Tải bản đầy đủ (.pdf) (329 trang)

Bài tập toán cao cấp có lời giải chi tiết

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.7 MB, 329 trang )

˜
’ THANH
ˆ N THUY
NGUYE

` TA
ˆP
BAI
.
´ CAO CA
ˆ´P
TOAN
Tˆa.p 3
Ph´ep t´ınh t´ıch phˆan. L´
y thuyˆe´t chuˆ˜o i.
Phu.o.ng tr`ınh vi phˆan

’ N DAI HOC QUO
` XUA
ˆ´T BA
ˆ´C GIA HA
` NO
ˆ. I
NHA
.
.


Mu.c lu.c
10 T´ıch phˆ
an bˆ


a´t di.nh
10.1 C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan . . . . .
10.1.1 Nguyˆen h`am v`a t´ıch phˆan bˆa´t di.nh
10.1.2 Phu.o.ng ph´ap dˆo’i biˆe´n . . . . . . .
`an
u.ng phˆ
10.1.3 Phu.o.ng ph´ap t´ıch phˆan t`

. . . . . . .

4
4

. . . . . . .

4

. . . . . . .
. . . . . . .
10.2 C´ac l´o.p h`am kha’ t´ıch trong l´o.p c´ac h`am so. cˆa´p . . . .
10.2.1 T´ıch phˆan c´ac h`am h˜
u.u ty’ . . . . . . . . . . . .
10.2.2 T´ıch phˆan mˆo.t sˆo´ h`am vˆo ty’ do.n gia’n . . . . .
10.2.3 T´ıch phˆan c´ac h`am lu.o..ng gi´ac . . . . . . . . . .

12
21

11 T´ıch phˆ
an x´

ac di.nh Riemann
11.1 H`am kha’ t´ıch Riemann v`a t´ıch phˆan x´ac d i.nh . . .
- i.nh ngh˜ıa . . . . . . . . . . . . . . . . . .
11.1.1 D
- iˆ
`eu kiˆe.n dˆe’ h`am kha’ t´ıch . . . . . . . . . .
11.1.2 D
11.1.3 C´ac t´ınh chˆa´t co. ba’n cu’a t´ıch phˆan x´ac di.nh
11.2 Phu.o.ng ph´ap t´ınh t´ıch phˆan x´ac d i.nh . . . . . . .
11.3 Mˆo.t sˆo´ u
´.ng du.ng cu’a t´ıch phˆan x´ac d i.nh . . . . . .
11.3.1 Diˆe.n t´ıch h`ınh ph˘a’ng v`a thˆe’ t´ıch vˆa.t thˆe’ . .

30
30
37
48
57

. .

58

. .
. .

58
59

. .


59

. .
. .

61
78

. .

78

11.3.2 T´ınh dˆo. d`ai cung v`a diˆe.n t´ıch m˘a.t tr`on xoay . .
11.4 T´ıch phˆan suy rˆo.ng . . . . . . . . . . . . . . . . . . . .

89
98

11.4.1 T´ıch phˆan suy rˆo.ng cˆa.n vˆo ha.n . . . . . . . . . 98
11.4.2 T´ıch phˆan suy rˆo.ng cu’a h`am khˆong bi. ch˘a.n . . 107


2

MU
. C LU
.C
`eu biˆ
12 T´ıch phˆ

an h`
am nhiˆ
e´n
12.1 T´ıch phˆan 2-l´o.p . . . . . . . . . . . . . .
`en ch˜
u. nhˆa.t . . .
12.1.1 Tru.`o.ng ho..p miˆ
`en cong . . . . . .
12.1.2 Tru.`o.ng ho..p miˆ
12.1.3 Mˆo.t v`ai u
´.ng du.ng trong h`ınh ho.c
12.2 T´ıch phˆan 3-l´o.p . . . . . . . . . . . . . .
`en h`ınh hˆo.p . . .
12.2.1 Tru.`o.ng ho..p miˆ
`en cong . . . . . .
12.2.2 Tru.`o.ng ho..p miˆ
12.2.3
. . . . . . . . . . . . . . . . . .
12.2.4 Nhˆa.n x´et chung . . . . . . . . . .
12.3 T´ıch phˆan d u.`o.ng . . . . . . . . . . . . .
12.3.1 C´ac di.nh ngh˜ıa co. ba’n . . . . . .
12.3.2 T´ınh t´ıch phˆan du.`o.ng . . . . . .
12.4 T´ıch phˆan m˘a.t . . . . . . . . . . . . . .
12.4.1 C´ac di.nh ngh˜ıa co. ba’n . . . . . .
12.4.2 Phu.o.ng ph´ap t´ınh t´ıch phˆan m˘a.t
12.4.3 Cˆong th´
u.c Gauss-Ostrogradski .
12.4.4 Cˆong th´
u.c Stokes . . . . . . . . .


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

117
118
118
118
121
133
133
134
136
136
144
144

146
158
158
160
162
162

˜i
13 L´
y thuyˆ
e´t chuˆ
o
13.1 Chuˆ˜o i sˆo´ du.o.ng . . . . . . . . . . . . . . . . . . . . . .
13.1.1 C´ac di.nh ngh˜ıa co. ba’n . . . . . . . . . . . . . .
13.1.2 Chuˆo˜ i sˆo´ du.o.ng . . . . . . . . . . . . . . . . . .
13.2 Chuˆ˜o i hˆo.i tu. tuyˆe.t d ˆo´i v`a hˆo.i tu. khˆong tuyˆe.t d ˆo´i . . .
13.2.1 C´ac di.nh ngh˜ıa co. ba’n . . . . . . . . . . . . . .
13.2.2 Chuˆo˜ i dan dˆa´u v`a dˆa´u hiˆe.u Leibnitz . . . . . .
13.3 Chuˆ˜o i l˜
uy th`
u.a . . . . . . . . . . . . . . . . . . . . . .
13.3.1 C´ac di.nh ngh˜ıa co. ba’n . . . . . . . . . . . . . .
- iˆ
`eu kiˆe.n khai triˆe’n v`a phu.o.ng ph´ap khai triˆe’n
13.3.2 D
13.4 Chuˆo˜ i Fourier . . . . . . . . . . . . . . . . . . . . . . .
13.4.1 C´ac di.nh ngh˜ıa co. ba’n . . . . . . . . . . . . . .

