Tải bản đầy đủ (.doc) (29 trang)

Sáng kiến kinh nghiệm SKKN môn toán lớp 4 về các dạng bài toán tính nhanh phân số

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (222.64 KB, 29 trang )

SÁNG KIẾN KINH NGHIỆM

ĐỀ TÀI:
“ DẠY CÁC DẠNG TOÁN VỀ PHÂN SỐ CHO HỌC SINH GIỎI
TOÁN LỚP 4”


PHẦN 1: ĐẶT VẤN ĐỀ
I. LÍ DO CHỌN ĐỀ TÀI
Cùng với Tiếng Việt – Toán học là môn học có vị trí và vai trò vô cùng quan
trọng ở bậc tiểu học. Toán học giúp bồi dưỡng tư duy lô gíc, bồi dưỡng và phát sinh
phương pháp suy luận, phát triển trí thông minh, tư suy lô gíc sáng tạo, tính chính xác,
kiên trì, trung thực.
- Kể từ năm học 1995- 1996 các vấn đề về phân số được chính thức đưa vào
chương trình môn Toán ở bậc tiểu học và trở thành một chủ đề quan trọng trong
chương trình . Đây là một nội dung khó đối với học sinh lớp 4, hơn thế nữa trong các
kì thi học sinh giỏi hiện nay thì các bài toán về phân số luôn xuất hiện . Vì thế , việc
giải thành thạo các bài toán về phân số là một yêu cầu khó đối với tất cả các em học
sinh, đặc biệt là đối với học sinh khá giỏi .
- Chính vì vậy tôi đã đi sâu tìm tòi và nghiên cứu cách dạy các bài toán về phân
số để bồi dưỡng cho những học sinh khá và giỏi toán ở lớp 4, nhằm giúp các em có
kiến thức một cách hệ thống các dạng toán về phân số, giúp các em tháo gỡ khó khăn
khi gặp các bài toán về phân số trong các đề thi học sinh giỏi.
II. MỤC ĐÍCH NGHIÊN CỨU
- Nghiên cứu về “ Dạy các dạng toán về phân số cho học sinh giỏi toán lớp 4” từ đó
đưa ra những kiến nghị cụ thể nhằm giúp việc giảng dạy đội tuyển đạt kết quả cao.


PHẦN 2. NỘI DUNG
I. CƠ SỞ LÍ LUẬN
Trong các môn học ở bậc tiểu học, môn toán có vị trí rất quan trọng. Toán học với


tư cách là một khoa học nghiên cứu một số mặt của thế giới khách quan, có một hệ
thống kiến thức cơ bản và phương pháp nhận thức rất cần thiết cho đời sống, sinh hoạt
và lao động hằng ngày cho mỗi cá nhân con người. Toán học có khả năng phát triển tư
duy lôgíc, bồi dưỡng và phát triển những thao tác trí tuệ cần thiết để nhận thức thế
giới khách quan như: trừu tượng hoá, khái quát hoá, phân tích tổng hợp ….nó có vai
trò rất quan trọng trong việc rèn luyện phương pháp suy nghĩ, phương pháp suy luận.
Nó có nhiều tác dụng trong việc phát triển trí thông minh, tư duy độc lập, linh hoạt
sáng tạo góp phần vào giáo dục ý chí, đức tính cần cù, ý thức vượt khó, khắc phục khó
khăn của học sinh tiểu học.
Vì nhận thức của học sinh giai đoạn này, cảm giác và tri giác của các em đã đi vào
những cái tổng thể, trọn vẹn của sự vật hiện tượng, đã biết suy luận và phân tích.
Nhưng tri giác của các em còn gắn liền với hành động trực quan nhiều hơn, tri giác về
không gian trừu tượng còn hạn chế. Sự phát triển tư duy, tưởng tượng của các em còn
phù thuộc vào vật mẫu, hình mẫu. Quá trình ghi nhớ của các em còn phù thuộc vào
đặc điểm lứa tuổi, ghi nhớ máy móc còn chiếm phần nhiều so với ghi nhớ lôgíc. Khả
năng điều chỉnh chú ý chưa cao, sự chú ý của các em thường hướng ra ngoài vào hành
động cụ thể chứ chưa có khả năng hướng vào trong ( vào tư duy ). Tư duy của các em
chưa thoát khỏi tinh cụ thể còn mang tính hình thức . Hình ảnh của tượng tượng, tư
duy đơn giản hay thay đổi. Cuối bậc tiểu học các em biết dựa vào ngôn ngữ để xây
dựng hình tượng có tính khái quát hơn. Trí nhớ trực quan hình tượng phát triển hơn so
với trí nhớ từ ngữ lôgíc.
Cuối bậc tiểu học, khả năng tư duy của các em chuyển dần từ trực quan sinh động
sang tư duy trừu tượng, khả năng phân tích tổng hợp đã được diễn ra trong trí óc dựa
trên các khái niệm và ngôn ngữ. Trong quá trình dạy học, hình thành dần khả năng
trừu tượng hoá cho các em đòi hỏi người giáo viên phải nắm được đặc điểm tâm lí của
các em thì mới có thể dạy tốt và hình thành kỹ năng, kỹ xảo, phát triển tư duy và khả
năng sáng tạo cho các em, giúp các em đi vào cuộc sống và học lên các lớp trên một
cách vững chắc hơn.
Dựa vào đặc điểm nhận thức của học sinh tiểu học mà trong quá trình dạy học phải
làm cho những tri thức khoa học xuất hiện như một đối tượng, kích thích sự tò mò,

