Tải bản đầy đủ (.pdf) (28 trang)

PHÂN LẬP VÀ THIẾT KẾ VECTOR ỨC CHẾ BIỂU HIỆN GEN MÃ HÓA ENZYME INVERTASE (FRUCTOFURANOSIDASE) NHẰM TĂNG TRỮ LƢỢNG SUCROSE Ở CÂY MÍA

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (745.42 KB, 28 trang )

ĐẠI HỌC THÁI NGUYÊN

ĐẠI HỌC THÁI NGUYÊN

TRƢỜNG ĐẠI HỌC SƢ PHẠM
-------

TRƢỜNG ĐẠI HỌC SƢ PHẠM
-------

LƢU THỊ CƢ

LƢU THỊ CƢ

PHÂN LẬP VÀ THIẾT KẾ VECTOR ỨC CHẾ BIỂU HIỆN GEN

PHÂN LẬP VÀ THIẾT KẾ VECTOR ỨC CHẾ BIỂU HIỆN GEN

MÃ HÓA ENZYME INVERTASE (-FRUCTOFURANOSIDASE)

MÃ HÓA ENZYME INVERTASE (-FRUCTOFURANOSIDASE)

NHẰM TĂNG TRỮ LƢỢNG SUCROSE Ở CÂY MÍA

NHẰM TĂNG TRỮ LƢỢNG SUCROSE Ở CÂY MÍA

LUẬN VĂN THẠC SỸ SINH HỌC

LUẬN VĂN THẠC SỸ SINH HỌC

Chuyên ngành: Di truyền học


Mã số: 60.42.70

NGƢỜI HƢỚNG DẪN KHOA HỌC: TS. LÊ QUỲNH LIÊN

Thái Nguyên – 2009

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

Thái Nguyên – 2009



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




LỜI CẢM ƠN
LỜI CAM ĐOAN
Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số
liệu, kết quả nghiên cứu trong luận văn là trung thực và chƣa từng có ai công
bố trong bất kỳ một công trình nào khác.

Lời đầu tiên tôi xin đƣợc bày tỏ lòng biết ơn sâu sắc tới TS. Lê Quỳnh
Liên, Phòng Công nghệ Tế bào Thực vật, Viện Công nghệ Sinh học, Viện
Khoa học và Công nghệ Việt Nam, là ngƣời thầy đã tận tình hƣớng dẫn, chỉ
bảo, dìu dắt và giúp đỡ tôi trong suốt thời gian tôi thực hiện và hoàn thành

Tác giả


luận văn này.
Tôi xin đƣợc bày tỏ lòng biết ơn sâu sắc tới GS.TS. Lê Trần Bình, TS.
Chu Hoàng Hà, KS. Đỗ Tiến Phát Phòng Công nghệ Tế bào Thực vật, Viện

Lưu Thị Cư

Công nghệ Sinh học, là những ngƣời đã tận tình chỉ bảo, truyền đạt nhiều
kinh nghiệm quý báu và giúp đỡ tôi trong suốt thời gian thực tập và hoàn
thành luận văn. Trong thời gian thực tập nghiên cứu tôi cũng đã nhận đƣợc sự
hỗ trợ nhiệt tình và những ý kiến đóng góp bổ ích của các cô chú, các anh chị,
các bạn trong Phòng Công nghệ Tế bào Thực vật, Viện Công nghệ Sinh học.
Tôi xin chân thành cảm ơn sự giúp đỡ quý báu đó.
Tôi xin gửi lời cảm ơn chân thành tới các thầy cô giáo trong khoa SinhKTNN và khoa Sau đại học, trƣờng Đại học Sƣ phạm Thái Nguyên đã hƣớng
dẫn, truyền đạt kiến thức cho tôi trong suốt quá trình học tập và nghiên cứu.
Tôi cũng vô cùng cảm ơn những tình cảm tốt đẹp của những ngƣời thân
trong gia đình, đồng nghiệp và bạn bè đã luôn dành cho tôi, động viên và tạo
mọi điều kiện tốt nhất cho tôi trong suốt thời gian học tập, nghiên cứu.
Thái Nguyên, ngày 25 tháng 09 năm 2009
Học viên

Lưu Thị Cư

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên





2.2.6. Tái sinh mía thông qua mô sẹo ...................................................................... 21

MỤC LỤC
Trang

2.2.7. Thử nghiệm chuyển gen gus-intron vào cây mía ....................................... 22

MỞ ĐẦU 1

NỘI DUNG NGHIÊN CỨU: ...................................................................................... 2

Chƣơng 1. TỔNG QUAN TÀI LIỆU ..................................................................... 3

Chƣơng 3. KẾT QUẢ VÀ THẢO LUẬN ........................................................... 24

1.1. VAI TRÒ VÀ TẦM QUAN TRỌNG CỦA CÂY MÍA ................................ 3

3.1. THIẾT KẾ MỒI ................................................................................................... 24

1.1.1. Sơ lƣợc về cây mía ............................................................................................. 3

3.2. TÁCH RNA TỔNG SỐ ...................................................................................... 25

1.1.2. Tình hình sản xuất mía ở Việt Nam ................................................................ 4

3.3. NHÂN DÒNG ĐOẠN GEN MÃ HÓA ENZYME INVERTASE ............ 27

1.2. SINH TỔNG HỢP SUCROSE ........................................................................... 5


3.4. TÁCH DÒNG GEN VÀ XÁC ĐỊNH TRÌNH TỰ GEN ............................. 28

1.3. VẬN CHUYỂN SUCROSE TRONG TẾ BÀO .............................................. 8

3.4.1. Tạo plasmid tái tổ hợp INV-pENTR ............................................................ 28

1.5. ỨC CHẾ BIỂU HIỆN GEN BẰNG PHƢƠNG PHÁP RNAi (RNA

3.4.2. Biến nạp plasmid tái tổ hợp INV_pENTR vào tế bào khả biến

INTERFERENCE) .................................................................................... 10

E.coli TOP 10 ............................................................................................ 28

1.5.1. Nguồn gốc RNAi .............................................................................................. 10

3.4.3. Chọn lọc plasmide tái tổ hợp INV_pENTR bằng PCR ............................. 29

1.5.2. Cơ chế gây bất hoạt gen .................................................................................. 10

3.4.4. Kết quả xác định trình tự nucleotit ................................................................ 31

®

1.6. KỸ THUẬT GATEWAY ............................................................................... 12

3.5. THIẾT KẾ VECTOR TÁI TỔ HỢP INV-RNAi........................................... 31

1.7. NGHIÊN CỨU VỀ TÁI SINH VÀ CHUYỂN GEN Ở CÂY MÍA ........... 14


3.5.1. Tạo vector tái tổ hợp INV_RNAi bằng kỹ thuật Gateway ....................... 31

Chƣơng 2. NGUYÊN LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU ........... 16

3.5.2. Biến nạp vector INV_RNAi vào tế bào khả biến E.coli ........................... 32

2.1. NGUYÊN LIỆU ................................................................................................... 16

3.6. BIẾN NẠP VECTOR CHUYỂN GEN INV_RNAi VÀO CHỦNG

2.1.1. Nguyên liệu thực vật ........................................................................................ 16

VI KHUẨN A.TUMEFACIENS CV58C1. .......................................... 34

2.1.2. Các chủng plasmid và enzyme ....................................................................... 16

3.7. TÁI SINH VÀ BƢỚC ĐẦU BIỂU HIỆN GEN GUS Ở MÍA ................... 35

2.1.3. Hóa chất khác .................................................................................................... 16

3.7.1. Quy trình tái sinh mía thông qua mô sẹo ..................................................... 35

2.1.3. Các thiết bị máy móc ....................................................................................... 17

3.7.3. Chọn lọc mô sẹo và tái sinh cây chuyển gen ............................................... 37

2.2. PHƢƠNG PHÁP ................................................................................................. 17

KẾT LUẬN VÀ ĐỀ NGHỊ ..................................................................................... 40


2.2.1. Thiết kế mồi....................................................................................................... 17

TÀI LIỆU THAM KHẢO ....................................................................................... 42

2.2.2. Tách RNA tổng số ............................................................................................ 18
2.2.3. RT-PCR .............................................................................................................. 18
2.2.4. Tách dòng và xác định trình tự gen ............................................................... 19
2.2.5. Thiết kế vector tái tổ hợp INV-RNAi ........................................................... 20

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




NHỮNG CHỮ VIẾT TẮT

DANH MỤC CÁC BẢNG

AS

Acetosyringone

A.tumefaciens

Agrobacterium tumefaciens


BAP

6-Benzyl Amino Purine (Benzyladeninpurin)

Bảng 2.1. Các plasmid sử dụng trong thí nghiệm ................................................. 16

bp

Cặp base

Bảng 2.2. Chu kỳ nhiệt cho phản ứng RT-PCR một bƣớc ................................... 18

cDNA

Complementary DNA = DNA bổ sung đƣợc tổng hợp bằng

Bảng 2.3. Chu kỳ nhiệt cho phản ứng PCR ............................................................ 19

khuôn mRNA

Bảng 2.4. Các môi trƣờng tái sinh cây mía ............................................................. 21

cs

Cộng sự

Bảng 3.1. Trình tự và các thông số cần thiết của cặp mồi 3’INV và

DEPC


Diethyl pyrocarbonat

DNA

Deoxyribonucleic Acid

dNTP

deoxynucleosit triphotphat (deoxynucleoside triphosphate)

EDTA

Ethylene diamine tetraacetic acid

EtBr

đEtBrEthiium bromide

E.coli

Escherichia coli

gus

β-glucuronidase

IBA

Indole-3-Butyric Acid


kb

kilo base

LB

Luria and Bertani

MS

Môi trƣờng nuôi cấy theo Murashige và Skoog

NAA

Naphthalene Acetic Acid

OD

Giá trị mật độ quang (optical density)

PCR

Polymerase Chaine Reaction = Phản ứng chuỗi Polymerase

RNA

Ribonucleic Acid

RNase


Ribonuclease

RT-PCR

Reverse Transcriptase-PCR

SDS

Sodium dodecylsulfat

TAE

Tris-acetate-EDTA

Taq

Thermus aquaticus DNA (polymerase)

2,4D

2,4-Dichlorophenoxyacetic Acid

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

Tên bảng

Trang

5’INV .......................................................................................................... 25
Bảng 3.2. Mã số các trình tự đoạn gen Invertase ở mía trên ngân hàng

gen NCBI ................................................................................................... 25
Bảng 3.3. Khả năng tạo mô sẹo và tái sinh ở giống mía ROC10 in vitro
trên các môi trƣờng thử nghiệm M1 - M4. .......................................... 36



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




1

DANH MỤC CÁC HÌNH

MỞ ĐẦU
Trang

Tên hình
Hình 1.1: Chu trình sinh tổng hợp sucrose với sự tham gia của các

Đƣờng là một nhu cầu cần thiết trong đời sống con ngƣời. Theo thống
kê, nhu cầu tiêu thụ đƣờng trên thế giới trung bình tính theo đầu ngƣời là 35

enzyme chính ............................................................................................... 6

kg/1 ngƣời/1 năm. Tại Việt Nam, năm 1994 là 8 kg/1 ngƣời/1 năm, hiện nay

Hình 1.2. Cơ chế gây bất hoạt gen RNAi................................................................ 11


là 15 kg/1 ngƣời/1 năm và dự kiến nhu cầu về đƣờng còn tiếp tục tăng nữa.

Hình 1.3. Sơ đồ mô tả kỹ thuật Gateway ................................................................ 13

Tại các nƣớc nhiệt đới và cận nhiệt đới nhƣ Việt Nam, 75% sản lƣợng

Hình 3.1. Kết quả điện di RNA tổng số tách từ lá và bẹ thân non của 2

đƣờng đƣợc sản xuất từ cây mía. Mía là một trong số ít loài thực vật tích trữ

giống mía ROC1 và ROC10 trên gel agarose 1% ............................... 26

chủ yếu đƣờng sucrose (α-D-glucopyranosyl-1, 2-D-fructofuranose), nguồn

Hình 3.2. Kết quả điện di sản phẩm RT-PCR trên gel agarose 0,8% ................ 27

nguyên liệu ban đầu để sản xuất đƣờng. Do đó, ở Việt Nam mía trở thành

Hình 3.3. Kết quả điện di sản phẩm PCR plasmid với cặp mồi M13

một cây công nghiệp trọng yếu và là cây xóa đói giảm nghèo của chính phủ.