177
178

178
179
191
191
192
199
199
201
211
211

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


MU
. C LU
.C

3

`e su.. hˆo.i tu. cu’a chuˆ˜o i Fourier . . . 212
13.4.2 Dˆa´u hiˆe.u du’ vˆ
14 Phu.o.ng tr`ınh vi phˆ
an
224
14.1 Phu.o.ng tr`ınh vi phˆan cˆa´p 1 . . . . . . . . . . . . . . . 225

14.1.1 Phu.o.ng tr`ınh t´ach biˆe´n . . . . . . . . . . . . . . 226
14.1.2 Phu.o.ng tr`ınh d ˘a’ng cˆa´p . . . . . . . . . . . . . 231
14.1.3 Phu.o.ng tr`ınh tuyˆe´n t´ınh . . . . . . . . . . . . . 237
14.1.4 Phu.o.ng tr`ınh Bernoulli . . . . . . . . . . . . . . 244
`an . . . . . . . . 247
14.1.5 Phu.o.ng tr`ınh vi phˆan to`an phˆ
14.1.6 Phu.o.ng tr`ınh Lagrange v`a phu.o.ng tr`ınh Clairaut255
14.2 Phu.o.ng tr`ınh vi phˆan cˆa´p cao . . . . . . . . . . . . . . 259
14.2.1 C´ac phu.o.ng tr`ınh cho ph´ep ha. thˆa´p cˆa´p . . . . 260
14.2.2 Phu.o.ng tr`ınh vi phˆan tuyˆe´n t´ınh cˆa´p 2 v´o.i hˆe.
sˆo´ h˘a`ng . . . . . . . . . . . . . . . . . . . . . . 264
`an nhˆa´t
14.2.3 Phu.o.ng tr`ınh vi phˆan tuyˆe´n t´ınh thuˆ
cˆa´p n (ptvptn cˆa´p n ) v´o.i hˆe. sˆo´ h˘a`ng . . . . . . 273
14.3 Hˆe. phu.o.ng tr`ınh vi phˆan tuyˆe´n t´ınh cˆa´p 1 v´o.i hˆe. sˆo´ h˘a`ng290
`e phu.o.ng tr`ınh vi phˆ
15 Kh´
ai niˆ
e.m vˆ
an da.o h`
am riˆ
eng
15.1 Phu.o.ng tr`ınh vi phˆan cˆa´p 1 tuyˆe´n t´ınh dˆo´i v´o.i c´ac da.o
h`am riˆeng . . . . . . . . . . . . . . . . . . . . . . . . .
15.2 Gia’i phu.o.ng tr`ınh d a.o h`am riˆeng cˆa´p 2 d o.n gia’n nhˆa´t
y to´an co. ba’n . . . . . . . . . .
15.3 C´ac phu.o.ng tr`ınh vˆa.t l´
`en s´ong . . . . . . . . . . . .
15.3.1 Phu.o.ng tr`ınh truyˆ
.

.
`en nhiˆe.t . . . . . . . . . . . .
15.3.2 Phu o ng tr`ınh truyˆ
15.3.3 Phu.o.ng tr`ınh Laplace . . . . . . . . . . . . . .
T`
ai liˆ
e.u tham kha’o . . . . . . . . . . . . . . . . . . . . .

304
306
310
313
314
317
320
327


Chu.o.ng 10
T´ıch phˆ
an bˆ
a´t di.nh

ap t´ınh t´ıch phˆ
an . . . . . .
10.1 C´
ac phu.o.ng ph´

4


10.1.1 Nguyˆen h`
am v`
a t´ıch phˆ
an bˆ
a´t di.nh . . . . .

4

10.1.2 Phu.o.ng ph´
ap dˆ
o’i biˆe´n . . . . . . . . . . . . 12
`an . . . . . 21
10.1.3 Phu.o.ng ph´
ap t´ıch phˆ
an t`
u.ng phˆ
10.2 C´
ac l´
o.p h`
am kha’ t´ıch trong l´
o.p c´
ac h`
am
.
so cˆ
a´p . . . . . . . . . . . . . . . . . . . . . . 30
10.2.1 T´ıch phˆ
an c´
ac h`
am h˜

u.u ty’ . . . . . . . . . 30
10.2.2 T´ıch phˆ
an mˆ
o.t sˆ
o´ h`
am vˆ
o ty’ do.n gia’n . . . 37
10.2.3 T´ıch phˆ
an c´
ac h`
am lu.o..ng gi´
ac . . . . . . . 48

10.1

ap t´ınh t´ıch phˆ
an

ac phu.o.ng ph´

10.1.1

Nguyˆ
en h`
am v`
a t´ıch phˆ
an bˆ
a´t di.nh

- i.nh ngh˜ıa 10.1.1. H`am F (x) du.o..c go.i l`a nguyˆen h`am cu’a h`am

D
f (x) trˆen khoa’ng n`ao d´o nˆe´u F (x) liˆen tu.c trˆen khoa’ng d´o v`a kha’ vi


10.1. C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan

5

ta.i mˆo˜ i diˆe’m trong cu’a khoa’ng v`a F (x) = f (x).
- i.nh l´
`on ta.i nguyˆen h`am) Mo.i h`
`e su.. tˆ
am liˆen tu.c trˆen
D
y 10.1.1. (vˆ
`eu c´
doa.n [a, b] dˆ
o nguyˆen h`
am trˆen khoa’ng (a, b).
- i.nh l´
D
y 10.1.2. C´
ac nguyˆen h`
am bˆ
a´t k`y cu’a c`
ung mˆ
o.t h`
am l`
a chı’
.

