Tải bản đầy đủ (.pptx) (11 trang)

AAE556 Lecture 33 Vg Method revisited

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (124.25 KB, 11 trang )

AAE556
Lecture 33
V-g Method revisited

Purdue Aeroelasticity

1


Final EOM’s for forced response

h 
Fo
A   + B θ =
mb
b

ω is known because we pre-select it

ω Lh
2
2
A=−
− ω + ωh
µ
2

ω
B = −ω xθ −
µ
2



2


1
 
 Lα −  2 + a  Lh 

 

2

Purdue Aeroelasticity


Moment equilibrium equation

h 
D  ÷+ Eθ = 0
b
2
2
ω
ω
1

2
D = −ω xθ −
Mh +
Lh  + a 

µ
µ 2

2
2
ω
1
ω


E = −ω 2 rθ2 + ωθ2 rθ2 +
Mh + a −

µ
2
 µ
2
ω2  1
 ω
1

+
Lα  + a  −
Lh  + a 
µ
2
 µ
2



2

3
Purdue Aeroelasticity


Theodorsen’s method
The system is self-equilibrating

h 
Fo
A  ÷+ Bθ =
=0
mb
b

ω Lh ω ω
=− 2 − 2 +
ω µ ω ω
2

ATM

BTM

2

ω2
ω2
= − 2 xθ −

2
ω
µω

2
h
2


1
 
 Lα −  2 + a ÷Lh 

 

4

Purdue Aeroelasticity


Moment equilibrium equation

h 
D  ÷+ Eθ = 0
b
ω
ω
ω
1


= − 2 xθ −
Mh +
L
+ a÷
2
2 h
ω
µω
µω
2

2

DTM
ETM

2

2

2
ω 2 2 ωθ2 2 ω 2
1
 ω
= − 2 rθ + 2 rθ + 2 M h  + a ÷− 2 M α
ω
ω
ω µ
2
 ω µ

2

ω
1
 ω
1

+ 2 Lα  + a ÷− 2 Lh  + a ÷
ω µ 2
 ω µ 2

2

2

5
Purdue Aeroelasticity


Eigenvalue Equation of Motion #1
2
 h 
h
h
ω
1
 
2
2
2

−ω
− ω xθθ + ωh −
 Lh +  Lα −  + a ÷Lh  θ
b
b µ  b 
2
 
Divide by ω


÷= 0


2

ωh2 h 1  h 
h
1
 
− − xθ θ + 2 −  Lh +  Lα −  + a ÷Lh  θ
b
ω b µ b 
2
 


÷= 0


Include structural damping


 ωh2 
h
h 1 h 
1
 
− − xθ θ +  2 ÷( 1 + ig ) −  Lh +  Lα −  + a ÷Lh  θ
b
b µ b 
2
 
ω 
6
Purdue Aeroelasticity


÷= 0



Equation #2, moment equilibrium
2



h
ω
h
2
2 2

2 2
−ω xθ  ÷− ω rθ θ + ωθ rθ θ −
 M θθ θ + M θ h ÷ = 0
µ 
b
b
2

M θθ

1

1

= M α −  + a ( Lα + M h ) +  + a  Lh
2

2

Divide by ω

Mθ h

1 1

= −  + a ÷Lh
2 2


2


h  2
ωθ2 2
1
h
− xθ  ÷− rθ θ + 2 rθ θ −  M θθ θ + M θ h ÷ = 0
ω
µ
b
b
Include structural damping

h  2
ωθ2
1
h
2
− xθ  ÷− rθ θ + 2 ( 1 + ig ) rθ θ −  M θθ θ + M θ h ÷ = 0
ω
µ
b
b
7
Purdue Aeroelasticity


Matrix equations
 ωh2  h 1  h 
 ωθ2 
h

1
 
− − xθ θ +  2 ÷( 1 + ig )  2 ÷ −  Lh +  Lα −  + a ÷Lh  θ
b
2
 
ω 
 ωθ  b µ  b 


÷= 0


h  2
ωθ2
1
h
2
− xθ  ÷− rθ θ + 2 ( 1 + ig ) rθ θ −  M θθ θ + M θ h ÷ = 0
ω
µ
b
b
2




ω
h

2
0
 ωθ 
 2 ÷
 h b   1
−  2 ÷( 1 + ig )  ωθ 
   + x
ω


2
 0
 θ   θ
r
θ 



1  Lh
+ 
µ
 M θ h

xθ  h 
b
2
rθ   θ 
 



1
   h 
L

+
a
÷Lh    b  0 
 α 2

    =  

0 
θ





M θθ

8

Purdue Aeroelasticity


The eigenvalue problem
 ωh2 

ω 
 2 ÷ 0  h b   1

−
 + 
÷( 1 + ig )  ωθ 

ω 
θ   xθ
2
 0

rθ 

2
θ
2


1  Lh
+ 
µ
 M θ h
 ωθ2 

0

h   ω 2 ÷
  1
Ω 2  b  =  h 
 x



1
 θ   0
 θ

rθ 2  


xθ   h 
b
2
rθ   θ 
 


1
   h 
L

+
a
÷Lh    b  = 0 
 α 2

     

0
  θ   
M θθ



xθ  1  Lh
+
rθ 2  µ 
 M θ h


1
    h 
 Lα −  2 + a ÷Lh     b 

   

   θ 
M θθ

9
Purdue Aeroelasticity


Another look at it
This should be easy for a 6

 ωθ2 

0

h   ω 2 ÷
  1
Ω 2  b  =  h 
 x



1
 θ   0
 θ

rθ 2  



xθ  1  Lh
+
rθ 2  µ 
 M θ h

th

grader with MATLAB


1
    h 
 Lα −  2 + a ÷Lh     b 

   

   θ 
M θθ

  ωθ2   Lh   ωθ2  

Lα Lh  1
  
−  + a ÷÷ 
1 + ÷  2 ÷ xθ +
h    ωh 2 ÷
µ   ωh  
µ µ 2
     h 


2

b
Ω  b=
 
1 

Mθ h 
1  2 M θθ 
 θ   
 θ 


x
+
r
+
÷
2  θ
  rθ 2  θ

µ ÷
r
µ
 


θ 

10
Purdue Aeroelasticity


The flutter problem – a complex eigenvalue with flutter frequency and airspeed
unknown

a = elastic axis location (shear center)

ωh

= bending-torsion frequency ratio
ωθ
S
xθ = θ
= dimensionless static unbalance
mb
rθ = dimensionless radius of gyration about SC
µ =density ratio
ω = frequency
k=reduced frequency


11
Purdue Aeroelasticity



×