(For/Rev) nhằm kiểm tra sự có mặt của đoạn Invertase trong

Tuy nhiên, các giống mía của Việt Nam có năng suất đƣờng chỉ đạt mức

vector pENTR/D ....................................................................................... 30

trung bình của thế giới. Việc nhập các giống mía cao sản của thế giới kết


Hình 3.4. Kết quả so sánh trình tự đoạn gen Invertase phân lập đƣợc

hợp với phƣơng pháp lai tạo truyền thống chƣa thực sự có hiệu quả trong

với trình tự Invertase trong ngân hàng gen có mã số

việc tạo giống mía có hàm lƣợng đƣờng cao lại phù hợp với điều kiện thổ

AY302083 .................................................................................................. 31

nhƣỡng khí hậu của nƣớc ta. Chọn tạo giống mía có hàm lƣợng đƣờng cao

Hình 3.5. Mô hình cấu trúc chuyển gen INV_RNAi ........................................... 32

bằng công nghệ sinh học có tiềm năng giảm giá thành đƣờng mà không cần

Hình 3.6. Kết quả điện di sản phẩm cắt plasmid INV_RNAi tổ hợp với

tăng diện tích trồng mía và thúc đẩy sự phát triển nền công nghiệp mía

HindIII và XbaI ......................................................................................... 34
Hình 3.7. Điện di sản phẩm PCR plasmid INV-RNAi trong
A.tumefaciens với cặp mồi đặc hiệu 5’INV và 3’INV ....................... 35
Hình 3.8. Quy trình tái sinh mía ROC10 in vitro từ mô sẹo ................................ 37
Hình 3.9. Biến nạp gen gus-intron vào cây mía ROC10 in vitro thông
qua trung gian A.tumefaciens ................................................................. 39

đƣờng tại Việt Nam.
Sinh tổng hợp sucrose là một quá trình phức hợp, trong đó enzyme
Invertase đƣợc xem nhƣ là một chiếc chìa khóa điều chỉnh sự tích lũy lƣợng

sucrose trong cây mía. Nó có vai trò phân hủy sucrose trong tế bào. Vì vậy,
muốn tăng trữ lƣợng sucrose trong cây mía thì phải ức chế đƣợc sự biểu hiện
của gen mã hóa Invertase. Cơ chế gây bất hoạt gen RNAi (RNA-interference)
hiện nay đã trở thành một biện pháp công nghệ hữu hiệu có thể ức chế hoàn
toàn biểu hiện của gen ở động vật, thực vật và cả vi sinh vật [31]. Ở thực vật,

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên





2

3

RNAi có thể đƣợc thực hiện bằng cách chuyển gen có cấu trúc biểu hiện sự

Chƣơng 1

phiên mã cao RNA sense, anti-sense hoặc RNA kẹp tóc bổ sung chính nó mà

TỔNG QUAN TÀI LIỆU

chứa trình tự tƣơng đồng với gen đích.
Với mục tiêu nghiên cứu chọn tạo giống mía có hàm lƣợng đƣờng cao,
chúng tôi chọn đề tài “Phân lập và thiết kế vector ức chế biểu hiện gen mã
hóa enzyme Invertase (β-fructofuranosidase) nhằm tăng trữ lượng sucrose


1.1. VAI TRÕ VÀ TẦM QUAN TRỌNG CỦA CÂY MÍA
1.1.1. Sơ lƣợc về cây mía
Mía (Saccharum L.) thuộc chi mía (Saccharum), họ hòa thảo

ở cây mía”.

(Poaceae), bộ lúa (Poales), lớp một lá mầm (Monocotyledoneae). Chúng là

MỤC TIÊU NGHIÊN CỨU:

những cây có thân to, mập, chia đốt cao từ 2 - 6 m. Các loại thực vật trong chi

Ức chế biểu hiện của Invertase dạng hòa tan nhằm tăng trữ lƣợng

này đa số là các loại cỏ sống lâu năm bao gồm khoảng 6 - 37 loài tùy theo hệ

sucrose ở cây mía.

thống phân loại, sống chủ yếu ở khu vực nhiệt đới và ôn đới trên thế giới [2].

NỘI DUNG NGHIÊN CỨU:

Cây mía chứa hàm lƣợng đƣờng rất cao chiếm khoảng 46% khối lƣợng khô,

1. Phân lập đoạn gen mã hóa cho enzyme Invertase ở cây mía in vitro

trong đó sucrose chiếm tới 80%. Chính vì thế, mía trở thành một trong những
cây công nghiệp quan trọng của ngành công nghiệp sản xuất đƣờng. Ngoài ra,


ROC1
2. Thiết kế đƣợc vector ức chế biểu hiện gen mã hóa Invertase (βfructofuranosidase) ở cây mía.

cây mía còn chứa các chất đạm (protein), chất bột (carbohydrate), chất béo
(lipid), các chất khoáng và các vitamin… vì thế mía còn có tác dụng thanh
nhiệt, giải khát, trợ giúp tiêu hóa, cung cấp năng lƣợng và các chất dinh

3. Nghiên cứu hệ thống tái sinh ở cây mía phục vụ cho mục đích chuyển
gen tiếp theo.

dƣỡng cần thiết cho cơ thể. Theo Đông y, mía là "vị thuốc" dùng để chữa một
số bệnh nhƣ ho khan, đại tiện táo, tiểu tiện bất lợi, đau dạ dày, an thai…
Mía còn là loại cây có tác dụng bảo vệ đất rất tốt, đặc biệt là chống xói
mòn đất cho các vùng đồi trung du. Hơn nữa, mía là cây rễ chùm và phát triển
mạnh trong tầng đất từ 0 - 60 cm (1 ha mía tốt có thể cho 13 - 15 tấn rễ sau
thu hoạch), đây là nguồn chất hữu cơ quý làm tăng độ phì của đất. Phần bã
mía chứa nhiều cellulose có thể dùng làm nguyên liệu đốt lò, hoặc làm bột
giấy, bìa các tông, ép thành ván dùng trong kiến trúc... Sản phẩm cặn bã còn
lại sau khi chế biến đƣờng (bùn lọc) có thể sử dụng để sản xuất nhựa, xêrin,
làm sơn, xi đánh giầy... phế phẩm còn lại dùng làm phân bón rất tốt. Trong
tƣơng lai bã mía còn có thể nguồn nguyên liệu làm bột giấy, làm sợi thay thế

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên





4

5

các loại cây rừng bị giảm đi. Khi mà nguồn nhiên liệu lỏng ngày càng cạn kiệt

TTg của Phó thủ tƣớng Nguyễn Sinh Hùng “Quy hoạch phát triển mía đƣờng

nhƣ hiện nay, một số nƣớc phát triển trên thế giới nhƣ Mỹ, Brazil, Ấn Độ…

đến năm 2010 và định hƣớng đến năm 2020” đƣợc phê duyệt đã đƣa quan

đã bắt đầu sử dụng nhiên liệu sinh học từ cây mía để bổ sung và thay thế. Nhƣ

điểm rõ ràng là: đồng thời với việc nhập khẩu giống mía có năng suất, trữ

vậy, cây mía có vai trò rất quan trọng trong đời sống kinh tế của con ngƣời.

đƣờng cao đƣợc đánh giá tốt phù hợp với Việt Nam thì phải xây dựng hệ

1.1.2. Tình hình sản xuất mía ở Việt Nam

thống viện nghiên cứu và các trung tâm giống mía đủ điều kiện trang thiết bị

Hiện nay có khoảng 200 quốc gia và vùng lãnh thổ trên thế giới trồng
và sản xuất mía đƣờng, sản lƣợng trung bình đạt khoảng 13.246 triệu tấn (gấp
6 lần so với củ cải đƣờng). Ở Việt Nam, mía là cây trồng chủ đạo trong ngành

và năng lực cán bộ để chủ động sản xuất giống tốt, có năng suất, trữ lƣợng

đƣờng cao của Việt Nam, đáp ứng yêu cầu sản xuất [1].
1.2. SINH TỔNG HỢP SUCROSE

công nghiệp đƣờng của cả nƣớc. Dự kiến niên vụ 2009-2010 diện tích mía

Trong lục lạp của mía có enzyme photphoenolpyruvat-cacboxilase hoạt

nguyên liệu cả nƣớc sẽ vào khoảng 290.000 ha, tăng 19.400 ha so với vụ

động rất mạnh. Sản phẩm đầu tiên của quang hợp ở mía là các axit

trƣớc, trong đó diện tích vùng mía nguyên liệu tập trung của các nhà máy là

oxaloaxetic, malic, aspartic đều gồm có bốn nguyên tử cacbon trong phân tử,

221.816 ha với năng suất mía bình quân đạt 55 tấn/ha và sản lƣợng đạt 16

do đó mía đƣợc gọi là thực vật C4 [5]. Chu trình C4 (hay cơ chế Hatch-Slack)

triệu tấn. Cây mía góp phần xóa đói giảm nghèo ở vùng trung du, miền núi ở

là cơ chế có sự chuyên hoá trong việc thực hiện chức năng quang hợp của

nhiều tỉnh nƣớc ta nhƣ: Hòa Bình, Thanh Hóa, Nghệ An, Phú Yên, Bình
Định, Quảng Ngãi [3]... Nhà nƣớc đã hỗ trợ một phần đầu tƣ phát triển cơ sở
hạ tầng giao thông, thủy lợi cho vùng trồng mía tập trung, nghiên cứu chuyển
giao khoa học kỹ thuật và công nghệ nhằm nâng cao năng suất, chất lƣợng,
hiệu quả sản xuất mía đƣờng [1].
Quá trình đô thị hóa, công nghiệp hóa ngày một gia tăng cùng với sự
biến đổi môi trƣờng khí hậu nên diện tích đất trồng trọt có xu hƣớng ngày một

thu hẹp. Hơn nữa, ở nƣớc ta hiện nay có tới trên 60% các giống mía là những
giống cũ nhƣ: ROC1, ROC10, F156, F127… hoặc các dạng lai ghép nội chi
phức tạp. Các giống này có đặc điểm dễ canh tác, thích nghi rộng với nhiều
vùng sinh thái của Việt Nam, nhƣng trữ lƣợng đƣờng rất thấp. Còn lại các
giống mía nhập nội tuy có trữ lƣợng đƣờng cao song không phù hợp với khí
hậu Việt Nam nên năng suất thấp. Chính vì thế, Quyết định số 26/2007/QĐ-

cây C4: một loại lục lạp chuyên trách cố định CO 2, còn một loại lục lạp
chuyên khử CO2 thành các chất hữu cơ cho cây. Vì vậy mà hoạt động quang
hợp của cây C4 có hiệu quả hơn các nhóm thực vật khác và thƣờng cho năng
suất sinh học rất cao.
Sucrose là một disaccharide của glucose (α-D-glucopyranoside) và
fructose (β-D-fructofuranosyl), có công thức phân tử C12H22O11. Đây là sản
phẩm chính của quá trình quang hợp, có vai trò bổ sung năng lƣợng cho quá
trình sinh trƣởng phát triển của thực vật cũng nhƣ các sinh vật sống khác.
Trong cơ thể động vật, sucrose là nguyên liệu tổng hợp glucogen, khi thừa
sẽ chuyển sang dạng mỡ dự trữ. Sucrose tích lũy phần lớn ở các mô của thực
vật, giúp cho thực vật có khả năng thích nghi tốt hơn với các điều kiện bất
lợi của môi trƣờng nhƣ: hạn, lạnh, mặn và cƣờng độ ánh sáng mạnh... [7, 12,
17, 23, 26, 30]. Nó đƣợc tích trữ chủ yếu ở cây mía, củ cải đƣờng và có ở

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên





6

7

trong nhiều loại cây khác nhƣ dứa, chuối, mơ, mận, dƣa hấu, táo, cà rốt…

Thay đổi hoạt tính các enzyme này thƣờng dẫn tới những biến đổi lớn

đây là nguồn nguyên liệu tự nhiên, rất dễ trồng với số lƣợng lớn và giá rẻ.

