 điểm). Giải hệ phương trình
y 2 1 2 x 1 8 x3 13 y 2 82 x 29
Câu 10 (1,0 điểm). Cho các số thực x, y, z thỏa mãn x 2, y 1, z 0. Tìm giá trị lớn nhất của biểu
thức: P
1
2 x 2 y 2 z 2 2 2 x y 3
1
.
y x 1 z 1
----------- Hết ---------Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.