`ng sˆ
kh´
ac nhau bo’ i mˆ
o.t h˘
a
o´ cˆ
o.ng.
Kh´ac v´o.i da.o h`am, nguyˆen h`am cu’a h`am so. cˆa´p khˆong pha’i bao
2
ung l`a h`am so. cˆa´p. Ch˘a’ng ha.n, nguyˆen h`am cu’a c´ac h`am e−x ,
gi`o. c˜
1 cos x sin x
,
,
,... l`a nh˜
u.ng h`am khˆong so. cˆa´p.
cos(x2), sin(x2),
lnx
x
x
- i.nh ngh˜ıa 10.1.2. Tˆa.p ho..p mo.i nguyˆen h`am cu’a h`am f (x) trˆen
D
khoa’ng (a, b) du.o..c go.i l`a t´ıch phˆan bˆa´t di.nh cu’a h`am f (x) trˆen khoa’ng
y hiˆe.u l`a
(a, b) v`a du.o..c k´
f (x)dx.
Nˆe´u F (x) l`a mˆo.t trong c´ac nguyˆen h`am cu’a h`am f (x) trˆen khoa’ng
(a, b) th`ı theo di.nh l´
y 10.1.2
f (x)dx = F (x) + C,


C∈R

`an hiˆe’u l`a d˘a’ng th´
u.a
trong d´o C l`a h˘a`ng sˆo´ t`
uy y
´ v`a d˘a’ng th´
u.c cˆ
u.c gi˜
hai tˆa.p ho..p.
C´ac t´ınh chˆa´t co. ba’n cu’a t´ıch phˆan bˆa´t di.nh:
1) d

f (x)dx = f (x)dx.

2)

f (x)dx

3)

df (x) =

= f (x).
f (x)dx = f (x) + C.

T`
u. di.nh ngh˜ıa t´ıch phˆan bˆa´t di.nh r´
ut ra ba’ng c´ac t´ıch phˆan co.

ba’n (thu.`o.ng du.o..c go.i l`a t´ıch phˆan ba’ng) sau dˆay:


Chu.o.ng 10. T´ıch phˆan bˆa´t d .inh

6

I.

0.dx = C.

II.

1dx = x + C.
xα+1
+ C, α = −1
α+1

III.

xαdx =

IV.

dx
= ln|x| + C, x = 0.
x

V.


axdx =

ax
+ C (0 < a = 1);
lna

VI.

sin xdx = − cos x + C.

VII.

cos xdx = sin x + C.

VIII.
IX.

X.

XI.

ex dx = ex + C.

dx
π
= tgx + C, x = + nπ, n ∈ Z.
2
cos x
2
dx

= −cotgx + C, x = nπ, n ∈ Z.
sin2 x

arc sin x + C,
dx

−1 < x < 1.
=
1 − x2 −arc cos x + C

arctgx + C,

dx
=
1 + x2 −arccotgx + C.


dx
= ln|x + x2 ± 1| + C
x2 ± 1
u. th`ı x < −1 ho˘a.c x > 1).
(trong tru.`o.ng ho..p dˆa´u tr`

XII.

XIII.



1 1+x

dx
+ C, |x| = 1.
= ln
2
1−x
2 1−x

C´ac quy t˘´ac t´ınh t´ıch phˆan bˆa´t di.nh:


10.1. C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan

1)

kf (x)dx = k

2)

[f (x) ± g(x)]dx =

3) Nˆe´u

7

f (x)dx, k = 0.
f (x)dx ±

g(x)dx.

f (x)dx = F (x) + C v`a u = ϕ(x) kha’ vi liˆen tu.c th`ı


f (u)du = F (u) + C.
´ V´I DU
CAC
.
V´ı du. 1. Ch´
u.ng minh r˘`ang h`am y = signx c´o nguyˆen h`am trˆen
khoa’ng bˆa´t k`
y khˆong ch´
u.a diˆe’m x = 0 v`a khˆong c´o nguyˆen h`am trˆen
mo.i khoa’ng ch´
u.a diˆe’m x = 0.
Gia’i. 1) Trˆen khoa’ng bˆa´t k`
y khˆong ch´
u.a diˆe’m x = 0 h`am y = signx
l`a h˘`ang sˆo´. Ch˘a’ng ha.n v´o.i mo.i khoa’ng (a, b), 0 < a < b ta c´o signx = 1
v`a do d´o mo.i nguyˆen h`am cu’a n´o trˆen (a, b) c´o da.ng
F (x) = x + C,

C ∈ R.

2) Ta x´et khoa’ng (a, b) m`a a < 0 < b. Trˆen khoa’ng (a, 0) mo.i
nguyˆen h`am cu’a signx c´o da.ng F (x) = −x + C1 c`on trˆen khoa’ng (0, b)
nguyˆen h`am c´o da.ng F (x) = x + C2. V´o.i mo.i c´ach cho.n h˘a`ng sˆo´ C1
v`a C2 ta thu du.o..c h`am [trˆen (a, b)] khˆong c´o da.o h`am ta.i diˆe’m x = 0.
Nˆe´u ta cho.n C = C1 = C2 th`ı thu du.o..c h`am liˆen tu.c y = |x| + C
u. d´o, theo di.nh ngh˜ıa 1 h`am
nhu.ng khˆong kha’ vi ta.i diˆe’m x = 0. T`
signx khˆong c´o nguyˆen h`am trˆen (a, b), a < 0 < b.
V´ı du. 2. T`ım nguyˆen h`am cu’a h`am f (x) = e|x| trˆen to`an tru.c sˆo´.

`en x > 0 mˆo.t
0 ta c´o e|x| = ex v`a do d´o trong miˆ
Gia’i. V´o.i x
trong c´ac nguyˆen h`am l`a ex . Khi x < 0 ta c´o e|x| = e−x v`a do vˆa.y
`en x < 0 mˆo.t trong c´ac nguyˆen h`am l`a −e−x + C v´o.i h˘a`ng
trong miˆ
sˆo´ C bˆa´t k`
y.
Theo di.nh ngh˜ıa, nguyˆen h`am cu’a h`am e|x| pha’i liˆen tu.c nˆen n´o


