Tải bản đầy đủ (.pdf) (8 trang)

AAE556 HW 5 orientation affects aileron effectiveness

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (117 KB, 8 trang )

Problem Set #5
Problem 5.1 - Solution



The purpose of this problem is to
principal bending stiffness axis



principal torsional stiffness axis

θ

Λ
aile

principal axes

V

γ

φ

illustrate how tailoring of the wing

K

Vco


orientation affects

aileron effectiveness. The idealized
model to used is identical to that used



in Section 3.11: an aileron is added to
line of aero centers

the semi-span as shown in the figure.

ron

Preliminaries

reference axis
wing-fuselage junction

The load-deflection relationship is:

φ

[Kij ]θ  = Mφθ 
M

with

  Kφ


cos 2 γ + sin 2 γ 



  Kθ
 K ij  = Kθ  K ij  = Kθ 
  Kφ − 1 sin γ cos γ 


  K


  θ

  Kφ


− 1 sin γ cos γ  
 


  Kθ


 Kφ

2
2
sin γ + cos γ 



 Kθ


Without bending and twisting, the lift per unit length along the line of aerodynamic centers due to control
surface deflection, δ 0 is:

l ( y ) = ( q cos 2 Λ ) cclδ δ o

The pitching moment per unit length (positive nose-up or leading edge up) about the line of aerodynamic
centers is

mac = ( q cos 2 Λ ) c 2 cmδ δ o

With bending and twisting deformation included, the lift per unit span length, constant along the span is

(

l ( y ) = ( qc cos 2 Λ ) clδ δ o + ao (θ − φ tan Λ )

)

where a0 = clα . The twisting moment per unit span length along the wing reference axis is:

(

mac = ( qn c ) ccmδ o + eclδ δ o + eao (θ − φ tan Λ )

1


)


Integrating along the wing span, the total wing lift due to the aileron deflection is given by

L flex = qn Sao (θ − φ tan Λ ) + qn Sclδ δ o
 cl
L flex = Q (θ − φ tan Λ ) + Q  δ
 ao

Q = ( q cos 2 Λ ) Sao = qn Sao


δo


Summing moments about the wing root and the spanwise reference axis by integrating Eqns. 5 and 6
along the wing span, the following matrix equation for static equilibrium results:

 K11
 K21



K12 φ 
  = qnSea0δ 0  c
l
K22 θ 
 δ
 a0



b

a 0 2e
 c1 
=
Qe

 δ 0

c c mδ 
c2 
1 +

e cl 

δ 

 cl
c1 =  δ
 ao

   c   cmδ
 1 +   
   e   clδ

cl

δ


where

 b 
 
  2e 

 cl
c2 =  δ
 ao


bQ tan Λ 

K11 = Kθ  Kˆ 11 +
Kθ 2 


Q
K12 = Kθ  Kˆ12 − b 2 

Kθ 

bQ e

K21 = Kθ  Kˆ 21 +
tan Λ 

Kθ b



bQ e 

K22 = Kθ  Kˆ 22 −

Kθ b 
Solving for θ and

φ

2


 




Qeδ 0
( K 22c1 − K12c2 )

Qeδ 0
θ=
( − K 21c1 + K11c2 )



Qb   ˆ e Kˆ 21   Kˆ 22 ˆ e 
∆ = Kθ2  Kˆ 11 Kˆ 22 − Kˆ 12 Kˆ 21 −
−

− K12  tan Λ  
  K11 −



Kθ  
b 2   2
b



φ=

(

)

(The determinant is computed in part(a) below)
(a) Show that the divergence dynamic pressure parameter is





⌢ ⌢
⌢ ⌢
 Kθ   e  1 
K11 K 22 − K 21 K12

qD = 



 

2

K 21  K 22 e ⌢ 
 Sao e   b  cos Λ    e ⌢
K −

− K tan Λ  
  b 11 2  2 b 12 



The divergence dynamic pressure is obtained from setting the determinant to zero:

∆ = K11 K 22 − K 21 K12 = 0


Qb tan Λ   ˆ
Qb e 
1 Qb   ˆ
Qb e
2
∆ = Kθ2  Kˆ 11 +
tan Λ  = 0
  K 22 −
 − Kθ  Kˆ 12 −
  K 21 +