trong lƣợng sucrose tích lũy trong tế bào thực vật [6, 10, 11, 15, 31, 35]. Các

Sucrose rất dễ hòa tan trong nƣớc, khi bị thủy phân tạo thành glucose và

enzyme liên quan tới chu trình sinh tổng hợp sucrose ở thực vật đã đƣợc

fructose.

nghiên cứu trên nhiều đối tƣợng gồm cả thực vật hai lá mầm và một lá mầm

Sinh tổng hợp sucrose là một chu trình phức tạp diễn ra ở cytosol (tế

[10, 15, 31]. Trong đó, SPS (sucrose 6-phosphatephosphatase) đƣợc coi là

bào chất) trong lá của cây trồng với sự tham gia của nhiều enzyme khác nhau,

enzyme chính của chu trình sinh tổng hợp sucrose ở thực vật, nó xúc tác quá

trong đó một số enzyme chính (key enzyme) có ảnh hƣởng lớn tới lƣợng


trình hình thành sucrose 6-phosphate, cơ chất cho phản ứng tổng hợp các

sucrose đƣợc tổng hợp. Các enzyme này xúc tác cho các dạng phản ứng:

phân tử sucrose [7, 16]. SPS là enzyme có hoạt tính tỉ lệ thuận với sucrose

(1) Tổng hợp sucrose nhƣ sucrose 6-phosphatephosphatase (SPS) hoặc
sucrosesynthase (SS)
(2) Thủy phân sucrose nhƣ β-fructofuranosidase (Invertase)
(3) Vận chuyển các hexose tới tế bào chất và chuyển hóa lại thành sucrose
nhƣ pyrophosphate fructose 6-phosphat 1 phosphostransferase (PFP) [6].
SUCROSE 6’-P
SPS

Invertase

chuyển gen tăng cƣờng biểu hiện SPS thì lƣợng sucrose tăng còn lƣợng tinh
bột giảm trong quá trình quang hợp [33]. Tƣơng tự, cây bông mang gen SPS
của rau bi-na (spinacia oleracea) cũng có tốc độ tổng hợp sucrose cao hơn so
với đối chứng [13]. Ngƣợc lại, khi làm bất hoạt SPS, các dòng cây khoai tây
phân lập từ nhiều loài thực vật khác nhau và cho tới nay ngân hàng gen NCBI

UDP

UDP

đã có thông tin về vài trăm trình tự SPS của các loài thực vật hai lá mầm nhƣ

SS


FRUCTOSE

UDP-GLUCOSE
PPi

GLUCOSE
ATP

UTP
PFP

tỉ lệ thuận với tốc độ tổng hợp và vận chuyển sucrose [16]. Cây cà chua

chuyển gen sẽ giảm trữ lƣợng sucrose [10]. Gen mã hóa cho SPS đã đƣợc

SUCROSE
Pi

trong các mô dự trữ của khoai tây, ngô, cải bó xôi [30]. Ở ngô, hoạt tính SPS

ADP
GLUCOSE 6-P

GLUCOSE 1-P

Pi
ADP

khoai tây, thuốc lá, rau bi-na, củ cải đƣờng; cây một lá mầm nhƣ lúa, ngô, mía
và cả tảo lam [9, 10, 13, 14, 21, 27, 31, 33]. Liên quan chặt chẽ với SPS trong

chu trình sinh tổng hợp sucrose là enzyme thủy phân sucrose - Invertase (βfructofuranosidase). Khi hoạt tính của Invertase cao thì lƣợng đƣờng tích lũy
trong các mô tế bào giảm và ngƣợc lại. Hoạt tính của enzyme pyrophosphate

ATP

FRUCTOSE 1.6-P2

fructose 6-phosphotransferase (PFP) cũng tỉ lệ nghịch với lƣợng sucrose trong
Pi

tế bào thực vật [11]. PFP xúc tác chuyển hóa fructose 6-phosphate thành
FRUCTOSE 6-P

Hình 1.1: Chu trình sinh tổng hợp sucrose với sự tham gia của các

cho phản ứng tổng hợp sucrose sẽ tăng, dẫn tới lƣợng sucrose cũng tăng
tƣơng ứng. Ảnh hƣởng này đã đƣợc chứng minh trên các dòng mía có mang

enzyme chính
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

fructose 1,6-biphosphate. Do vậy, nếu hoạt tính của PFP giảm, lƣợng cơ chất



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên





8

9

cấu trúc antisense làm bất hoạt PFP. Lƣợng sucrose trên các cây mía chuyển

Tags) của enzyme Invertase phân lập từ một số giống mía [35]. Invertase

gen còn non tăng khoảng 50%. Tuy nhiên, khi phân tích trên các cây trƣởng

trung tính (có trong tế bào chất) đã đƣợc tinh sạch từ thân mía trƣởng thành.

thành, tổng lƣợng sucrose tăng, nhƣng chƣa đáng kể so với đối chứng [11].

Tuy nhiên trình tự gen mã hóa cho dạng enzyme này vẫn chƣa đƣợc công bố

Những nghiên cứu trên đã chứng tỏ đƣợc vai trò quan trọng của các enzyme

trên GenBank.

SPS, PFP, Invetase trong việc tổng hợp và tích lũy sucrose ở thực vật.
1.3. VẬN CHUYỂN SUCROSE TRONG TẾ BÀO

Invertase có mặt ở hầu hết các mô thực vật tích trữ đƣờng và tồn tại ở
nhiều dạng khác nhau: dạng hoà tan (soluble acid Invertase) có nhiều trong

Theo thuyết vận chuyển đƣờng (hay thuyết Turgeon), đƣờng sucrose

không bào (dịch tế bào); dạng liên kết với màng (cell wall Invertase) có trong


đƣợc tổng hợp ở tế bào chất của các tế bào thịt lá trong quang hợp sẽ đƣợc

thành tế bào; dạng độc lập (neutral Invertase) có chủ yếu trong hạt. Nó là một

vận chuyển ra không bào, sau đó nhờ hệ thống cấu trúc liên kết giữa các tế

enzyme xúc tác quá trình thủy phân sucrose trong không bào thành hai đƣờng

bào (sợi liên bào và cầu sinh chất hay plasmodesmata) nó sẽ đƣợc chuyển từ

đơn là glucose (Aldohexose) và fructose (Ketohexose) [6].

tế bào này sang tế bào khác và nhờ ống dẫn phloem mà sucrose đi tới khắp
các cơ quan của thực vật bằng con đƣờng khuyếch tán. Các phân tử nhỏ
sucrose trong ống dẫn phloem sẽ đƣợc polyme hóa thành những phân tử
đƣờng lớn và phức tạp hơn, lúc này các phân tử đƣờng đƣợc đẩy ra xa khỏi lá
đến những phần khác của cây, nơi mà nó đƣợc sử dụng hay tích trữ lại, và do
kích thƣớc của nó quá lớn nên nó không thể chuyển ngƣợc trở về lá. Chính cơ

Vì thế, mức độ biểu hiện của nó có nhiều ảnh hƣởng lên sự sinh trƣởng
phát triển của thực vật [6]. Cụ thể, khi Invertase có hoạt tính cao nó sẽ làm
giảm một lƣợng sucrose đáng kể trong thân cây mía. Nghiên cứu cho thấy
những dòng mía có sản lƣợng đƣờng cao thƣờng là các dòng có hoạt tính
Invertase thấp và ngƣợc lại [35]. Tƣơng tự, một số dòng cà chua ngọt có tích

chế khuếch tán này đã tạo nên sự vận chuyển liên tục sucrose từ các cơ quan

lũy nhiều đƣờng là do hoạt tính của Invertase thấp. Invertase có hoạt tính cao

quang hợp (source tissue) tới các cơ quan dự trữ (sink tissue). Bên cạnh đó,


trong không bào của tế bào thuốc lá và đậu tƣơng cũng đã làm giảm lƣợng

sucrose còn đƣợc vận chuyển và tích trữ tại không bào làm nguyên liệu cho

sucrose trong các cơ quan này [6]. Bất hoạt Invertase làm tăng tỉ lệ tích trữ

chu trình sinh tổng hợp tinh bột. Ngoài lƣợng sucrose đƣợc vận chuyển liên

sucrose trong cây cà chua chuyển gen ở lá và quả, đồng thời cũng làm thay

tục, một phần sucrose sẽ đƣợc phân hủy nhằm cung cấp năng lƣợng cho quá

đổi tỉ lệ đƣờng đơn (hexose) trong các dòng cây này [18, 24]. Lá của các dòng

trình sinh trƣởng và phát triển, đồng thời tái tạo các cơ chất khác.
1.4. ENZYME INVERTASE (β-FRUCTOFURANOSIDASE)

khoai tây biểu hiện gen mã hóa Invertase phân lập từ nấm men tích trữ chủ
yếu glucose và fructose hơn là sucrose. Hơn nữa, những dòng này hình thành

Invertase (β-fructofuranosidase) đƣợc mã hóa bởi 5 - 10 đồng phân tùy

ít củ và nhỏ hơn các dòng đối chứng, nhƣng chứa nhiều đƣờng hơn là tinh

thuộc từng loài thực vật khác nhau. Cây mô hình Arabidopsis thaliana có 5

bột. Điều này chứng tỏ rằng Invertase có liên quan chặt chẽ tới hàm lƣợng và

đồng phân Invertase, trong khi ở cà chua hiện nay đã phân lập đƣợc 8 đồng


vận chuyển của sucrose ở thực vật.

phân. Hiện nay, trên ngân hàng gen đã có trình tự EST (Expressed Sequenced
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




10

11

Nhƣ vậy, Invertase đƣợc xem nhƣ là một chiếc chìa khoá điều chỉnh sự
tích lũy sucrose dự trữ trong thực vật. Do đó, ức chế biểu hiện của Invertase
có thể tăng tích lũy sucrose trong cây mía.
1.5. ỨC CHẾ BIỂU HIỆN GEN BẰNG PHƢƠNG PHÁP RNAi (RNA
INTERFERENCE)
1.5.1. Nguồn gốc RNAi
RNAi là một cơ chế căn bản để kiểm soát chuỗi thông tin di truyền hay
cách vô hiệu hoá hoạt động của các gen xác định do hai nhà khoa học Andrew
Z. Fire và Craig C. Mello khám phá ra và công bố trên tạp chí Nature vào
ngày 19/12/1998 [4]. Andrew Fire và Craig Mello đã nghiên cứu cơ chế điều
khiển biểu hiện gen ở giun tròn (Caenorhabditis elegans) và cho rằng khi
mRNA “chiều dịch mã” và “chiều đối mã” gặp nhau thì chúng sẽ kết hợp lại
thành những mRNA sợi kép. Hai ông đã kiểm chứng lại giả thuyết của mình

bằng cách tiêm các phân tử mRNA sợi kép chứa các mật mã di truyền quy
định nhiều protein khác của giun tròn. Kết quả đều thu đƣợc protein đƣợc mã
hóa bởi các gen đó không đƣợc tổng hợp. Qua đó Fire và Mello đã rút ra đƣợc
kết luận rằng có thể RNA dạng chuỗi kép đã làm các gen bị bất hoạt. Công
trình đƣợc công bố và đƣợc trao giải Nobel Y học năm 2006.
1.5.2. Cơ chế gây bất hoạt gen

Hình 1.2. Cơ chế gây bất hoạt gen RNAi
Hình 1.2 cho thấy, Cơ chế RNAi đƣợc bắt đầu bằng việc phân cắt phân
tử RNA chuỗi kép (dsRNA) bởi enzyme Dicer - một trong những enzyme thuộc
họ RNase III, tạo thành các phân tử RNA ức chế nhỏ (siRNA) có kích thƣớc
khoảng 21 - 26 nucleotide [4]. Các siRNA này đƣợc giải xoắn và một mạch