Chu.o.ng 10. T´ıch phˆan bˆa´t d .inh

8
`eu kiˆe.n
pha’i tho’a m˜an diˆ

lim ex = lim (−e−x + C)

x→0+0

x→0−0


u.c l`a 1 = −1 + C ⇒ C = 2.
Nhu. vˆa.y


ex
nˆe´u x > 0,



F (x) = 1
nˆe´u x = 0,



−e−x + 2 nˆe´u x < 0
l`a h`am liˆen tu.c trˆen to`an tru.c sˆo´. Ta ch´
u.ng minh r˘a`ng F (x) l`a nguyˆen
h`am cu’a h`am e|x| trˆen to`an tru.c sˆo´. Thˆa.t vˆa.y, v´o.i x > 0 ta c´o
`an pha’i
F (x) = ex = e|x|, v´o.i x < 0 th`ı F (x) = e−x = e|x|. Ta c`on cˆ
ch´
u.ng minh r˘`ang F (0) = e0 = 1. Ta c´o
F (x) − F (0)
ex − 1
= lim
= 1,
x→0+0
x→0+0
x
x
F (x) − F (0)
−e−x + 2 − 1
F− (0) = lim
= lim
= 1.
x→0−0
x→0−0

x
x
Nhu. vˆa.y F+ (0) = F− (0) = F (0) = 1 = e|x|. T`
u. d´o c´o thˆe’ viˆe´t:

ex + C,
x<0
e|x|dx = F (x) + C =
−e−x + 2 + C, x < 0.
F+ (0) = lim

`o thi. qua diˆe’m (−2, 2) dˆo´i v´o.i h`am
V´ı du. 3. T`ım nguyˆen h`am c´o dˆ
1
f (x) = , x ∈ (−∞, 0).
x
1
Gia’i. V`ı (ln|x|) = nˆen ln|x| l`a mˆo.t trong c´ac nguyˆen h`am cu’a
x
1
h`am f (x) = . Do vˆa.y, nguyˆen h`am cu’a f l`a h`am F (x) = ln|x| + C,
x
`eu kiˆe.n F (−2) = 2, t´
C ∈ R. H˘a`ng sˆo´ C du.o..c x´ac di.nh t`
u. diˆ
u.c l`a
ln2 + C = 2 ⇒ C = 2 − ln2. Nhu. vˆa.y
F (x) = ln|x| + 2 − ln2 = ln

x

+ 2.
2


10.1. C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan

9

V´ı du. 4. T´ınh c´ac t´ıch phˆan sau dˆay:
2x+1 − 5x−1
dx,
10x

1)

2)

2x + 3
dx.
3x + 2

Gia’i. 1) Ta c´o
2x
5x
1
dx =
2

x
x

10
5 · 10
5
1 x
1 x
1
=2
dx −
dx
5
5
2
1 x
1 x
1 2
=2 5

+C
1
1
5
ln
ln
5
2
2
1
=− x
+
+ C.

5 ln5 5 · 2x ln2

I=

x

2



1 1
5 2

x

dx

2)
5
2
3
+
x
+
2 dx = 2
3
6 dx
I=
2
2

3
x+
3 x+
3
3
2
5
2
= x + ln x + + C.
3
9
3
2 x+

V´ı du. 5. T´ınh c´ac t´ıch phˆan sau dˆay:
1)

tg2 xdx,

2)

1 + cos2 x
dx,
1 + cos 2x

3)


1 − sin 2xdx.


Gia’i. 1)
2

tg xdx =
=

1 − cos2 x
sin2 x
dx =
dx
cos2 x
cos2 x
dx
− dx = tgx − x + C.
cos2 x


Chu.o.ng 10. T´ıch phˆan bˆa´t d .inh

10
2)
1 + cos2 x
dx =
1 + cos 2x

1 + cos2 x
1
dx =
2
2 cos x

2

dx
+
cos2 x

dx

1
= (tgx + x) + C.
2
3)

1 − sin 2xdx =

sin2 x − 2 sin x cos x + cos2 xdx
(sin x − cos x)2dx =

=

| sin x − cos x|dx

= (sin x + cos x)sign(cos x − sin x) + C.

` TA
ˆP
BAI
.
`ong nhˆa´t, h˜ay du.a c´ac t´ıch phˆan d˜a cho
B˘`ang c´ac ph´ep biˆe´n dˆo’i dˆ

`e t´ıch phˆan ba’ng v`a t´ınh c´ac t´ıch phˆan d´o1

dx
.
x4 − 1

1.

(DS.

1
1 x−1
ln
− arctgx)
4 x+1
2

1
1 + 2x2
dx.
(DS.
)
arctgx

x2 (1 + x2 )
x



x2 + 1 + 1 − x2


dx.
(DS. arc sin x + ln|x + 1 + x2|)
1 − x4




x2 + 1 − 1 − x2

dx. (DS. ln|x + x2 − 1| − ln|x + x2 + 1|)
x4 − 1

1
x4 + x−4 + 2
dx.
(DS. ln|x| − 4 )
3
x
4x

2.
3.
4.
5.

23x − 1
dx.
ex − 1


6.

(DS.

e2x
+ ex + 1)
2

ay ch´
ung tˆ
oi bo’ qua khˆ
ong viˆe´t
Dˆe’ cho go.n, trong c´
ac “D´
ap sˆ
o´” cu’a chu.o.ng n`
`

ac h˘
ang sˆ
o´ cˆ
o.ng C.
1


10.1. C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan

7.
8.


9.

11

3x

22x − 1

dx.
2x

2 22
x
+ 2− 2 )
(DS.
ln2 3

dx
.
x(2 + ln2 x)

3
ln2 x
dx.
x

1
lnx
(DS. √ arctg √ )
2

2
3 5/3
ln x)
5

(DS.

10.

ex + e2x
dx.
1 − ex

11.

ex dx
.
1 + ex

12.

x
sin2 dx.
2

(DS.

13.

cotg2 xdx.


(DS. −x − cotgx)

14.


π
.
1 + sin 2xdx, x ∈ 0,
2

15.

ecos x sin xdx.

16.

ex cos ex dx.

(DS. sin ex)

17.

1
dx.
1 + cos x

x
(DS. tg )
2


18.

dx
.
sin x + cos x

19.

1 + cos x
dx.
(x + sin x)3

20.

(DS. −ex − 2ln|ex − 1|)
(DS. ln(1 + ex))

sin 2x
2

(DS. − cos x + sin x)

(DS. −ecos x )

x π
1
(DS. √ ln tg
+
2

8
2

dx.

1 − 4 sin x
21.

sin x
1
x−
)
2
2

(DS. −

2
)
2(x + sin x)2

(DS. −

1
2

1 − 4 sin2 x)


sin x

2

2 − sin x

dx.