sáng tạo….cho hoạt động khám phá của học sinh, rèn luyện và phát triển khả năng tư
duy linh hoạt sáng tạo, khả năng tự phát hiện, tự giải quyết vấn đề, khả năng vận dụng
những kiến thức đã học vào những trường hợp có liên quan vào đời sống thực tiễn của
học sinh.


II. THỰC TRẠNG VIỆC DẠY VÀ HỌC
1. Về học sinh
- Ở chương trình môn toán lớp 4, nội dung phân số và các phép tính về phân số
được đưa vào dạy học kỳ II. Vừa làm quen, học khái niệm phân số các em phải học
ngay các phép toán về phân số, rồi giải các bài toán về phân số cho nên các em cảm
thấy đây là một nội dung khó, khi bồi dưỡng các bài toán khó về phân số nhiều em
cảm thấy " sợ "giải các bài toán về phân số.
- Việc vận dụng các tính chất của phân số, các qui tắc tính chậm.
- Các tính chất của các phép tính về phân số trừu tượng nhiều học sinh khó nhận
biết, mối quan hệ giữa các thành phần trong các phép tính về phân số nhiều học sinh
không phát hiện được do khả năng quan sát chưa nhanh.
- Qua nhiều đề thi kiểm tra chất lượng học sinh giỏi của trường, của Quận, của
Thành phố (những năm trước), phần nhiều học sinh không giải quyết được bài toán
có nội dung về phân số, giải sai về cách giải, không chính xác về kết quả. Gần đây
nhất là trong đề thi khảo sát chất lượng học sinh giỏi(đầu năm ) ở lớp 5 có một bài tập
số 5 :
Tính nhanh : (2điểm) - Bài tập phát hiện học sinh giỏi
4
4
4
4
+
+ ........... +
+

1x3 3x5
55 x57 57 x59

Thực tế số em giải được và đúng bài tập này rất ít, phần nhiều giải sai hoặc bỏ
giấy trắng, nhiều em giải dài dòng chưa nhanh. Tìm hiểu nguyên nhân thấy rằng các
em không biết quan sát, so sánh, các phân số trong tổng, không phân tích được qui luật
có trong dãy phân số đó để tính nhanh.
2. Về giáo viên
- Qua tìm hiểu tôi nhận thấy các đồng chí giáo viên đựoc phân công bồi dưỡng
toán cho học sinh chưa thấy được vị trí quan trọng của các bài toán về phân số. Trong
các bài dạy về phân số giáo viên không mở rộng kiến thức cho học sinh. Khi bồi
dưỡng cho học sinh giỏi không hệ thống được các nội dung kiến thức, không phân
định được rõ dạng bài, để khắc sâu cách giải cho học sinh.
- Phương pháp dạy các bài toán về phân số còn chưa phù hợp với nhận thức và
trình độ của học sinh, không gây được hứng thú và sự say mê học toán của các em.