RNAi (RNA interference) đƣợc coi nhƣ một phƣơng thức miễn dịch tự

gắn kết với một phức hợp protein một cách chọn lọc gọi là phức hợp cảm ứng

nhiên giúp sinh vật chống lại sự xâm nhập của virus RNA bằng cách phân

sự bất hoạt RNA (RISC – RNA Induced Silencing Complex). Argonaute

huỷ các trình tự nucleotide tƣơng đồng của chúng [8]. Nó làm trung gian

(protein Argonaute) trong RISC có chứa RNase-H hoạt động nhƣ một

kháng lại cả acid nucleic ngoại bào và nội bào, cũng nhƣ điều khiển sự biểu

endonuclease sẽ tách siRNA thành những chuỗi RNA đơn, trong đó chỉ có một

hiện gen mã hóa protein. Nó đƣợc thực hiện khi có sự xuất hiện của phân tử


chuỗi đơn RNA có đầu 5’ có lực bắt cặp base (base pairing) nhỏ nhất đƣợc

RNA mạch kép trong cơ thể sinh vật gây nên ức chế sự biểu hiện gen của một

chọn để tiếp tục đi vào phức hệ RISC. Sau đó, RISC sẽ thu nhận các phân tử

loại trình tự đặc hiệu.

phiên mã mRNA nội sinh của tế bào có trình tự tƣơng đồng với trình tự của
chuỗi siRNA đang có mặt trong phức hệ bằng cách bắt cặp với các base theo

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




12

13

nguyên tắc bổ sung. Khi đã đƣợc nhận diện các mRNA nhanh chóng bị cắt đứt

ứng tái tổ hợp lambda (Lambda reconstruction: LR) xảy ra một cách hiệu quả

ở khoảng giữa của chuỗi xoắn kép siRNA-mRNA và bị tiêu hủy bởi các RNA


và gắn các đoạn trình tự DNA vào nhiều hệ thống vector.

nuclease (Helicase) có trong RISC. Sợi RNA bị phân cắt, tiếp tục hình thành
các siRNA. Quá trình tiếp diễn liên tục nhƣ vậy sẽ phân hủy các bản mã sao
hình thành, kết quả là ức chế biểu hiện của gen mong muốn [4].
Cơ chế can thiệp RNAi đem lại những ứng dụng vô cùng to lớn và
đang là công cụ nghiên cứu hữu ích trong nhiều ngành sinh học, nông
nghiệp và y dƣợc học. Nó đƣợc biết đến nhƣ một kỹ thuật sinh học hiện đại
có hiệu quả trong việc chuyển gen phòng chống bệnh do virus, vi khuẩn, hay
làm tăng cƣờng, ức chế một tính trạng mong muốn nào đó ở sinh vật.
Phƣơng pháp này đã đƣợc ứng dụng thành công để thay đổi thành phần chất
béo trong dầu, loại caffein trong cà phê, tăng hàm lƣợng lysine trong ngô
hoặc loại các chất gây dị ứng ở táo và cà chua [19, 20, 25]. RNAi là một
hƣớng mới cho phép các nhà khoa học nghiên cứu những ứng dụng trong
các liệu pháp trị bệnh cho con ngƣời trong tƣơng lai cũng nhƣ phân tích
chức năng hệ gen cây trồng v.v...
1.6. KỸ THUẬT GATEWAY

Hình 1.3. Sơ đồ mô tả kỹ thuật Gateway

Kỹ thuật Gateway (Invitrogen) là một kỹ thuật dòng hóa phổ biến, nó
mang lại hiệu quả cao và nhanh chóng khi phân tích chức năng, biểu hiện
protein và dòng hóa đoạn DNA. Kỹ thuật này cho phép chuyển đoạn DNA

- Kỹ thuật Gateway đƣợc thực hiện bởi hai bƣớc chính:
+ Tạo dòng tiếp nhận “entry clone” bằng cách chèn gen biểu hiện
(expression gene) vào vector tiếp nhận (pENTR/D).

giữa các vector tách dòng khác nhau mà vẫn duy trì định hƣớng chính và cấu


+ Tạo dòng biểu hiện (expression clone) bằng cách tái tổ hợp giữa

trúc đọc, thay thế việc sử dụng các enzyme giới hạn và các enzyme nối hiệu

“entry clone” với một vector đích (destination vector) mà có chứa các trình tự

quả trong thời gian ngắn. Kỹ thuật này có hiệu quả cao (90%) đối với việc

attR1 và attR2 và marker có khả năng kháng chọn lọc ccdB.

tách dòng có định hƣớng của các sản phẩm PCR. Hơn nữa các phản ứng đơn

Trên hình 1.3 cho thấy dòng vector nhận có các điểm tái tổ hợp attL1

giản, dễ thực hiện, nhanh, mạnh và tự động. Đây là kỹ thuật hữu ích cho

và attL2 sẽ phản ứng với các điểm tái tổ hợp trên vector đích attR1 và attR2

những đặc tính tái tổ hợp đặc hiệu vị trí của vi khuẩn lambda, giúp cho phản

để tạo ra một cấu trúc mới attB1 và attB2. Mặt khác, đoạn gen quan tâm đƣợc

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên







14

15

gắn vào trên vector nhận sẽ trao đổi chéo với đoạn ccdB trên vector đích vì

Ông tạo đƣợc các cây chuyển gen trên các môi trƣờng chọn lọc tái sinh có bổ

thế thu đƣợc trên dòng biểu hiện có cấu trúc của đoạn gen mong muốn.

sung 5 mg/l ppt.

1.7. NGHIÊN CỨU VỀ TÁI SINH VÀ CHUYỂN GEN Ở CÂY MÍA

Santosa và cs (2004) chuyển gen thành công vào mô sẹo của mía thông

Tái sinh cây đƣợc xem là mấu chốt quan trọng, quyết định sự thành công

qua A.tumefaciens GV2260. Kết quả kiểm tra các cây sau chọn lọc thấy rằng

của các thí nghiệm chuyển gen. Hiện nay, hệ thống chuyển gen ở thực vật

có khoảng 85 - 100% cây sống sót có mang gen chuyển [34]. Mô sẹo đƣợc tạo

thông qua A.tumefaciens đã mang lại những thành tựu lớn trong thời gian

từ đoạn thân non trên môi trƣờng [4,3 g/l MS + 30 g/l sucrose + 0,5 g/l NZ-


ngắn có thể tạo ra các giống cây trồng có những đặc tính tốt mong muốn. Ở

amine + 0,3 ml vitamin (0,1 g / 75 ml hydrochloride thiamine; 0,05 g / 75 ml

mía đã chuyển gen thành công với hai phƣơng pháp là súng bắn gen và thông

biotin; 1 g / 75 ml pyrodoxine hydrochlorid; 0,25 g / 75 ml myo-inositol) + 3

qua vi khuẩn A.tumefaciens, trong đó chuyển gen thông qua A.tumefaciens là

mg/l 2,4D + 100 ml nƣớc dừa + 8 g/l agar, pH = 5,8] trong điều kiện tối, 1

hiệu quả hơn hẳn.

tháng. Trƣớc 7 giờ biến nạp với A.tumefaciens bổ sung thêm 75 μl chất chống

Snyman và cs (2006) đã tái sinh và chuyển gen thành công ở cây mía

ôxyhóa vào dịch khuẩn. A.tumefaciens đƣợc hòa tan với môi trƣờng cảm ứng

bằng phƣơng pháp súng bắn gen từ mô sẹo [29]. Mô sẹo tạo ra bằng cách đặt

tạo chồi có bổ sung 5 ml chất chống ôxyhóa với OD578 = 0,2 và đƣợc lây

những lát cắt nhỏ dày 1 - 2 mm ở phần đỉnh ngọn của cây mía lên môi trƣờng

nhiễm với các mảnh mô sẹo nhỏ (2 - 3 mm) trong 5 - 10 phút. Diệt khuẩn và

cảm ứng tạo mô sẹo là (MS + 30 g/l sucrose + 0,5 g/l casein + 0,6 mg/l 2,4D


chuyển mô sẹo lên môi trƣờng có bổ sung 500 mg/l cefotaxime ở 28oC, lắc

+5 g/l agar), pH = 5,8 trong điều kiện tối, ở 28oC. Trƣớc 4 giờ chuyển gen

60 vòng/2 ngày. Cây chuyển gen đƣợc tạo thành với các môi trƣờng chọn lọc

bằng kỹ thuật súng bắn gen, các mô sẹo đƣợc đặt lên môi trƣờng có bổ sung

có bổ sung 500 mg/l cefotaxime và 100 mg/l kanamycin.

thêm 0,2 M Sorbitol; 0,2 M manitol. Sau chuyển gen các mô sẹo đƣợc đồng

Zhangsun và cs (2007) tái sinh và chuyển gen ở mía từ mô sẹo thông qua

nuôi cấy ở trong tối, 3 ngày. Tiếp theo mô sẹo đƣợc chuyển sang môi trƣờng

A.tumefaciens (OD600=0,2; 0,4; 0,6) trong thời gian 10 - 20 phút với kháng

chọn lọc và thu đƣợc cây chuyển gen hoàn chỉnh với các môi trƣờng có bổ

sinh chọn lọc 500 mg/l carbenicillin và 1 mg/l ppt [28].

sung 45 mg/l geneticin.

Nhƣ vậy, các tác giả đã tái sinh và chuyển gen thành công chủ yếu từ mô

Manickavasagam và cs (2004) tái sinh và chuyển gen thành công ở mía

sẹo và thông qua vi khuẩn A.tumefaciens. Để thành công việc chuyển gen vào


thông qua A.tumefaciens từ các mô phân sinh của chồi bằng con đƣờng tạo đa

thực vật nói chung cũng nhƣ ở mía thì nhất thiết phải có một hệ thống tái sinh

chồi với hiệu quả thu đƣợc là 49,6% cây chuyển gen [22]. Lây nhiễm

hoàn chỉnh và một quy trình chuyển gen hoạt động hiệu quả. Trong thí

A.tumefaciens vào các mô non đã bị làm thƣơng của mía trong 10 phút. Sau

nghiệm này chúng tôi đã thử nghiệm và cải biến hệ thống tái sinh và quy trình

đó thấm khô trên giấy thấm và đặt lên môi trƣờng MS trong 3 ngày. Các mô

chuyển gen của các nghiên cứu thành công về mía ở trên.

đƣợc diệt khuẩn bằng nƣớc cất khử trùng có bổ sung 500 mg/l cefotaxime.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




16

17


Chƣơng 2

dòng pENTRTM/D-TOPO do chúng tôi thiết kế và đặt tổng hợp tại hãng

NGUYÊN LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU

Bioneer (Hàn Quốc).
- Gateway LR ClonaseTMII Enzyme Mix Kit (Invitrogen, Mỹ)

2.1. NGUYÊN LIỆU

- Bộ kit kit Trizol Regents (Invitrogen, Mỹ)

2.1.1. Nguyên liệu thực vật

- Bộ kit Qiagen (QIAquick Gel Extraction)

Chúng tôi sử dụng giống mía ROC1 và ROC10 in vitro đang đƣợc giữ
tại Phòng Công nghệ Tế bào Thực vật, Viện Công nghệ Sinh học, Viện Khoa
học và Công nghệ Việt Nam.

cấy mô đều thuộc phòng Công nghệ Tế bào Thực vật, Viện Công nghệ Sinh

Bảng 2.1. Các plasmid sử dụng trong thí nghiệm
Plasmid

(bp)

pENTRTM/D-


pK7GWIWG2(II)

12904

Kháng sinh chọn lọc

Nguồn cung cấp

Kanamycin

Invitrogen (Mỹ)

Spectinomycine,

Trƣờng Đại học

máy hút chân không (Savant), máy PCR (MJ Research), bể ổn nhiệt, nồi khử

streptomycine

Ghent (Bỉ)

trùng, máy biến nạp bằng xung điện, máy đo OD, máy vortex, máy xác định

- Các chủng vi khuẩn: E.coli One Shot TOP 10 và A.tumefaciens chủng
CV58C1 mang plasmid pGV2260
- Các enzyme giới hạn: HindIII , XbaI của hãng New England Biolabs
- Các enzyme T4 ligase, T4 kinase do hãng Fermentas cung cấp

2.1.3. Các thiết bị máy móc

Pipetman, máy soi gel (Bio-Rad), máy chụp ảnh (Amersham Pharmacia
Biotech), máy li tâm (Ependorf), máy đo pH (Mettler), bộ điện di (Bio-Rad),

trình tự nucleotid tự động... của Phòng thí nghiệm Công nghệ Tế bào Thực
vật, Viện Công nghệ Sinh học.
2.2. PHƢƠNG PHÁP
2.2.1. Thiết kế mồi
Khai thác dữ liệu trong GenBank để tìm ra tất cả các trình tự gen mã

2.1.3. Hóa chất khác


học mua từ các hãng nổi tiếng nhƣ Invitrogen, Merk, Amersham Parmacia
Biotech, Fermentas, New England Biolabs...