Kθ 2  
Kθ b 
2 Kθ  
Kθ b





1 Qb   ˆ
Qb tan Λ   ˆ
Qb e   ˆ
Qb e
tan Λ  = 0
 Kˆ 11 +
  K 22 −
 −  K12 −
  K 21 +
Kθ 2  
Kθ b  
2 Kθ  
Kθ b


2

Q b e ˆ QD b tan Λ  QD b  tan Λ e
+ K 22
−
Kˆ 11 Kˆ 22 − Kˆ 11 D


Kθ b

2
 Kθ  2 b
2

Q be
1 QDb  QD b  e tan Λ
− Kˆ 12 Kˆ 21 − Kˆ 12 D
+
=0
tan Λ + Kˆ 21

Kθ b
2 Kθ  K θ  b 2

(

Q b
e Kˆ  Q b  Kˆ
e
Kˆ 11 Kˆ 22 − Kˆ 12 Kˆ 21 − D  Kˆ 11 − 21  + D  22 − Kˆ 12  tan Λ = 0
Kθ 
b
2  Kθ  2
b

QD b
=


 ˆ e
 K11 −
b


)

( Kˆ

11

Kˆ 22 − Kˆ 12 Kˆ 21

)

Kˆ 21   Kˆ 22 ˆ e 
− K12  tan Λ
 −
2   2
b

which yields:

3








 Kθ   e   c   1  


qD = 


  

2

 Sao e   c   b   cos Λ     ⌢  e   c  K 21   ⌢  e   c  K 22 
+ K

K

t an Λ  
   11  c   b  2   12  c   b  2 



The parameter qo = Kθ/Seao is the divergence dynamic pressure for the unswept wing.
If the wing were rigid, the lift produced by the aileron deflection would be

(

)

2


Lrigid = qScl cos Λ δ 0 = Q
δ

cl

δ

a0

δ0

The flexible wing lift is:

 cl
L flex = Q (θ − φ tan Λ ) + Q  δ
 ao


δo


Substituting the relationships for the displacements:

L flex =

 
 ∆ 
 




  c   cm   
  c   cm   
 
 b 
 b 
δ
   − Qe  K 22   − K12  1 +    δ    tan Λ + ∆ 
  Qe  − K 21   + K11 1 +   
 

 



 2e 
 2e 
  
  e   clδ   
  e   clδ   




Qδ 0  clδ   
1
 e    c   cmδ   
1
 e    c   cm   

=
  − Qb  K 22   − K12   1 +    δ    tan Λ + ∆ 
  Qb  − K 21   + K11   1 +   

∆  ao   

2
 b    e   clδ   
2
 b    e   clδ   

 


L flex =

L flex

 clδ
Qδ 0 
 Qe ( − K 21c1 + K11c2 ) − Qe ( K 22c1 − K12c2 ) tan Λ + 
∆ 
 ao
Qδ 0  clδ

∆  ao



Qb  ˆ e Kˆ 21  Kˆ 22 ˆ e 

with ∆ = Kθ2  Kˆ 11 Kˆ 22 − Kˆ 12 Kˆ 21 −
−
− K12  tan Λ  
 K11 −







L flex 
  cl 
 Q  δ  δ 0
  ao 

(

)

Kθ 

b

2

 2

b






  




 =  Qb  − K  1  + K  e  1 +  c   cmδ    − Qb  K  1  − K  e   1 +  c   cmδ
21 

11  


22 

12  
 
  

2
 b    e   clδ   
 2e 
 b    e   clδ

  




Qb  ˆ e Kˆ 21  Qb  Kˆ 22 ˆ e 
+ Kθ2  Kˆ 11 Kˆ 22 − Kˆ 12 Kˆ 21 −
K11 −
+
− K12  tan Λ 





Kθ 
b 2  Kθ  2
b



(

)

4


 
   tan Λ 


  




  e   c   cm
= qn Sao b  Kθ      δ
  b   e   cl
qn Saoδ 0  clδ 
 δ

 
∆  ao 
L flex


Kθ2
Kˆ 11 Kˆ 22 − Kˆ 12 Kˆ 21
 Kˆ 11 + Kˆ12 tan Λ +

q
Sa
b
n
o


(

)

(




) 



qn Sao b   e   c   cmδ  ˆ
  
K11 + Kˆ12 tan Λ  + Kˆ11 Kˆ 22 − Kˆ 12 Kˆ 21


Kθ   b   e   clδ 
L flex


=
qn Sclδ δ 0 

Qb   ˆ e Kˆ 21   Kˆ 22 ˆ e 
−
− K12  tan Λ  
 Kˆ 11 Kˆ 22 − Kˆ 12 Kˆ 21 −
  K11 −