)

(DS. −ln| cos x +

1 + cos2 x|)


Chu.o.ng 10. T´ıch phˆan bˆa´t d .inh

12

22.
23.
24.

sin x cos x
3 − sin4 x

sin2 x
1
(DS. arc sin √
)
2
3


dx.

1
arccotg3x
dx.
(DS. − arccotg2 3x)
2
1 + 9x
6

x + arctg2x
1
1
2
ln(1
+
4x
arctg3/22x)
dx.
(DS.
)
+
1 + 4x2
8
3

25.

arc sin x − arc cos x


dx.
1 − x2

26.

x + arc sin3 2x

dx.
1 − 4x2

27.

x + arc cos3/2 x

dx.
1 − x2

28.

x|x|dx.

29.

(2x − 3)|x − 2|dx.

30.

(DS.


(DS.

1
(arc sin2 x + arc cos2 x))
2

(DS. −

1√
1
1 − 4x2 + arc sin4 2x)
4
8


2
(DS. − 1 − x2 − arc cos5/2 x)
5

|x|3
)
3


7
2

− x3 + x2 − 6x + C, x < 2
3
2

(DS. F (x) =
)
7
2

 x3 − x2 + 6x + C,
x 2
3
2

1 − x2, |x| 1,
f (x)dx, f (x) =
1 − |x|, |x| > 1.

3

x − x + C
3
(DS. F (x) =

x − x|x| + 1 signx + C
2
6

10.1.2

ap dˆ
Phu.o.ng ph´
o’i biˆ
e´n


- i.nh l´
D
y. Gia’ su’.:

nˆe´u |x|

1
)

nˆe´u|x| > 1


10.1. C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan

13

a.p ho..p gi´
a
1) H`
am x = ϕ(t) x´
ac di.nh v`
a kha’ vi trˆen khoa’ng T v´
o.i tˆ
tri. l`
a khoa’ng X.
2) H`
am y = f (x) x´
ac di.nh v`
a c´

o nguyˆen h`
am F (x) trˆen khoa’ng X.
o h`
am F (ϕ(t)) l`
a nguyˆen h`
am cu’a h`
am f (ϕ(t))ϕ (t) trˆen
Khi d´
khoa’ng T .
y 10.1.1 suy r˘a`ng
T`
u. di.nh l´
f (ϕ(t))ϕ (t)dt = F (ϕ(t)) + C.

(10.1)

V`ı
F (ϕ(t)) + C = (F (x) + C)

x=ϕ(t)

=

f (x)dx

x=ϕ(t)

cho nˆen d˘a’ng th´
u.c (10.1) c´o thˆe’ viˆe´t du.´o.i da.ng
f (x)dx


x=ϕ(t)

=

f (ϕ(t))ϕ (t)dt.

(10.2)

u.c (10.2) du.o..c go.i l`a cˆong th´
u.c dˆo’i biˆe´n trong t´ıch phˆan
D˘a’ng th´
bˆa´t di.nh.
u. (10.2) thu
Nˆe´u h`am x = ϕ(t) c´o h`am ngu.o..c t = ϕ−1 (x) th`ı t`
du.o..c
f (x)dx =

f (ϕ(t))ϕ (t)dt

t=ϕ−1 (x)

.

(10.3)

`e ph´ep dˆo’i biˆe´n.
Ta nˆeu mˆo.t v`ai v´ı du. vˆ

u.a c˘an a2 − x2, a > 0

i) Nˆe´u biˆe’u th´
u.c du.´o.i dˆa´u t´ıch phˆan c´o ch´
π π
.
th`ı su’. du.ng ph´ep dˆo’i biˆe´n x = a sin t, t ∈ − ,
2 2 √
ii) Nˆe´u biˆe’u th´
u.c du.´o.i dˆa´u t´ıch phˆan c´o ch´
u.a c˘an x2 − a2, a > 0
π
a
, 0 < t < ho˘a.c x = acht.
th`ı d`
ung ph´ep dˆo’i biˆe´n x =
cos t
2

iii) Nˆe´u h`am du.´o.i dˆa´u t´ıch phˆan ch´
u.a c˘an th´
u.c a2 + x2, a > 0
π π
ho˘a.c x = asht.
th`ı c´o thˆe’ d˘a.t x = atgt, t ∈ − ,
2 2
.
.
iv) Nˆe´u h`am du ´o i dˆa´u t´ıch phˆan l`a f (x) = R(ex , e2x, . . . .enx ) th`ı
u.u ty’).
c´o thˆe’ d˘a.t t = ex (o’. dˆay R l`a h`am h˜



Chu.o.ng 10. T´ıch phˆan bˆa´t d .inh

14

´ V´I DU
CAC
.
V´ı du. 1. T´ınh

dx
.
cos x

Gia’i. Ta c´o
cos xdx
dx
(d˘a.t t = sin x, dt = cos xdx)
=
cos x
1 − sin2 x
x π
1 1+t
dt
ln
+
C
=
ln
tg

+
=
=
1 − t2
2 1−t
2
4
V´ı du. 2. T´ınh I =

+ C.

x3 dx
.
x8 − 2

Gia’i. ta c´o



I=

1
d(x4 )
4
=
x8 − 2

2 x4
d √
4

2
x4
−2 1 − √
2

2

x4
D˘a.t t = √ ta thu du.o..c
2


2
2 + x4
I=−
ln √
+ C.
8
2 − x4
x2 dx
·
(x2 + a2 )3
adt
Gia’i. D˘a.t x(t) = atgt ⇒ dx =
. Do d´o
cos2 t

V´ı du. 3. T´ınh I =

sin2 t

dt
a3tg2t · cos3 tdt
=
dt
=
− cos tdt
I=
a3 cos2 t
cos t
cos t
t π
+
− sin t + C.
= ln tg
2 4
x
V`ı t = arctg nˆen
a
1
x π
x
I = ln tg arctg +
− sin arctg
+C
2
a 4
a

x
= −√

+ ln|x + x2 + a2| + C.
x2 + a2


10.1. C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan

15

˜e d`ang thˆa´y r˘`ang
Thˆa.t vˆa.y, v`ı sin α = cos α · tgα nˆen dˆ
sin arctg

x
x
=√
·
2
a
x + a2

Tiˆe´p theo ta c´o
x π
1
arctg +
2
a 4
x π
1
cos arctg +
2

a 4
sin

x π
1 − cos arctg +
a 2
=
x π
sin arctg +
a 2

x + a2 + x2
=
a

x
1 + sin arctg
a
=
x
− cos arctg
a

`eu pha’i ch´
u.ng minh.
v`a t`
u. d´o suy ra diˆ

V´ı du. 4. T´ınh I =
a2 + x2 dx.