2580

TOPO

- Các hóa chất thông dụng trong sinh học phân tử (thang marker chuẩn,
agarose, phenol, chloroform, isoamylalcholhol... ) và các hóa chất cho nuôi

2.1.2. Các chủng plasmid và enzyme

Kích thƣớc

- Bộ kit QIAprep Spin Miniprep (QIAGEN).

hoá Invertase của cây mía (Bảng 3.2). Sử dụng phần mềm chuyên dụng



- Cặp mồi 3 INV/5 INV nhân đoạn gen mã hóa enzyme Invertase và

DNAstar so sánh độ tƣơng đồng giữa các trình tự Invertase thu đƣợc và thiết

cặp mồi M13for/rev kiểm tra sự có mặt của gen Invertase trong vector tách

kế cặp mồi đặc hiệu tại các vùng có độ bảo thủ cao nhất.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên






18

19
bromide (EtBr). Sản phẩm PCR đƣợc tinh sạch bằng QIAquick Gel

2.2.2. Tách RNA tổng số
Sử dụng hóa chất Trizol Regents (Invitrogen, Mỹ) để tách chiết RNA
tổng số từ các mẫu lá và bẹ thân non của 2 giống mía in vitro ROC1 và

Extraction Kit.
2.2.4. Tách dòng và xác định trình tự gen


ROC10 theo hƣớng dẫn kèm theo.

Sản phẩm PCR tinh sạch sẽ đƣợc gắn vào vector tách dòng pENTR/D
của hãng Invitrogen (Mỹ) để tạo vector tổ hợp có mang đoạn gen mã hóa

2.2.3. RT-PCR
Phân lập gen mã hóa enzyme Invertase ở mía bằng kỹ thuật RT-PCR

dẫn của nhà sản xuất. Sau đó, vector tái tổ hợp INV_pENTR đƣợc biến nạp

một bƣớc (RT-PCR one step) theo chu kỳ sau:

vào tế bào khả biến E.coli Top 10 và nhân nuôi lƣợng lớn trong môi trƣờng

Bảng 2.2. Chu kỳ nhiệt cho phản ứng RT-PCR một bƣớc
Bƣớc

Phản ứng

Nhiệt độ
(oC)

Invertase mong muốn (INV_pENTR). Phản ứng đƣợc thực hiện theo hƣớng

LB có bổ sung kháng sinh chọn lọc 50 mg/l kanamycin. Plasmid tái tổ hợp
Thời gian

Chu kỳ

đƣợc tách chiết theo phƣơng pháp Sambroock và đƣợc cất giữ ở -20oC.

INV_pENTR đƣợc kiểm tra bằng phƣơng pháp PCR với cặp mồi đặc hiệu

1

Tổng hợp cDNA

50

30 phút

1

2

Biến tính

95

5 phút

1

3

Biến tính

94

20 giây


35

4

Gắn mồi

52

1 phút

35

5

Kéo dài chuỗi

72

1 phút

35

6

Hoàn tất chuỗi

72

10 phút


1

7

Kết thúc phản ứng

8

24 giờ

1

M13for/rev. Thành phần phản ứng PCR với cặp mồi đặc hiệu M13for/rev với
tổng thể tích 25 μl bao gồm: 1X dung dịch đệm PCR, 50 ng plasmid, 50 mM
MgCl2, 2 mM dNTPs, 10 ng M13for, 10 ng M13rev, 0,5 g Taq polymerase.
Chu kỳ của phản ứng nhƣ sau:
Bảng 2.3. Chu kỳ nhiệt cho phản ứng PCR
Bƣớc

Phản ứng

Nhiệt độ (oC)

Thời gian

Chu kỳ

1

Biến tính


95

5 phút

1

2

Biến tính

94

20 giây

35

(Bioneer) gồm có: 2X dung dịch đệm RT-PCR; 1 µg RNA tổng số; 0,4 - 0,6

3

Gắn mồi

52

1 phút

35

mM 3’INV; 0,4 - 0,6 mM 5’INV; 0,5 g enzyme RT. Mix mẫu nhẹ nhàng và


4

Kéo dài chuỗi

72

1 phút

35

thực hiện phản ứng RT-PCR theo chu kỳ nhiệt nhƣ bảng 2.2.

5

Hoàn tất chuỗi

72

10 phút

1

6

Kết thúc phản ứng

4




1

Thành phần của phản ứng với tổng thể tích 25 l đƣợc bổ sung vào ống
effendorf 0,5 ml đã đƣợc xử lý DEPC theo hƣớng dẫn của nhà sản xuất

Sản phẩm đƣợc kiểm tra bằng phƣơng pháp điện di trên gel agarose 0,8
- 1,5% trong dung dịch đệm TAE 1X và nhuộm bản gel trong ethidium

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




20

21

Mẫu plasmid tái tổ hợp INV_pENTR sau khi kiểm tra sẽ đƣợc loại
RNA và thực hiện xác định trình tự nucleotide trên máy ABI PRIMS 3100

2.2.6. Tái sinh mía thông qua mô sẹo
Chúng tôi tiến hành tái sinh mía theo phƣơng pháp của hai nhóm

Avant Genetic Analyzer tại Phòng thí nghiệm Trọng điểm Công nghệ gen.


nghiên cứu Santosa và cs (2004); Zhangsun và cs (2007) có cải biến nhƣ sau:

2.2.5. Thiết kế vector tái tổ hợp INV-RNAi

cắt những đoạn thân mía non có chứa đỉnh sinh trƣởng của cây mía in vitro

INV_pENTR sẽ đƣợc gắn vào vector pK7GWIWG2(II) theo kỹ thuật

dài khoảng 0,5 cm sau đó đặt lên môi trƣờng môi trƣờng tạo mô sẹo (M1 -

Gateway để tạo plasmid tái tổ hợp mang đoạn gen mã hóa Invertase

M4). Các mẫu cấy sẽ đƣợc nhân nuôi trong buồng tối ở 25 oC trong vòng 15 -

(INV_RNAi). Trong kỹ thuật này, vector pENTR/D mang vị trí tái tổ hợp
attL trong khi ở vector nhận là attR. Các vị trí này giúp phản ứng tái tổ hợp
lambda (Lambda reconstruction: LR) xảy ra khi có mặt đồng thời plasmid
INV_pENTR với vector nhận pK7GWIWG(II) gắn đoạn gen Invertase theo
cả 2 chiều xuôi-ngƣợc vào vector nhận, tạo nên cấu trúc INV_RNAi mong
muốn. Các dòng plasmid tái tổ hợp sau đó đƣợc nhân lên trong tế bào

20 ngày thì thu đƣợc các mô sẹo lên tốt. Các mô sẹo nhân lên trong môi
trƣờng tạo mô sẹo (M1) lỏng có bổ sung 3 mg/l 2,4D trong tối, ở 27oC, lắc 90
vòng/phút, 1 tuần để đạt kích thƣớc lớn phục vụ cho việc biến nạp. Sau đó,
các mô sẹo đƣợc loại bỏ phần thân xanh và đặt lên môi trƣờng cảm ứng tạo
chồi Mc. Khi chồi có kích thƣớc khoảng 1- 3 cm (25 - 30 ngày) thì chuyển
sang môi trƣờng tạo rễ Mr.
Bảng 2.4. Các môi trƣờng tái sinh cây mía

E.coli trên đĩa môi trƣờng thạch LB có bổ sung kháng sinh chọn lọc 100

mg/l spectinomycin, 40 mg/l streptomycin và 50 mg/l chloramphenicol ở

Môi trƣờng

o

37 C qua đêm. Sau đó tiến hành tách plasmid theo kit QIAprep Spin

Nhân mía

Miniprep (QIAGEN).

Tạo mô sẹo

enzyme HindIII và XbaI sau đó đƣợc kiểm tra bằng phƣơng pháp điện di trên

tổ hợp đƣợc nhân nuôi trong môi trƣờng có bổ sung 100 mg/l streptomycin,
100 mg/l spectinomycin và 50 mg/l rifamycin ở 28oC qua đêm. Tách plasmid
theo Sambroock và kiểm tra bằng phƣơng pháp PCR với cặp mồi đặc hiệu
5’INV và 3’INV.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

+ 9 g/l agar

5,8

M2: MS + 4 mg/l 2,4D + 30 g/l sucrose + 9 g/l agar
M3: MS + 5 mg/l 2,4D + 30 g/l sucrose + 9 g/l agar


5,8

Nhân mô
bằng nuôi

M1 lỏng: MS + 3 mg/l 2,4D + 30 g/l sucrose

5,8

lỏng lắc
Tạo chồi
Tạo rễ



M0: MS + 0,8 mg/l BAP + 0,4 mg/l IBA + 30 g/l sucrose

M4: MS + 6 mg/l 2,4D + 30 g/l sucrose + 9 g/l agar

gel agarose 0,8%. Dòng tế bào mang vector INV_RNAi sẽ đƣợc biến nạp vào
A.tumefaciens CV58C1 bằng xung điện ở 400 Ω / 2,5 KV / 25 μF. Plasmid tái

pH

M1: MS + 3 mg/l 2,4D + 30 g/l sucrose + 9 g/l agar

Plasmid tái tổ hợp INV_RNAi thu đƣợc sẽ đƣợc phân lập và kiểm tra
sự có mặt của đoạn gen Invertase bằng phƣơng pháp cắt giới hạn với hai

Thành phần


Mc: MS +1,5 mg/l kinetin + 2 mg/l BAP + 30 g/l sucrose
+9 g/l agar
Mr: MS + 1 mg/l NAA + 30 g/l sucrose +9 g/l agar

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

5,8




22

23
KHÁI QUÁT SƠ ĐỒ THÍ NGHIỆM

2.2.7. Thử nghiệm chuyển gen gus-intron vào cây mía
2.2.7.1. Tạo huyền phù vi khuẩn

Cây mía in vitro

Lấy một khuẩn lạc từ đĩa nuôi đặc nuôi trong môi trƣờng LB có bổ
sung 100 mg/l spectinomycin + 50 mg/l chloramphenicol + 50 mg/l
kanamycine (hoặc 100 mg/l spectinomycin + 50 mg/l rifamycin) ở 28oC, lắc

Cắt đoạn thân sát gốc (5 cm)
Thiết kế mồi

200 vòng/phút qua đêm. Lấy ra 5 ml khuẩn nuôi phục hồi trong 30 ml môi

trƣờng LB lỏng mới, lắc tiếp trong khoảng 2 - 3 giờ trong cùng điều kiện. Sau
đó ly tâm khuẩn ở 5000 vòng/phút trong 10 phút thu sinh khối tế bào rồi hòa

Mô sẹo
Tách RNA tổng số

tan khuẩn vào ½ MS không đƣờng, (pH = 5,8) có bổ sung AS 100 mM.
2.2.7.2. Đồng nuôi cấy với huyền phù A.tumefaciens và tái sinh

Đồng nuôi cấy

Mô sẹo sau khi đƣợc nhân sinh khối từ môi trƣờng lỏng sẽ đƣợc lấy ra

RT_PCR

tách thành từng mảnh nhỏ. Quá trình lây nhiễm khuẩn đƣợc tiến hành theo hai
hƣớng là thổi khô mô sẹo và chuyển lên môi trƣờng cảm ứng tạo chồi với các

Diệt khuẩn

ngƣỡng thời gian khác nhau. Sau đó mô sẹo đƣợc lấy ra và ngâm trong huyền
phù vi khuẩn thời gian từ 10 - 30 phút. Sau đó thấm khô và cấy lên môi

Tách dòng và xác định trình tự gen
Chọn lọc mô sẹo

trƣờng đồng nuôi cấy M1 (thổi khô) hoặc Mc (cảm ứng tạo chồi). Sau 3 ngày,
mô sẹo đƣợc cấy chuyển sang môi trƣờng diệt khuẩn M1 có bổ sung 500 mg/l
cefotaxim trong 1 tuần. Các mô sẹo sống sót sẽ đƣợc chuyển lên môi trƣờng