2   2
Kθ  
b
b




(

(

L flex
qn Sclδ δ 0

=

L flex
Lrigid

=

) (

)

)

qn Scao  cmδ

Kθ  clδ
 ˆ ˆ
 K11 K 22 − Kˆ 12 Kˆ 21


(


)


 Kˆ 11 + Kˆ 12 tan Λ + Kˆ 11 Kˆ 22 − Kˆ 12 Kˆ 21

q Sa e 
b ˆ

− n o  Kˆ11 + Kˆ12 tan Λ −
K 21 + Kˆ 22 tan Λ  
2e
Kθ 


(

) (

(

)

)

(

)

The answer is


qn Scao  cmδ  ˆ

 K + Kˆ12 tan Λ
Kθ  clδ  11
1+
Kˆ 11 Kˆ 22 − Kˆ 12 Kˆ 21

(

L flex
qn Sclδ δ 0

=

L flex
Lrigid

=

(

(

)

)

)


(

)

b ˆ

 ˆ

ˆ
ˆ
 q Sa e  K11 + K12 tan Λ − 2e K 21 + K 22 tan Λ  

1 − n o 
ˆ
ˆ
ˆ
ˆ


K11 K 22 − K12 K 21






(

)


or
qn Scao  cmδ

Kθ  clδ

1+
L flex
qn Sclδ δ 0

=

L flex
Lrigid

=



 q Sa e 
1 − n o 





(


 Kˆ 11 + Kˆ12 tan Λ




b ˆ

Kˆ 11 + Kˆ12 tan Λ −
K 21 + Kˆ 22 tan Λ  
2e







(

)

)

Reversal occurs when

5

(

)





Kˆ 11 Kˆ 22 − Kˆ 12 Kˆ 21
 Kθ   e   1  
qR = − 
 

2
 Seao   c   cos Λ    cmδ  ˆ
K + Kˆ 12 tan Λ
  cl  11
 δ 

(

)

(

)












 Kθ   e   1  
qR = − 
 

2
 Seao   c   cos Λ    cmδ
  cl
 δ







ˆ
ˆ
K11 + K12 tan Λ









 Kθ   e   1  
qR = − 
 


2
 Seao   c   cos Λ    cmδ
  cl
 δ






   Kφ


   Kφ

2
2
cos γ + sin γ  +  
− 1 sin γ cos γ  tan Λ 
 

K
K
θ
θ












(

)



This last answer is due to the fact that the determinant of the stiffness matrix does not depend on the
structural angle. We can see this by doing the following calculations.

  Kφ

cos 2 γ + sin 2 γ 

  Kθ

 K ij  = Kθ 
  Kφ − 1 sin γ cos γ 


  K
θ







  Kφ


− 1 sin γ cos γ  
 


  Kθ


 Kφ

2
2
sin γ + cos γ 


 Kθ


2
 K
 
  Kφ
   Kφ


φ
2
2
2
2
∆ = Kθ  
cos γ + sin γ  
sin γ + cos γ  −  
− 1 sin γ cos γ  
  Kθ

K
θ






 

2

 Kφ 2



2
2
4

4
2
2

= Kθ 
cos
γ
sin
γ
+
cos
γ
+
sin
γ
+
c
o
s
γ
sin
γ

K


 θ 

2


 Kφ 2


2
2
2
2
2
2

γ
γ
γ
− Kθ 
s
i
n
γ
co
s
γ
+
2
sin
cos

sin
cos
γ



 Kθ 

K

= Kθ2  φ ( cos 4 γ + 2 sin 2 γ cos 2 γ + sin 4 γ )  = Kθ Kφ
 Kθ

2

(e)Plot aileron reversal dynamic pressure for wing sweep angles 0o, 30o and -30o as a function of
structural sweep angle, γ, with:

6





= 2;

b
e
= 6; = 0.10;
c
c

flap − to − chord − ratio E = 0.15; qDo =



= 250 lb / ft 2
Seao

(f)Plot aileron reversal dynamic pressure as a function of sweep angle for the range -30o<Λ<30o for
the same structural and aileron parameters as in part (e) for two value of structural axis orientation,
γ=10o and γ=-10o.

7


(g)Plot aileron effectiveness with




=2

b
e
= 6 = 0.10 E = 0.15 γ = 10o and γ = −10o as
c
c

a function of dynamic pressure with wing sweep of 30 degrees. At what value of dynamic pressure is
aileron reversal dynamic pressure a maximum? Is there a maximum?

8




×