Gia’i. D˘a.t x = asht. Khi d´o
a2 (1 + sh2 t)achtdt = a2

I=
= a2
=

a2 1
ch2t + 1
dt =
sh2t + t + C
2
2 2

a2
(sht · cht + t) + C.
2
2

x2 t
x+
1 + 2 . e = sht + cht =
a

1 + sh t =

x + a2 + x2
t = ln
v`a do d´o
a

V`ı cht =

ch2 tdt


a2 + x2 dx =



a2 + x2
nˆen
a


x√ 2
a2
a + x2 + ln|x + a2 + x2| + C.
2
2

V´ı du. 5. T´ınh
1) I1 =



x2 + 1
dx,
x6 − 7x4 + x2

2) I2 =


3x + 4

dx.
−x2 + 6x − 8


Chu.o.ng 10. T´ıch phˆan bˆa´t d .inh

16
Gia’i. 1) Ta c´o
1+
I1 =

1
x2

x2 − 7 +

d x−
1
x2

dx =
x−

1
x

1

x



=

2

−5

dt
t2 − 5


1
1
t2 − 5| + C = ln x − + x2 − 7 + 2 + C.
x
x
2) Ta viˆe´t biˆe’u th´
u.c du.´o.i dˆa´u t´ıch phˆan du.´o.i da.ng
1
3
−2x + 6
+ 13 · √
f (x) = − · √
2
−x2 + 6x − 8
−x2 + 6x − 8
v`a thu du.o..c

= ln|t +

I2 =

f (x)dx

1
3
(−x2 + 6x − 8)− 2 d(−x2 + 6x − 8) + 13
2

= −3 −x2 + 6x − 8 + 13 arc sin(x − 3) + C.

=−

d(x − 3)
1 − (x − 3)2

V´ı du. 6. T´ınh
dx
,
sin x

1)

2) I2 =

sin x cos3 x
dx.
1 + cos2 x


Gia’i
1) C´
ach I. Ta c´o
dx
=
sin x

sin x
dx =
sin2 x

1 1 − cos x
d(cos x)
=
ln
+ C.
cos2 x − 1
2 1 + cos x


ach II.
dx
=
sin x

=

x
x

d
d
2
2
x =
x
x
x
sin cos
tg · cos2
2
2
2
2
x
d tg
x
2
x = ln tg 2 + C.
tg
2


10.1. C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan

17

2) Ta c´o
sin x cos x[(cos2 x + 1) − 1]
dx.

1 + cos2 x

I2 =

Ta d˘a.t t = 1 + cos2 x. T`
u. d´o dt = −2 cos x sin xdx. Do d´o
I2 = −

1
2

t−1
t
dt = − + ln|t| + C,
t
2

trong d´o t = 1 + cos2 x.
V´ı du. 7. T´ınh
1) I1 =

exdx

,
e2x + 5

2)

I2 =


ex + 1
dx.
ex − 1

Gia’i
1) D˘a.t ex = t. Ta c´o ex dx = dt v`a


dt

= ln|t + t2 + 5| + C = ln |ex + e2x + 5| + C.
t2 + 5

I1 =

dt
v`a thu du.o..c
2) Tu.o.ng tu.., d˘a.t ex = t, exdx = dt, dx =
t
I2 =

t + 1 dt
=
t−1 t

2dt

t−1

dt

= 2ln|t − 1| − ln|t| + C
t

= 2ln|ex − 1| − lnex + c
= ln(ex − 1)2 − x + C.

` TA
ˆP
BAI
.
T´ınh c´ac t´ıch phˆan:
1.

e2x
4
dx.
(DS.
(3ex − 4) 4 (ex + 1)3 )
x
21
e +1
˜
Chı’ dˆ
a n. D˘a.t ex + 1 = t4.

4


Chu.o.ng 10. T´ıch phˆan bˆa´t d .inh


18

2.

dx

.
ex + 1


1 + ex − 1
(DS. ln √
)
1 + ex + 1

e2x
dx.
(DS. ex + ln|ex − 1|)
ex − 1

2
1 + lnx
4.
dx.
(DS.
(1 + lnx)3)
x
3

1 + lnx

dx.
5.
xlnx


(DS. 2 1 + lnx − ln|lnx| + 2ln| 1 + lnx − 1|)

3.

6.
7.
8.
9.

dx
x
x
.
(DS. −x − 2e− 2 + 2ln(1 + e 2 ))
x
+e


arctg x dx

.
(DS. (arctg x)2)
x 1+x

2

e3x + e2xdx.
(DS. (ex + 1)3/2 )
3
ex/2

e2x

2 +2x−1

(2x + 1)dx.

dx
.
ex − 1

10.



11.

e2xdx

.
e4x + 1

12.

2x dx


.
1 − 4x

13.

(DS.

1 2x2+2x−1
e
)
2


(DS. 2arctg ex − 1)
(DS.
(DS.


1
ln(e2x + e4x + 1))
2
arc sin 2x
)
ln2



dx

.

(DS. 2[ x + 1 − ln(1 + x + 1)])
1+ x+1
˜
Chı’ dˆ
a n. D˘a.t x + 1 = t2.

14.

x+1

dx.
x x−2

15.



dx
.
ax + b + m



(DS. 2 x − 2 + 2arctg
(DS.

x−2
)
2



2 √
ax + b − mln| ax + b + m| )
a


10.1. C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan

16.

dx


.
3
3
x( x − 1)

17.

dx
.
(1 − x2)3/2



(DS. 3 3 x + 3ln| 3 x − 1|)
(DS. tg(arc sin x))

˜

Chı’ dˆ
a n. D˘a.t x = sin t, t ∈
18.

dx
.
+ a2)3/2



π π
,
)
2 2

1
x
sin arctg )
2
a
a
π π
˜
.
Chı’ dˆ
a n. D˘a.t x = atgt, t ∈ − ,
2 2
(x2

19.


dx
.
(x2 − 1)3/2

21.


a2 + x2dx.