3. Kết quả
Với 20 học sinh lớp 4 năm học trước và đề kiểm tra chất lượng học sinh giỏi của
trường năm học này.
Bài toán về phân số được học sinh giải quyết với kết quả như sau :
G : 1 em =5%

TB : 8 em =40%

K : 5 em = 25%

y : 6 em = 30%

Trước thực trạng trên tôi rất băn khoăn và trăn trở. Khi được ban giám hiệu nhà

trường phân công bồi dưỡng học sinh giỏi lớp 4, tôi đã nghiên cứu các tài liệu và tìm
ra cho mình một số biện pháp để dạy cho học sinh giải các bài toán về phân số nhằm
nâng cao chất lượng học sinh giỏi ở lớp 4 tạo nền tảng cho các em học tốt toán ở lớp 5
và các lớp trên.
III. BIỆN PHÁP THỰC HIỆN ĐỀ TÀI
Trong quá trình bồi dưỡng nội dung về phân số cho học sinh giỏi toán ở lớp 4,
tôi phân thành các dạng bài như sau:
DẠNG 1: CÁC BÀI TOÁN VỀ CẤU TẠO PHÂN SỐ VÀ TÍNH CHẤT CƠ BẢN
VỀ PHÂN SỐ :
A. Các kiến thức cần ghi nhớ :
Cấu tạo phân số
1. Thương của phép chia số tự nhiên cho số tự nhiên (khác 0) có thể viết thành phân
số, tử số là số bị chia, MS là số chia a : b =

a
b

( với b ≠ 0 )

- Mẫu số b chỉ số phần = nhau lấy ra từ 1 đơn vị, tử số a chỉ số phần lấy đi.
2. Mỗi số tự nhiên có thể viết thành phân số mẫu số là 1 : a =

a
1

3. Phân số nào có tử số nhỏ hơn mẫu số thì nhỏ hơn 1; phân số nào có tử số lớn hơn
mẫu số thì lớn hơn 1, phân số nào có tử số bằng mẫu số thì bằng 1.
4. Nếu nhân cả tử số và mẫu số của 1 phân số với một số tự nhiên khác 0 thì được
phân số bằng phân số đã cho :


axn a
= (n
bxn b ≠

0)

5. Nếu chia cả tử số và mẫu số của phân số đã cho với 1 số tự nhiên ≠ 0 ( gọi là rút
gọn phân số ) thì được phân số bằng phân số đã cho.
a:m a
=
b:m b

(m≠0)


6. Nếu cộng cả tử số và mẫu số của phân số với cùng 1 số (hoặc trừ cả tử số và mẫu
số ) cùng một số thì hiệu giữa mẫu số và tử số không thay đổi.(với phân số < 1 )
So sánh phân số
1. Muốn quy đồng mẫu số của 2 phân số, ta nhân cả tử số và mẫu số của phân số thứ
nhất với mẫu số của phân số thứ 2. Nhân cả mẫu số và tử số của phân số thứ hai với
mẫu số của phân số thứ nhất.
2. Quy đồng tử số: Nhân cả mấu số và tử số của phân số thứ nhất với tử số của phân số
thứ hai. Nhân cả mẫu số và tử số của phân số thứ hai với tử số của phân số thứ nhất.
3. Khi so sánh 2 phân số :
- Có cùng mẫu số : Ta so sánh 2 tử số, phân số nào có tử số lớn hơn thì lớn hơn.
- Không cùng mẫu số : Trước hết ta qui đồng mẫu số rồi so sánh như trường hợp trên.
4. Các phương pháp sử dụng so sánh phân số
- Vận dụng quy tắc so sánh ở phần 3.
- Nếu 2 phân số có cùng tử số phân số nào có mẫu số nhỏ hơn thì lớn hơn.
- So sánh qua 1 phân số trung gian.