Tái sinh cây

Thiết kế vector tái tổ hợp INV_RNAi

tái sinh Mc + 500 mg/l cefotaxim và Mc + 500 mg/l cefotaxim + 1 mg/l ppt.
Các chồi tái sinh đƣợc chuyển sang môi trƣờng chọn lọc Mr có bổ sung 500
mg/l cefotaxim và 1 mg/l ppt để tạo cây hoàn chỉnh.
Chúng tôi kiểm tra biểu hiện gen gus bằng cách nhuộm mô sẹo sau
đồng nuôi cấy với dung dịch X-gluc, ủ ở 37oC trong tối trong khoảng từ 12 16 giờ, sau đó rửa với cồn 70% và soi trên kính hiển vi.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




24

25

Chƣơng 3

Bảng 3.1. Trình tự và các thông số cần thiết
của cặp mồi 3’INV và 5’INV

KẾT QUẢ VÀ THẢO LUẬN
3.1. THIẾT KẾ MỒI

Để nhân đƣợc đoạn gen mã hóa cho enzyme Invertase bằng kỹ thuật

Mồi

Trình tự mồi

(5’INV)

5’-CATCTGGGGCAACAAGATC-3’





(3 INV)



5 -CACCAAGTGCACGAAGTCCTTG-3

Tm(oC)

%GC

52,3

52,6

59,1


54,5

RT-PCR điều quan trọng nhất là phải có đƣợc cặp mồi đặc hiệu cho trình tự

Bảng 3.2. Mã số các trình tự đoạn gen Invertase ở mía

của đoạn gen mã hóa cho enzyme Invertase. Chúng tôi đã sử dụng từ khóa

trên ngân hàng gen NCBI

“Invertase Sugarcane” để tìm kiếm trong ngân hàng dữ liệu gen NCBI các

STT

Mã số

Chiều dài

Dạng

Tên

trình tự gen Invertase đã đƣợc công bố (www.ncbi.nlm.nih.gov). Kết quả đã

1

AY302083

2274 bp


mRNA

Invertase hòa
tan

2

AF062734

1808 bp

mRNA

3

AF083856

1402 bp

4

AF083855

494 bp

5

AF062735

1808 bp


6

AY302084

1889 bp

thu đƣợc sáu trình tự của gen mã hóa cho enzyme Invertase ở cây mía, trong
đó có 5 trình tự mã hóa cho enzyme Invertase hòa tan (soluble acid Invertase)
với mã số AF062734, AF 062735, AF083855, AF083856, AY302083; và một
trình tự mã hóa cho enzyme Invertase liên kết màng (cell wall Invertase) có
mã số AY302084 (Bảng 3.2). Sử dụng chƣơng trình MegAlign (DNAstar) so
sánh độ tƣơng đồng của các trình tự trên với nhau cho thấy năm trình tự của
Invertase hoà tan tƣơng đồng cao mặc dù đƣợc phân lập từ các giống mía

Invertase hòa
tan
Invertase hòa
mRNA
tan
Invertase hòa
mRNA
tan
Invertase hòa
mRNA
tan

khác nhau và có độ tƣơng đồng 46% với đoạn trình tự mã hoá cho Invertase
liên kết màng. Trình tự đầy đủ của gen này với mã số AY302083 có độ dài


mRNA

1923 bp. Trong nghiên cứu của chúng tôi đoạn gen dài 435 nucleotide (từ
nucleotide vị trí 384 tới vị trí 818 bp - vùng có trình tự bảo thủ cao nhất) nằm

Invertase liên
kết màng

Tác giả
Peters,K.F.,
Grof,C.P.L. and
Botella,J.R.
Albert,H.H., Zhu,Y.J.
and Moore,P.H.
Albert,H.H., Zhu,Y.J.
and Moore,P.H.
Albert,H.H., Zhu,Y.J.
and Moore,P.H.
Albert,H.H., Zhu,Y.J.
and Moore,P.H.
Peters,K.F.,
Grof,C.P.L.,
Albertson,P.L. and
Botella,J.R.

3.2. TÁCH RNA TỔNG SỐ

trên gen mã hoá enzyme Invertase hòa tan (AY302083) đƣợc lựa chọn để tách

Do đặc tính của RNA là một loại phân tử không bền, dễ bị phân hủy


dòng. Sau đó với mục đích giúp sản phẩm PCR gắn đƣợc vào vector tách dòng

bởi các enzyme ribonuclease (RNase). RNase có mặt ở khắp nơi trong tế bào

pENTR/D chúng tôi đã gắn thêm đồng thời vào mồi đầu 3 một đoạn trình tự

và có hoạt tính rất mạnh và vẫn có hoạt tính mạnh ở nhiệt độ cao (100oC trong

CACC để tạo vị trí bám cho enzyme TOPO-Isomerasse (GTGG) gắn trên

khoảng 1 giờ). Do đó, việc tách chiết RNA đòi hỏi phải hết sức cẩn thận để



vector nhân dòng PENTR/D-TOPO. Cặp mồi đƣợc đặt tổng hợp bởi hãng
BIONEER, Hàn Quốc. Trình tự cặp mồi đặc hiệu thu đƣợc ở bảng 3.1 nhƣ sau:

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



tránh các tạp nhiễm chứa RNase từ môi trƣờng và tất cả các dụng cụ thí
nghiệm để tách RNA đều phải đƣợc xử lý trong dung dịch DEPC 0,1% để loại
trừ RNase.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên





26

27

Để tách RNA tổng số từ lá và thân non của mía chúng tôi tiến hành thu
mẫu lá và bẹ non của hai giống ROC1 và ROC10. Các mẫu đƣợc nghiền
nhanh trong N2 lỏng thành bột mịn với cối chày sứ đã đƣợc khử trùng để phá
vỡ tế bào. Sau đó phải bổ sung ngay dung dịch Trizol vào vì nếu không các
RNase nội bào sẽ đƣợc giải phóng và phân cắt RNA. Các thành phần trong
dung dịch Trizol nhƣ: phenol, guanidine isothiocyanate sẽ nhanh chóng làm
kết tủa protein và bất hoạt các RNase nội bào. Bổ sung chloroform:isoamyl

3.3. NHÂN DÕNG ĐOẠN GEN MÃ HÓA ENZYME INVERTASE
RNA tổng số sau khi đƣợc tinh sạch sẽ sử dụng làm khuôn cho phản
ứng RT-PCR để nhân đoạn gen mã hóa cho enzyme Invertase với cặp mồi
5’INV và 3’INV đã thiết kế. Nếu phản ứng này xảy ra đặc hiệu theo lý thuyết
thì sẽ có một băng duy nhất có kích thƣớc dài tƣơng ứng với tính toán lí
thuyết là 435 bp của đoạn Invertase cần phân lập đƣợc nhân lên.

(24:1) để làm sạch các protein còn sót lại. Tiếp theo việc bổ sung isopropanol

INV

vào làm kết tủa RNA. Cuối cùng sản phẩm RNA tổng số đƣợc hòa tan trong

M

20 μl nƣớc cất có DEPC 0,01%. RNA tổng số sẽ đƣợc kiểm tra chất lƣợng
bằng phƣơng pháp điện di trên gel agarose 1%. Hình 3.1 cho thấy các mẫu
RNA từ thân và lá có hàm lƣợng lớn và có 2 băng RNA riboxom rõ nét nên

khẳng định rằng RNA tổng số chƣa bị phân hủy và tối ƣu để tiến hành các thí

450 bp

nghiệm tiếp theo. Nhƣ vậy, chúng tôi đã tách chiết thành công RNA tổng số
từ lá và thân non của mía ROC1 và ROC10 in vitro.

ROC 1


10

1

Thân
10
Hình 3.2. Kết quả điện di sản phẩm RT-PCR trên gel agarose 0,8%
(M): Marker 1kb; (INV): sản phẩm thôi gel
Phản ứng RT-PCR có thể bị giảm hiệu quả do một số nguyên nhân nhƣ
chất lƣợng và hàm lƣợng RNA tổng số của gen mã hóa enzyme Invertase,
nhiệt độ bắt cặp với mồi chƣa phù hợp... Vì vậy khi tiến hành phản ứng chúng
tôi đã điều chỉnh lƣợng mẫu, nồng độ mồi, Mg2+, nhiệt độ bắt cặp với mồi...
để đảm bảo cho phản ứng RT-PCR xảy ra đặc hiệu nhất. Thành phần hỗn hợp

Hình 3.1. Kết quả điện di RNA tổng số tách từ lá và bẹ thân non của 2
giống mía ROC1 và ROC10 trên gel agarose 1%
RNA tổng số sẽ đƣợc loại DNA bằng DNase sử dụng cho phản ứng
RT-PCR.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




của phản ứng và chu kỳ nhiệt của phản ứng đã đƣợc tối ƣu hóa trình bày ở
mục 2.2.1.3. Sản phẩm của phản ứng RT-PCR một bƣớc với khuôn là RNA
tổng số thu đƣợc từ bẹ mía non (giống ROC1) đƣợc kiểm tra bằng phƣơng
pháp điện di trên trên gel agarose 0,8% (Hình 3.2). Kết quả cho thấy chúng tôi

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




28

29

đã nhân đƣợc 1 đoạn DNA có kích thƣớc khoảng 450 bp (khi so sánh với

khả biến. Ở đây, toàn bộ vector tái tổ hợp INV_pENTR sẽ đƣợc biến nạp với

thang DNA chuẩn 1 kb), kích thƣớc này phù hợp với kích thƣớc đoạn DNA

tế bào khả biến và đƣợc cấy trải khuẩn trên môi trƣờng có bổ sung kháng sinh

dự đoán khi thiết kế cặp mồi đặc hiệu.

chọn lọc kanamycine 50 mg/l và ủ ở 37oC, qua đêm. Kết quả thu đƣợc các

3.4. TÁCH DÒNG GEN VÀ XÁC ĐỊNH TRÌNH TỰ GEN


khuẩn lạc màu trắng trên đĩa môi trƣờng. Song không phải tất cả các khuẩn
lạc đều mang plasmid tái tổ hợp INV_pENTR vì bản thân plasmid này có gen

3.4.1. Tạo plasmid tái tổ hợp INV-pENTR

kháng kháng sinh còn tế bào khả biến E.coli lại không kháng bất kỳ kháng

Để khẳng định chắc chắn rằng đoạn DNA thu đƣợc từ phản ứng RT-PCR
chính xác là đoạn gen mã hóa enzyme Invertase, chúng tôi tiến hành việc tiếp
theo là tách dòng và xác định trình tự gen. Để việc tách dòng đạt đƣợc hiệu
quả nhất chúng tôi tiến hành tinh sạch sản phẩm RT-PCR theo bộ kit Qiagen
của hãng QIAquick Gel Extraction. Quá trình tách dòng đƣợc thực hiện bằng
cách gắn sản phẩm RT-PCR vào vector tách dòng pENTR/D của hãng
Invitrogen (Mỹ) để tạo “entry clone” INV_pENTR. Vector pENTR/D có kích
thƣớc 2580 bp, trên vector này có hai vị trí gắn attL1 và attL2, đoạn gen cần
chuyển Invertase sẽ đƣợc gắn vào giữa hai vị trí này. Vector này còn có gen
kháng kháng sinh kanamycin và có vị trí gắn mồi M13 phục vụ cho việc chọn

sinh nào. Vì vậy, có thể có một lƣợng nhỏ nào đó các tế bào chứa plasmid
pENTR/D nhƣng lại không gắn gen Invertase, do enzyme TOPO ở hai đầu
vector bị mất và plasmid tự đóng vòng. Vậy trong số những khuẩn lạc thu
đƣợc, khuẩn lạc nào mang vector chứa đoạn gen mã hóa Invertase và khuẩn
lạc nào không có? Để xác định rõ các plasmid tái tổ hợp chính là dòng
INV_pENTR mong muốn, chúng tôi tiến hành tách chiết plasmid theo
Sambrock từ những khuẩn lạc sống sót trên môi trƣờng có bổ sung kháng sinh
chọn lọc và thực hiện phản ứng PCR plasmid thu đƣợc với cặp mồi đặc hiệu
M13for/rev.

dòng các khuẩn lạc mang vector tái tổ hợp INV_pENTR. Ngoài ra, enzyme


3.4.3. Chọn lọc plasmide tái tổ hợp INV_pENTR bằng PCR với cặp mồi

Topoisomerase sẽ giúp cho việc gắn gen vào vector diễn ra trong một khoảng

M13 (F/R)

thời gian rất ngắn (khoảng 5 phút) và có thể đạt hiệu quả cao tới 90%. Thành

Quá trình biến nạp plasmid tái tổ hợp vào tế bào khả biến E.coli bằng

phần và chu trình của phản ứng đƣợc trình bày ở mục 2.2.4.1. Kết quả của

sốc nhiệt có hiệu quả có thể tới 95%. Song rất có thể còn có những gen không

phản ứng sẽ thu đƣợc vector tái tổ hợp INV_pENTR.