(DS.

1
1
, t = arc sin )
cos t
x
π
π
1
˜
Chı’ dˆ
a n. D˘a.t x =
, − < t < 0, 0 < t < .
sin t
2
2


x x a2 − x2

a2
20.
)
a2 − x2 dx.
(DS. arc sin +
2
a
2
˜
Chı’ dˆ
a n. D˘a.t x = a sin t.
(DS. −

(DS.


x√ 2
a2
a + x2 + ln|x + a2 + x2|)
2
2

˜
Chı’ dˆ
a n. D˘a.t x = asht.
22.
23.

x2


dx.
a2 + x2
x2



dx
.
x2 + a2

˜
Chı’ dˆ
a n. D˘a.t x =
24.

25.


1 √ 2
x a + x2 − a2ln(x + a2 + x2) )
2

x2 + a2
)
(DS. −
a2x

(DS.

1

ho˘a.c x = atgt, ho˘a.c x = asht.
t
x x√ 2
a2
(DS. arc sin −
a − x2 )
2
a a

x2dx

.
a2 − x2
˜
Chı’ dˆ
a n. D˘a.t x = a sin t.
dx

.
x x2 − a2

a
1
(DS. − arc sin )
a
x

19



Chu.o.ng 10. T´ıch phˆan bˆa´t d .inh

20

a
1
˜
ho˘a.c x = acht.
Chı’ dˆ
a n. D˘a.t x = , ho˘a.c x =
t
cos t


1 − x2
1 − x2
26.
− arc sin x)
dx.
(DS.

x2
x
27.

28.
29.
30.

dx

(a2

32.

.

dx
(x2



a2)3

(DS.

a2

x

)
x2 + a2


x2 − 9
)
(DS.
9x

dx


.
2
x x2 − 9
.

(DS. −

a2



x
)
x2 − a2


x2 a2 − x2dx.

(DS.

31.

+

x2 ) 3

x
x
a2 √
a4

− (a2 − x2)3/2 + x x2 − a2 + arc sin )
4
8
8
a


x
a+x
dx.
(DS. − a2 − x2 + arc sin )
a−x
a
˜
Chı’ dˆ
a n. D˘a.t x = a cos 2t.
x−a
dx.
x+a



(DS.
x2 − a2 − 2aln( x − a + x + a) nˆe´u x > a,



− x2 − a2 + 2aln( −x + a + −x − a) nˆe´u x < −a)
a
˜

.
Chı’ dˆ
a n. D˘a.t x =
cos 2t

33.

x − 1 dx
.
x + 1 x2

1
(DS. arc cos −
x

1
˜
Chı’ dˆ
a n. D˘a.t x = .
t

dx

34.
.
(DS. 2arc sin x)
x − x2


x2 − 1

)
x


10.1. C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan

21

˜
Chı’ dˆ
a n. D˘a.t x = sin2 t.



1
+
x2 + 1
x2 + 1
dx.
(DS. x2 + 1 − ln
)
35.
x
x
36.

x3dx

.
2 − x2

(9 − x2)2
dx.
x6

37.
38.

(DS. −

x2dx

.
x2 − a2

(DS.

x2 √
4√
2 − x2 −
2 − x2 )
3
3

(DS. −

(9 − x2 )5
)
45x5



x√ 2
a2
x − a2 + ln|x + x2 − a2|)
2
2

(x + 1)dx
xex
)
.
(DS.
ln
x(1 + xex)
1 + xex
˜
`oi d˘a.t xex = t.
Chı’ dˆ
a n. Nhˆan tu’. sˆo´ v`a mˆa˜ u sˆo´ v´o.i ex rˆ
dx
ax
1
x
40.
+
.
(DS.
arctg
)
(x2 + a2)2
2a3

a x2 + a2
˜
Chı’ dˆ
a n. D˘a.t x = atgt.

39.

10.1.3

`an
ap t´ıch phˆ
an t`
u.ng phˆ
Phu.o.ng ph´

`an du..a trˆen di.nh l´
Phu.o.ng ph´ap t´ıch phˆan t`
y sau dˆay.
u.ng phˆ
- i.nh l´
D
y. Gia’ su’. trˆen khoa’ng D c´
ac h`
am u(x) v`
a v(x) kha’ vi v`
a h`
am
o nguyˆen h`
am. Khi d´
o h`

am u(x)v (x) c´
o nguyˆen h`
am trˆen
v(x)u (x) c´
D v`
a
u(x)v (x)dx = u(x)v(x) −

v(x)u (x)dx.

(10.4)

`an.
u.c t´ınh t´ıch phˆan t`
u.ng phˆ
Cˆong th´
u.c (10.4) du.o..c go.i l`a cˆong th´
V`ı u (x)dx = du v`a v (x)dx = dv nˆen (10.4) c´o thˆe’ viˆe´t du.´o.i da.ng
udv = uv −

vdu.

(10.4*)

`an l´o.n c´ac t´ıch phˆan t´ınh du.o..c b˘a`ng
Thu..c tˆe´ cho thˆa´y r˘a`ng phˆ
`an c´o thˆe’ phˆan th`anh ba nh´om sau dˆay.
ph´ep t´ıch phˆan t`
u.ng phˆ



