DE KIEM TRA HQC KY I
Mfm Toan Lop 12
Tho'i gian: 90 phut (Khong k~ thoi gian phat d~)
Bai 1: (3 di~m)
= --2x + 1
co'd~ 0 t hi! (C)
x +I
1. Khao sat va ve d6 thi (C) cua ham s6
2. Vi~t phuong trinh ti~p tuyen voi (C), biet tiep tuyen di qua diem A(-l; 3).
Ch o h'am soJ. y
Bai 2: (1 di~m)
Giai phuong trinh sau:
4-" +2-" -6 = 0
B~li 3: (1 di~m)
Giai phuong trinh sau:
210g2 x
+ 10gJ2 x + log ~ x = 9
2
Bai 4: (3 di~m)
Cho hlnh chop S.ABCD co day la hinh vuong canh a, SA vuong goc voi mat day,
SC
= 2a.
a/ Tfnh th~ tich kh6i chop S.ABCD
b/ Xac dinh tam va ban kfnh mat du ngoai tiep khoi chop S.ABCD
c/ Tfnh khoang each tir C d@nmat phang (SBD).
Bai 5 : (1 di~m)
Tim gia tri IOn nhat va gia tri nho nhat cua ham
s6 y = .J x2
-
2x
+ 3 tren
doan [0;3].
Bai 6 : (1 di~m)
Tim m d§ phuong trinh
[;;n]
sin 3x - 5 sin x + 1- m
=0
co nghiern
tren dean
DA.PA.N
BAI
Bai 1
NQIDUNG
DIEM
11 (2 diem)
+ Tap xac dinh: D = R\{-I}
+ lim + y = -00; lim y = +00 =>Tiem can dung la x
x-+( -1)
0,25
=
-I
x-+( -1)-
lim y = 2; lim y = 2 =>Tiern c?n ngang la y =2
+ y'
=
0,25
x-e+ec
X-+-
1
>0
\;fED
(X+I)2
0,25
+ Bang bi~n thien:
x -00
+00
-I
y'
+
+
+00
y
2/
/
0,5
2
-00
Ham s5 tang tren (-00 ;-1);(-1;+ (0)
0,25
+ Giao diem cua d6 th] voi hai true toa 09: (0;1), (-112;0)
+ D6 thi
I f(x)=(2'x+I)/(x+l) I
y
x
-8
-6
-4
-2
2
4
6
8
0,5
-5
D6
th] nhan I( -1 ;-2) lam tam d5i xung
21 Phuong trinh tiep tuyen: y = k(x + 1) +3
Hoanh 09 ti~p di~m la nghiem cua M:
0,25
2x + 1 = k (x + 1) + 3
x +I
=>x=-3
1 =k
(x+I)2
,
1
0,25
0,25
0,25
1
13
Phuong tnnh tt: y = -(x+ 1)+3 = -x+4
4
4
•j
Bai 2
1d
£)~t t = 2 (t>O)
Phuong trinh tro thanh: t2 + t - 6 = 0
0,25
0,25
x
<=>
[t = -3(1)
0,25
0,25
t= 2
Bai 3
Ld
V oi t = 2 <=> Y = 2 <=> x = 1
DK: x>
pt <=> 21og2 x+Z log, x-Iog2
°
X
0,25
0,25
0,25
=9
<=> 31og2 X = 9
<=> log, X = 3
Bai 4
<=>x=8
11 (1 diem)
.6.SAC vuong t?i A
SA = JSC2 -AC2
dt(ABCD)= a2
0,25
S
0,25
0,25
t
\
\
= aJ2
\
\
\
\
\
\
a J2
V= -(dvtt)
3
0,25
\
3
\
"
I
\
D
\
~----~-----------AI.......
"\
.
"
,,'
\
,
_
'~
,
... --
B ,,~~~~~
__ O.:l.:= .
...
-_
0,25
.
",
C
2/ Ta co
BCLAB
BC~SA
=> BC~(SAB) => BC1SB
Tuong tv CD~SD
Vi A, B, D cung nhin doan SC duoi m9t gee vuong nen mat du ngoai
tiep hinh chop co tam la trung di~m I cua doan SC va ban kfnh
R =~SC = a
2
3/ GQi 0 la giao diem cua AC va BD
SB = J SA2 + AB2 = SA2 + AD2 = SD => .6.SBDcan tai S
=> so Iiduang cao cua .6.SBD
2
SO = .J SA2 + A02 = ~2a2 + 2a = aM
J
4
VSBCD
1
=-
3
= ~ aM .aJ2 = a
2
2
a J2
3
SA.dt ( .6.BCD)
= --
6
0~5
0,25
0,25
0,25
2
2
dt(.6.SBD)=~SO.BD
2
0,25
J5
0,25
2
°,25
.
a3Ji" 'j,
1
VSBCD =VCSBD =3d(C,(SBD)).dt(MBD)
=-6-.
a3Ji
3tr:
. 2 6 _~
a 15
5
=> d(C,(SBD))=
0,25
2
Chit v: co th~ !!bii theo each khac
Bai 5
2x-2
y'=--;====
~X2
-2x+3
y'=O<=>x=l'
0,25
0,25
/(0) = J3 ;/(1) = Ji ;/(3) = 16
=.J6
vay maxf(x)
, 0,25
x=3
khi
xE[O;3]
min/I-l = J2 khi
0,25
x
=1
xE[O;3]
Bai6
0,25
Pt <=>-4sin3x-2sinx+l=m
f)~t t = sinx
Vi x
E
rL 1J =>
Jr. Jr
2'
Xet ham
s6
/(t)
/'(t)=-12t2-2<0
tE
[0'1]
'
= -4t3 -2t+ 1
0,25
vi
f(1)= -5; f(O)=1
V~y pt da: cho co nghiem tren
0,25
[~;Jr ] khi
-5 ~ m ~ 1
, 0,25