đƣợc gắn vào và chúng sẽ tồn tại bên trong hoặc xung quanh những khuẩn lạc

3.4.2. Biến nạp plasmid tái tổ hợp INV_pENTR vào tế bào khả biến

mọc trên đĩa môi trƣờng chọn lọc. Do đó, PCR plasmid với cặp gen đặc hiệu

E.coli TOP 10

3’INV, 5’INV vẫn có thể thu đƣợc những băng có kích thƣớc khoảng 435 bp

Vector tái tổ hợp INV_pENTR thu đƣợc sau phản ứng lai sẽ đƣợc biến

nhƣng không có đoạn gen Invertase đƣợc gắn vào vector. Vì vậy, chúng tôi


nạp vào tế bào khả biến E.coli TOP 10 bằng phƣơng pháp sốc nhiệt nhằm

tiến hành phản ứng PCR với cặp mồi M13for/rev đặc hiệu của vector

tách dòng và nhân nhanh plasmid tái tổ hợp với số lƣợng lớn. Hiệu quả của

pENTR/D với các plasmid của các dòng khuẩn số 1, 2, 3 để có kiểm tra chính

phản ứng này phụ thuộc vào chất lƣợng sản phẩm vector tái tổ hợp và tế bào

xác xem đoạn gen Invertase đã gắn đƣợc vào vector tách dòng hay chƣa. Theo

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên






30

31

lý thuyết thì vị trí gắn mồi M13for/rev trên vector pENTR/D đƣợc thiết kế

3.4.4. Kết quả xác định trình tự nucleotit

đặc hiệu và cho phép nhân một đoạn DNA từ nucleotide vị trí 537 tới vị trí


Đoạn gen mã hóa Invertase đƣợc gửi đi xác định trình tự nuclotide trên

861 trên vector pENTR/D. Nhƣ vậy, PCR với cặp mồi này sẽ thu đƣợc các

máy xác định trình tự tự động ABI PRIMS 3100 Avant Genetic Analyzer. Sau

sản phẩm có chiều dài khoảng 750 bp hoặc 324 bp từ các dòng plasmid

đó, chúng tôi sử dụng phần mềm DNAstar và BioEdit để tiến hành so sánh

INV_pENTR dƣơng hoặc âm tính tƣơng ứng khi kiểm tra bằng phƣơng pháp

trình tự nucleotide của đoạn gen mã hóa enzyme Invertase này với trình tự

điện di trên gel agarose 0,8%.

Invertase có mã số AY302083 đã đƣợc sử dụng để thiết kế cặp mồi. Kết quả
nhƣ sau:

3

2

1

-

AY302083
amplified


310
320
330
340
350
360
370
380
390
400
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|
AGGAACTGGATGAACGACCCCAATGGCCCGGTGTACTACAAGGGCTGGTACCACCTGTTCTACCAATACAACCCGGACGGCGCCATCTGGGGCAACAAGA
-----------------------------------------------------------------------------------CATCTGGGGCAACAAGA

AY302083
amplified

410
420
430
440
450
460
470
480
490
500
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|
TCGCGTGGGGCCACGCCGTCTCCCGCGACCTCATCCACTGGCGCCACCTCCCGCTGGCCATGCTGCCCGACCAGTGGTACGACACCAACGGCGTCTGGAC

TCGCGTGGGGCCACGCCGTCTCCCGCGACCTCATCCACTGGCGCCACCTCCCGCTGGCCATGGTGCCCGACCAGTGGTACGACACCAACGGCGTGTGGAC

AY302083
amplified

510
520
530
540
550
560
570
580
590
600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|
GGGCTCCGCCACCACGCTCCCCGACGGCCGCCTCGCCATGCTCTACACCGGCTCCACCAACGCCTCCGTGCAGGTGCAGTGCCTCGCCGTGCCCGCCGAC
GGGCTCCGCCACCACGCTCCCCGACGGCCGCCTCGCCATGCTCTACACGGGCTCCACCAACGCCTCCGTGCAGGTGCAGTGCCTCGCCGTGCCCGCCGAC

AY302083
amplified

610
620
630
640
650
660
670
680

690
700
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|
GACGCCGACCCGCTGCTCACCAACTGGACCAAGTACGAGGGCAACCCGGTGCTGTACCCGCCGCCGGGCATCGGGCCCAAGGACTTCCGCGACCCCACCA
GACGCCGACCCGCTGCTCACCAACTGGACCAAGTACGAGGGCAACCCGGTGCTGTACCCGCCGCCGGGGATCGGGCCCAAGGACTTCCGCGACCCCACCA

AY302083
amplified

710
720
730
740
750
760
770
780
790
800
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|
CGGCGTGGTTCGACCCGTCGGACAACACCTGGCGCATCGTCATCGGCTCCAAGGACGACGCCGAGGGCGACCACGCCGGCATCGCCGTGGTGTACCGCAC
CGGCGTGGTTCGACCA------------------------------------------------------------------------------------

M

750 bp

Hình 3.4. Kết quả so sánh trình tự đoạn gen Invertase phân lập đƣợc với
Hình 3.3. Kết quả điện di sản phẩm PCR plasmid với cặp mồi


trình tự Invertase trong ngân hàng gen có mã số AY302083

M13(For/Rev) nhằm kiểm tra sự có mặt của đoạn Invertase
Trên hình 3.4 cho thấy, trình tự gen Invertase phân lập đƣợc ở cây mía

trong vector pENTR/D
(M): Marker 1kb; (1), (2),( 3): sản phẩm PCR từ plasmid INV_ pENTR/D;

ROC1 in vitro có độ tƣơng đồng khá cao với trình tự gen AY302083 đã đƣợc

(-): đối chứng âm

sử dụng để thiết kế cặp mồi đặc hiệu (90,1%). Điều này chứng tỏ chúng tôi đã

Với kết quả thu đƣợc ở hình 3.3 cho thấy rằng 2 dòng plasmid tái tổ hợp

phân lập chính xác đoạn gen mã hóa Invertase mong muốn ở cây mía ROC1

tách từ dòng khuẩn số 1 và 2 cho các băng có kích thƣớc khoảng 750 bp đúng

in vitro.

với kích thƣớc của tính toán lý thuyết của các dòng plasmid INV_pENTR

3.5. THIẾT KẾ VECTOR TÁI TỔ HỢP INV-RNAi

dƣơng tính. Nhƣ vậy, có thể kết luận rằng đoạn gen Invertase đã đƣợc gắn và

3.5.1. Tạo vector tái tổ hợp INV_RNAi bằng kỹ thuật Gateway


tạo “entry clone” INV_pENTR ở dòng khuẩn số 1 và 2. Dòng plasmid

Kỹ thuật Gateway Cloning là một kỹ thuật nhân dòng phổ biến và hiệu

INV_pENTR tái tổ hợp đã đƣợc gửi đi để xác định trình tự đoạn gen Invertase.

quả cho việc gắn trình tự DNA vào hệ thống một hoặc nhiều vector. Trong thí

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên






32

33

nghiệm này chúng tôi thực hiện phản ứng LR với các thành phần đã trình bày

có kháng sinh 100 mg/l spectinomycin, 40 mg/l streptomycin và 50 mg/l

ở mục 2.2.2.1. để gắn vector INV_pENTR với vector pK7GWIWG2(II) nhằm

chloramphenicol. Kết quả thu đƣợc một lƣợng lớn các khuẩn lạc màu trắng

thu đƣợc vector chuyển gen INV_RNAi của gen mã hóa Invertase. Phản ứng


mọc trên môi trƣờng chọn lọc.

này đƣợc tiến hành với sự xúc tác của enzyme LR-clonase và Proteinase K ở
Vector pK7GWIWG2(II) là vector có cấu trúc mang gen kháng các

nhiệt độ phòng.
pK7GWIWG2(II) là một vector chuyển gen đƣợc cấu trúc bởi hai vùng
gắn đặc biệt là: attR1-ccdB-attR2 có chiều ngƣợc nhau và đƣợc nối với nhau
nhờ một đoạn intron. Do đó, khi thực hiện phản ứng lai LR thì sẽ tạo ra sản
phẩm là một plasmid INV_RNAi có hai vị trí gắn mang đoạn gen Invertase có
chiều ngƣợc nhau: sense-intron-antisense (Invertase-intron-antiInvertase).
Đoạn intron của vector pK7 có vai trò rất quan trọng trong việc tạo đoạn thắt
nút (vòng) để RNA sợi đôi dễ đƣợc hình thành (Invertase-intronantiInvertase) và hoạt động một cách ổn định trong genome của vật chủ khi
nó đƣợc chuyển vào. Đây chính là cấu trúc RNAi cần thiết kế để chuyển gen
vào cây mía nhằm tăng trữ lƣợng đƣờng của mía cao hơn một cách ổn định.

kháng sinh spectinomycin, streptomycin, chloramphenicol và gen ccdB mã
hóa cho plasmid F gây ức chế sinh trƣởng của tế bào E.coli, còn vector
INV_RNAi không có gen ccdB do gen Invertase chèn vào thay thế. Vì vậy,
các khuẩn lạc mọc trên đĩa môi trƣờng chọn lọc chỉ có thể là những khuẩn lạc
có mang plasmid pK7GWIWG2(II) nhƣng vị trí chứa đoạn gen ccdB đã bị đột
biến và các khuẩn lạc có mang plasmid INV_RNAi. Chọn ngẫu nhiên 3 khuẩn
lạc đƣợc đánh số từ 1 đến 3 nuôi trong môi trƣờng lỏng có các kháng sinh
chọn lọc tƣơng tự và tiến hành tách plasmid từ các dòng khuẩn đó. Để kiểm
tra các plasmid thu đƣợc có chính xác là INV_RNAi hay là pK7GWIWG2(II)
nhƣng vị trí chứa đoạn gen ccdB đã bị đột biến. Chúng tôi thực hiện phản ứng
cắt enzyme giới hạn đặc hiệu XbaI và HindIII đối với 3 plasmid từ khuẩn lạc
số 1, 2 và 3. Theo tính toán trên lý thuyết thì sản phẩm của phản ứng cắt
enzyme sẽ cho 3 đoạn có kích thƣớc là: Đoạn 1 dài 978 bp mang đoạn

Invertase chiều xuôi, đoạn 2 dài 2825 bp mang đoạn Invertase chiều ngƣợc và
cuối cùng là phần còn lại của vector nhận pK7GWIWG(II) dài 8114 bp. Hình

Hình 3.5. Mô hình cấu trúc chuyển gen INV_RNAi

3.6 cho thấy sản phẩm của phản ứng cắt enzyme thu đƣợc các phân đoạn có

3.5.2. Biến nạp vector INV_RNAi vào tế bào khả biến E.coli

các kích thƣớc tƣơng ứng với dự tính ở cả 3 plasmid 1, 2 và 3 và có sự khác

Vector tái tổ hợp INV_RNAi đƣợc biến nạp vào tế bào khả biến E.coli
TOP 10 bằng phƣơng pháp sốc nhiệt ở 42 oC với khoảng thời gian là 1 phút 30

biệt rõ rệt so với đối chứng là vector không biến nạp pK7GWIWG(II), chứng
tỏ cấu trúc INV_RNAi đã đƣợc thiết kế.

o

giây. Sau đó, khuẩn sẽ đƣợc nuôi phục hồi với 250 μl LB lỏng ở 37 C ở tủ lắc
khoảng 60 phút. Tiếp theo khuẩn sẽ đƣợc nuôi cấy trên môi trƣờng chọn lọc

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên





34

35

Hình 3.7. Điện di sản phẩm PCR plasmid INV-RNAi trong
A.tumefaciens với cặp mồi đặc hiệu 5’INV và 3’INV
Hình 3.6. Kết quả điện di sản phẩm cắt plasmid INV_RNAi tổ hợp với
HindIII và XbaI
(M): Marker 1kb; (1), (2), (3): các dòng plasmid tái tổ hợp; (-): đối
chứng vector pK7GWIWG(II)

(M): Marker 1kb; (1), (2): các dòng plasmid tái tổ hợp; (-): đối chứng âm
Tách plasmid theo Sambroock và kiểm tra sự có mặt của INV_RNAi
trong A.tumefaciens CV58C1 bằng phƣơng pháp PCR với cặp mồi đặc hiệu
5’INV và 3’INV. Kết quả kiểm tra hình 3.7 cho thấy các dòng khuẩn lạc đều

3.6. BIẾN NẠP VECTOR CHUYỂN GEN INV_RNAi VÀO CHỦNG VI

cho kết quả dƣơng tính kích thƣớc khoảng 450 bp mong muốn. Nhƣ vậy,

KHUẨN A.TUMEFACIENS CV58C1.

chứng tỏ chúng tôi đã tạo đƣợc vector chuyển gen INV_RNAi trong chủng vi

Để kiểm tra hoạt động của cấu trúc INV_RNAi trên vector tái tổ hợp

khuẩn A.tumefaciens CV58C1. Đây là nguồn nguyên liệu phục vụ cho thí

trong cây trồng cũng nhƣ tạo nguyên liệu cho quá trình chuyển gen ức chế


nghiệm chuyển gen tiếp theo nhằm tạo dòng mía bất hoạt gen mã hoá

biểu hiện gen mã hóa Invertase ở cây mía, thì cấu trúc INV_RNAi phải đƣợc

Invertase, tăng lƣợng sucrose tích trữ.

biến nạp vào vi khuẩn A.tumefaciens CV58C1 bằng phƣơng pháp xung điện.