Chu.o.ng 10. T´ıch phˆan bˆa´t d .inh

22

`om nh˜
u.a
Nh´
om I gˆ
u.ng t´ıch phˆan m`a h`am du.´o.i dˆa´u t´ıch phˆan c´o ch´
th`
u.a sˆo´ l`a mˆo.t trong c´ac h`am sau dˆay: lnx, arc sin x, arc cos x, arctgx,
(arctgx)2, (arc cos x)2, lnϕ(x), arc sin ϕ(x),...
u.c (10.4*) b˘a`ng c´ach
Dˆe’ t´ınh c´ac t´ıch phˆan n`ay ta ´ap du.ng cˆong th´
`an c`on la.i cu’a
d˘a.t u(x) b˘a`ng mˆo.t trong c´ac h`am d˜a chı’ ra c`on dv l`a phˆ
biˆe’u th´
u.c du.´o.i dˆa´u t´ıch phˆan.
`om nh˜
Nh´
om II gˆ
u.ng t´ıch phˆan m`a biˆe’u th´
u.c du.´o.i dˆa´u t´ıch phˆan
u.c, a,
c´o da.ng P (x)eax , P (x) cos bx, P (x) sin bx trong d´o P (x) l`a da th´
b l`a h˘a`ng sˆo´.
Dˆe’ t´ınh c´ac t´ıch phˆan n`ay ta ´ap du.ng (10.4*) b˘a`ng c´ach d˘a.t u(x) =
`an c`on la.i cu’a biˆe’u th´
P (x), dv l`a phˆ

u.c du.´o.i dˆa´u t´ıch phˆan. Sau mˆ˜o i
`an bˆa.c cu’a da th´
`an t´ıch phˆan t`
u.c s˜e gia’m mˆo.t do.n vi..

u.ng phˆ
`om nh˜
Nh´
om III gˆ
u.ng t´ıch phˆan m`a h`am du.´o.i dˆa´u t´ıch phˆan c´o
`an t´ıch phˆan
da.ng: eax sin bx, eax cos bx, sin(lnx), cos(lnx),... Sau hai lˆ
`an ta la.i thu du.o..c t´ıch phˆan ban dˆ
`au v´o.i hˆe. sˆo´ n`ao d´o. D´o l`a
t`
u.ng phˆ
`an t´ınh.
phu.o.ng tr`ınh tuyˆe´n t´ınh v´o.i ˆa’n l`a t´ıch phˆan cˆ
.
.
.
u a nˆeu khˆong v´et hˆe´t mo.i t´ıch phˆan
Du o ng nhiˆen l`a ba nh´om v`
`an (xem v´ı du. 6).
u.ng phˆ
t´ınh du.o..c b˘`ang t´ıch phˆan t`
`an
u.ng phˆ
Nhˆ
a.n x´et. Nh`o. c´ac phu.o.ng ph´ap dˆo’i biˆe´n v`a t´ıch phˆan t`

ta ch´
u.ng minh du.o..c c´ac cˆong th´
u.c thu.`o.ng hay su’. du.ng sau dˆay:
1)
2)
3)
4)

x2

x
1
dx
= arctg + C, a = 0.
2
+a
a
a

a2

dx
a+x
1
+ C, a = 0.
= ln
2
−x
2a a − x


dx
x

= arc sin + C, a = 0.
2
2
a
a −x

dx

= ln|x + x2 ± a2| + C.
x2 ± a2


10.1. C´ac phu.o.ng ph´ap t´ınh t´ıch phˆan
´ V´I DU
CAC
.


V´ı du. 1. T´ınh t´ıch phˆan I =
xarctg xdx.
Gia’i. T´ıch phˆan d˜a cho thuˆo.c nh´om I. Ta d˘a.t

u(x) = arctg x,

dv = xdx.
Khi d´o du =


dx
2 3
1
· √ , v = x 2 . Do d´o
1+x 2 x
3


2 3
x
1
I = x 2 arctg x −
dx
3
3
1+x

1
2 3
1
1−
= x 2 arctg x −
dx
3
3
1+x

2 3
1
= x 2 arctg x − (x − ln|1 + x|) + C.

3
3
V´ı du. 2. T´ınh I = arc cos2 xdx.
Gia’i. Gia’ su’. u = arc cos2 x, dv = dx. Khi d´o
2arc cos x
du = − √
dx, v = x.
1 − x2
Theo (10.4*) ta c´o
xarc cos x

dx.
1 − x2
u.c thu du.o..c ta d˘a.t u =
Dˆe’ t´ınh t´ıch phˆan o’. vˆe´ pha’i d˘a’ng th´
xdx
. Khi d´o
arc cos x, dv = √
1 − x2


dx
du = − √
, v = − d( 1 − x2) = − 1 − x2 + C1
1 − x2

`an lˆa´y v = − 1 − x2:
v`a ta chı’ cˆ

xarc cos x


dx = − 1 − x2arc cos x − dx
21 − x2

= − 1 − x2arc cos x − x + C2 .
I = xarc cos2 x + 2

23


Chu.o.ng 10. T´ıch phˆan bˆa´t d .inh

24
Cuˆo´i c`
ung ta thu du.o..c


I = xarc cos2 x − 2 1 − x2arc cos x − 2x + C.
V´ı du. 3. T´ınh I =

x2 sin 3xdx.

Gia’i. T´ıch phˆan d˜a cho thuˆo.c nh´om II. Ta d˘a.t
u(x) = x2,
dv = sin 3xdx.
1
Khi d´o du = 2xdx, v = − cos 3x v`a
3
1
2

2
1
x cos 3xdx = − x2 cos 3x + I1.
I = − x2 cos 3x +
3
3
3
3
`an t´ınh I1. D˘a.t u = x, dv = cos 3xdx. Khi d´o du = 1dx,
Ta cˆ
1
u. d´o
v = sin 3x. T`
3
1
2 1
1
x sin 3x −
sin 3xdx
I = − x2 cos 3x +
3
3 3
3
2
2
1
cos 3x + C.
= − x2 cos 3x + x sin 3x +
3
9

27
`an t´ıch phˆan t`
Nhˆ
a.n x´et. Nˆe´u d˘a.t u = sin 3x, dv = x2dx th`ı lˆ
u.ng
`an th´
phˆ
u. nhˆa´t khˆong du.a dˆe´n t´ıch phˆan do.n gia’n ho.n.
V´ı du. 4. T´ınh I =

eax cos bx; a, b = 0.

Gia’i. Dˆay l`a t´ıch phˆan thuˆo.c nh´om III. Ta d˘a.t u = eax, dv =
1
cos bxdx. Khi d´o du = aeaxdx, v = sin bx v`a
b
1
a
1
a
I = eax sin bx −
eax sin bxdx = eax sin bx − I1 .
b
b
b
b
Dˆe’ t´ınh I1 ta d˘a.t u = eax, dv = sin bxdx. Khi d´o du = aeaxdx,
1
v = − cos bx v`a
b

1
a
eax cos bxdx.
I1 = − eax cos bx +
b
b


×