3.7. TÁI SINH VÀ BƢỚC ĐẦU BIỂU HIỆN GEN GUS Ở MÍA

Đây là một phƣơng pháp biến nạp có hiệu quả cao trong thời gian ngắn.
Plasmid tái tổ hợp INV_RNAi số 2 đƣợc biến nạp vào A.tumefaciens bằng

3.7.1. Quy trình tái sinh mía thông qua mô sẹo

xung điện với thành phần và các bƣớc tiến hành biến nạp đƣợc trình bày ở

Từ các nghiên cứu tái sinh và chuyển gen thành công ở cây mía cho

mục 2.2.2.3. Kết quả cho thấy trên đĩa môi trƣờng có bổ sung kháng sinh

thấy rằng tỉ lệ tái sinh thu đƣợc cao và hiệu quả thông qua nguyên liệu ban

chọn lọc 100 mg/l streptomycin, 100 mg/l spectinomycin và 50 mg/l

đầu là mô sẹo. Trong thí nghiệm này, chúng tôi tiến hành thử nghiệm tạo mô

rifamycin thu đƣợc những khuẩn lạc màu trắng. Sau đó chọn ngẫu nhiên 2


sẹo với giống mía ROC10 in vitro trên môi trƣờng MS đối chứng không có

dòng khuẩn lạc nhân nuôi trong môi trƣờng lỏng có bổ sung các kháng sinh

2,4D và các môi trƣờng cảm ứng tạo mô sẹo M1-M4 (Bảng 2.4). Kết quả thu

chọn lọc 100 mg/l streptomycin, 100 mg/l spectinomycin và 50 mg/l

đƣợc cho thấy ở môi trƣờng đối chứng MS (không có 2,4D) hoàn toàn không

rifamycin để tách plasmid.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




36

37

tạo đƣợc mô sẹo. Còn các mẫu trên môi trƣờng cảm ứng có bổ sung hàm
lƣợng chất kích thích sinh trƣởng 2,4D đều tạo đƣợc mô sẹo và cho hiệu quả
tái sinh mía đƣợc thể hiện thông qua bảng sau:
Bảng 3.3. Khả năng tạo mô sẹo và tái sinh ở giống mía ROC10 in vitro
trên các môi trƣờng thử nghiệm M1 - M4.
Môi 2,4-D Tổng mẫu

trƣờng (mg/l)
cấy

Tỉ lệ tạo
mô sẹo
(%)

Cây mía ROC10 in vitro

Đoạn thân sát gốc dài 0,5
cm trên môi trƣờng cảm
ứng tạo mô sẹo

Mô sẹo

Tạo cây hoàn chỉnh

Mô sẹo lên mầm xanh

Mô sẹo đang nhú mầm

Tỉ lệ mẫu tạo
Số chồi / 1
chồi
khối mô sẹo
(%)

M1

3


3x130

83,07 ± 0,44 67,95 ± 1,36 42,66 ± 1,45

M2

4

3x130

86,15 ± 3,11 46,41 ± 3,33 20,66 ± 2,96

M3

5

3x130

71,79 ± 0,68 63,08 ± 1,33 32,33 ± 1,45

M4

6

3x130

83,33 ± 2,89 37,95 ± 1,12 17,66 ± 4,33

Bảng 3.3 cho thấy, các mẫu ở môi trƣờng M1 có bổ sung 3 mg/l 2,4D

cho tỉ lệ tạo mô sẹo và hiệu suất tái sinh cao hơn hẳn so với các môi trƣờng

Hình 3.8. Quy trình tái sinh mía ROC10 in vitro từ mô sẹo
3.7.3. Chọn lọc mô sẹo và tái sinh cây chuyển gen

M2 - M4 có bổ sung 4, 5, 6 mg/l 2,4D; trong đó tỉ lệ tạo chồi đạt 67,95% và

Quy trình chuyển gen có hiệu quả là yếu tố rất quan trọng trong việc

số chồi trên một khối mô sẹo đạt khoảng 42,66. Nhƣ vậy, môi trƣờng M1 có

chuyển gen vào thực vật. Sau khi thử nghiệm đƣợc môi trƣờng tái sinh cây

bổ sung 3 mg/l 2,4D cho kết quả tạo mô sẹo và tái sinh cây ở mía ROC10 in

mía thông qua mô sẹo, chúng tôi tiến hành thử nghiệm việc chuyển gen vào

vitro tốt nhất trong thí nghiệm này. Do đó, chúng tôi chọn môi trƣờng M1 có
bổ sung 3 mg/l 2,4D làm môi trƣờng cảm ứng tạo mô sẹo cho việc tái sinh và
chuyển gen ở mía trong các thí nghiệm tiếp theo. Quá trình tái sinh cây từ mô
sẹo đến cây hoàn chỉnh đƣợc minh họa trong hình 3.8.

cây mía thông qua việc sử dụng gen chỉ thị gus-intron. Trong nghiên cứu này,
chúng tôi thử nghiệm hai chủng vi khuẩn A.tumefaciens

khác nhau là

EHA1300 và CV58C1 cùng mang vector chuyển gen pPTN289, ngƣỡng thời
gian nhiễm khuẩn là 10 và 30 phút.
Chúng tôi đã thử nghiệm lây nhiễm khuẩn với mô sẹo theo phƣơng


Mặt khác, chúng tôi tiếp tục nhân nuôi mô sẹo trong môi trƣờng lỏng

pháp thổi khô sau nhân nuôi trong môi trƣờng lỏng lắc M1. Song chúng tôi đã

lắc M1 có bổ sung 3 mg/l 2,4D trong vòng 1 tuần, ở 27oC, lắc 90 vòng/phút,

không thu đƣợc kết quả chuyển gen mong muốn khi kiểm tra biểu hiện gen

trong điều kiện tối để phục vụ cho việc biến nạp thử nghiệm gen gus-intron.

chỉ thị gus-intron với dung dịch X-gluc. Do đó, chúng tôi tiến hành hƣớng
nghiên cứu thứ hai là chuyển mô sẹo sau nhân nuôi sang môi trƣờng cảm ứng
tạo chồi Mc sau đó mới tiến hành lây nhiễm khuẩn. Ở thời gian biến nạp 10

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




38

39

phút các mô sẹo ở cả hai chủng vi khuẩn đều không thu đƣợc mẫu có biểu
hiện gen gus. Trong khi đó ở thời gian nhiễm khuẩn 30 phút, mẫu có biểu

hiện gen gus xuất hiện ở cả hai công thức với hai chủng khuẩn nghiên cứu. Tỉ
lệ biểu hiện gen gus trên mô sẹo đạt 31,67% với chủng CV58C1 và 11,67%
khi sử dụng chủng EHA1300. Khi sử dụng hai chủng vi khuẩn này với
ngƣỡng thời gian nhiễm khuẩn là 30 phút, chúng tôi đều thu đƣợc các chồi
mía sống sót trên môi trƣờng chọn lọc (với CV58C1 là 18,57% và EHA1300
là 7,14%).

Mô sẹo biến nạp trên môi
trƣờng đồng nuôi cấy Mc

Mô sẹo biểu hiện gus khi
nhuộm với dung dịch X-gluc

Bảng 3.4. Kết quả biến nạp gen gus-intron vào cây mía
Thời gian Tỉ lệ biểu
Chủng vi khuẩn
biến nạp hiện gen gus
A.tumefaciens
(phút)
(%)

Tỉ lệ mẫu
tái sinh
(%)

Tỉ lệ mẫu sống sót
trên môi trƣờng có
bổ sung 2 mg/l ppt
(%)


CV58C1

30

31,67 ± 0,65 81,43 ± 1,56

18,57 ± 1,28

EHA1300

30

11,67 ± 0,89 92,85 ± 0,31

7,14 ± 0,69

Nhƣ vậy, bƣớc đầu chúng tôi đã thu đƣợc kết quả khi tiến hành chuyển
gen gus vào cây mía thông qua mô sẹo theo phƣơng pháp cảm ứng tạo chồi.
Tuy nhiên do thời gian có hạn, các yếu tố ảnh hƣởng đến kết quả chuyển gen

Chồi cây trên môi trƣờng chọn lọc
Mr có bổ sung 500 mg/l cefotaxime
và 2 mg/l ppt

Mô sẹo tạo chồi trên Mc có bổ
sung 500 mg/l cefotaxime

vẫn chƣa hoàn toàn đƣợc tối ƣu. Mặc dù vậy, việc thu đƣợc các mô sẹo tái

Hình 3.9. Biến nạp gen gus-intron vào cây mía ROC10 in vitro


sinh có biểu hiện của gen chỉ thị gus đã cho thấy việc sử dụng công nghệ

thông qua trung gian A.tumefaciens

RNAi để tạo cây mía chuyển gen làm tăng khả năng tích trữ đƣờng trong cây
mía là một hƣớng đi triển vọng trong tƣơng lai.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




40

KẾT LUẬN VÀ ĐỀ NGHỊ

BÀI BÁO CỦA TÁC GIẢ
CÓ LIÊN QUAN ĐẾN LUẬN VĂN ĐÃ ĐƢỢC CÔNG BỐ

KẾT LUẬN:
1. Phân lập đƣợc đoạn gen mã hoá Invertase có kích thƣớc khoảng 435 bp
từ giống mía ROC1 in vitro xúc tác quá trình phân huỷ sucrose.
2. Thiết kế đƣợc vector chuyển gen INV-RNAi ức chế sự biểu hiện của
Invertase và biến nạp thành công chủng vi khuẩn A.tumefaciens


Lƣu Thị Cƣ, Đỗ Tiến Phát, Chu Hoàng Hà, Lê Trần Bình, Lê Quỳnh
Liên (2009) Phân lập và thiết kế vector ức chế biểu hiện gen mã hoá
Invertase (-fructofuranosidase) ở cây mía. Hội nghị Công nghệ Sinh học
toàn quốc_Thái Nguyên, tháng 11 năm 2009.

CV58C1.
3. Chọn lọc một số môi trƣờng thích hợp tái sinh cây mía thông qua mô
sẹo (môi trƣờng tạo mô sẹo M1, môi trƣờng tạo chồi Mc, môi trƣờng
tạo rễ Mr) và bƣớc đầu chuyển gen chỉ thị gus-intron vào cây mía.
ĐỀ NGHỊ:
Tiến hành chuyển vector ức chế biểu hiện mã hóa Invertase (INVRNAi) ở cây mía nhằm tăng trữ lƣợng đƣờng của các giống mía ở Việt Nam.

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên



Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên




×