a c
<
b d



c
d

<

e
f

thì

a e
<
b f

- So sánh hai phần bù với 1 của mỗi phân số
1-

a
c
<1b
d

thì


a
b

>

c
d

- So sánh " phần hơn " với 1 của 1 phân số
a
c
−1 < −1
b
d

thì

a c
<
b d

- Thực hiện phép chia hai phân số để so sánh
Khi chia phân số thứ nhất cho phân số thứ hai, nếu thương tìm được bằng 1 thì hai
phân số đó bằng nhau; nếu thương tìm được lớn hơn 1 thì phân số thứ nhất lớn hơn
phân số thứ hai; nếu thương tìm được nhỏ hơn 1 thì phân số thứ nhất nhỏ hơn phân số
thứ hai.


B. Các bài toán mẫu :
Cấu tạo phân số

Ví dụ 1 : Rút gọn các phân số sau :
a.

2323
2525

=

23 x 101 23
=
25 x 101 25

b.

123123
345345

=

123 x 1001 123 41
=
=
345 x 001 345 115

Ví dụ 2: Viết số tự nhiên 8 thành các phân số có mẫu số lần lượt là 3, 5, 12, 105, 1000
Giải
8 8 x3 24
=
=
1 1x3

3

8=

8=

8 8 x12 96
=
=
1 1x12 12

8=
8=

8=

8 8 x5 40
=
=
1 1x5
5
8 8 x105 840
=
=
1 1x105 105

8 8 x1000 8000
=
=
1 1x1000 1000


Ví dụ 3 : Cho phân số

3
,
7

cộng thêm vào tử số và mẫu số của phân số đó với 1 số tự

nhiên ta được phân số bằng

7
.
9

Tìm số đó

Giải :
Hiệu của mẫu số và tử số của phân số

3

7

:

7 - 3 = 4 ( đơn vị )
Khi cộng vào tử số và mẫu số với cùng 1 số thì hiệu của mẫu số và tử số vẫn
không thay đổi. Nếu coi tử số của phân số mới là 7 phần thì mẫu số của nó là 9 phần.
Ta có sơ đồ :


?

Tử số

4
Mẫu số


?

Số phần bằng nhau của mẫu số hơn số phần bằng nhau của tử số là :
9 - 7 = 2 ( phần )
Tử số của phân số mới là :
Số cộng thêm vào là :

4 : 2 x 7 = 14

14 -3 =11
Đáp số : 11

Ví dụ 4 : Cho phân số

11
14

.Tìm phân số bằng phân số đã cho biết rằng mẫu số của phân

số đó lớn hơn tử số của nó là 1995 đơn vị.
Giải

Nếu ta coi mẫu số của phân số phải tìm là 14 phần thì tử số của phân số đó là 11 phần
như thế.
Hiệu số phần bằng nhau là : 14 - 11 = 3 (phần)
Tử số của phân số phải tìm là : 1995 : 3 x 11 = 7315
Mẫu số là : 1995 + 7315 = 9310
Vậy phân số phải tìm là :

7315
9310

Ví dụ 5: Hãy viết một phân số lớn hơn

5
7

và nhỏ hơn

5
.
6

Có bao nhiêu phân số như

5
6

với cùng một số (khác 0) .

vậy?
Giải :

Ta hãy nhân cả tử số và mẫu số của hai phân số

5
7



Lúc đó “khoảng cách” giữa hai mẫu số sẽ rộng ra và có thể có rất nhiều số tự
nhiên nằm trong “khoảng cách” ấy . Có thể chọn chúng là mẫu số của các phân
số phải tìm
Ví dụ:
- Nhân cả tử số và mẫu số với 2:
5 5 x 2 10
=
=
7 7 x 2 14



10
14

<

10
13

<

10

12

8=
nên

5
7

5 5 x 2 10
=
=
6 6 x 2 12

<

10
13

<

5
6


ở đây ta chọn được một phân số là

10
13

- Hoặc nhân cả tử số và mẫu số với 10:

5 5 x10 50
=
=
7 7 x10 70

Ta có

5 50
=
7 70

<

50
69

50
68

<

5 5 x 2 50
=
=
6 6 x10 60
50
62

< …. <


<

50
61

<

50
60

=

5
6

50
50
đến .
61
69

ở đây ta chọn được 9 phân số , từ

* Vậy khi nhân cả tử số và mẫu số với số tự nhiên a (khác 0) thì ta sẽ chọn được ( a-1)
phân số ở giữa

5
6




5
.
7

Nghĩa là có thể tìm được rất nhiều phân số như vậy.

So sánh phân số
Ví dụ 1 : So sánh 2 phân số

5
7

7
9



Giải
Cách 1: Quy đồng mẫu 2 phân số
5 45
=
7 63

7 49
=
9 63

5
7


<

7
9

Vậy :

5
7

<

7
9

<

7
9

Ví dụ 2 :Sắp xếp các phân số sau theo thứ tự từ nhỏ đén lớn:

1
2

;

45
49

<
63
63

;

. Vậy :

Cách 2: Quy đồng tử số 2 phân số:
5
7

=

35
49

7
9

;

35
45

=

35
35
< 45

49

;

Cách 3: Tìm và so sánh phần bù tới 1của hai phân số;
1-

5
7

=

2
7

;

1-

7
9

2
9

=

2
7




>

2
9

nên

5
7

Giải
Cách 1: Quy đồng mẫu số:
24
56

<

28
56

<

42
56

1
2


=

nên

28
56

;

3
7

<

3
7

=
1
2

24
56

;

3
4

<


3
4

.

=

42
56

;

3
7

;

3
4


Cách 2: Quy đồng tử số:

1
2

=

9

;
18



9
21

<

9
18

Cách 3:

1-

1
2

1

=2
1
4


Cách 4: Lấy phân số
Ta có:


3
7

1
2

<

;
<

1
2

3
7

<

9
12

3
7

=

14
7


<

9
;
21

=

=

9
12

<

1
2

<

4
7

3
7

nên

3
7


nên

3
4

3
4

.

;
<

1
2

<

3
4

1-

=

1
4

3

4

1
làm phân số trung tâm :
2
3
4

;

>

1
2

3
7

nên

<

1
2

<

3
4


Ví dụ 3: Hãy tìm 5 phân số khác nhau nằm giữa hai phân số :
a.

2
5



3
5

a. Ta có :

2
5

=

12
30

,

3
5

=

18
30


Vậy

2
5

=

12
30

<

13
30

<

14
30

b.

1995
1997

16
30

<


17
30

1995
1996

=

1995 x 6
1996 x 6



1995
1996

Giải

b. Ta có :

1995
1997

=

1995 x 6
1997 x 6

11970

11982

<

11970
11981

=

<

15
30

11970
11982

<

;

<

18
30

=

3
5


11970

= 11976

Vậy :
1995
1997

=

<

11970
11980

<

11970
11979

<

11970
11978

<

11970
11977


<

11970
11976

=

1995
1996

C. Các bài toán để luyện tập
Cấu tạo phân số
Bài 1: Rút gọn các phân số sau :
123123

a. 363363

b.

199619961996
194719471947

c.

1818181818
8181818181

Bài 2 : Tìm phân số biết tổng của tử số và mẫu số bằng 40 và rút gọn phân số đó thì
được


3
.
5

Gợi ý
- Coi tử số của phân số phải tìm là 3 phần thì mẫu số là 5 phần


- Áp dụng toán tìm 2 số khi biết tổng và tỷ số của 2 số đó để tìm tử số và mẫu số của
phân số mới.
Đáp số :
Bài 3 : Cho phân số

211
.
313

nhiên ta được phân số bằng

15
25

Trừ cả tử số và mẫu số của phân số đó cho cùng 1 số tự
3
5

. Tìm số đó.

Gợi ý : - Khi trừ cả tử số và mẫu số của phân số


211
313

đi cùng 1 số thì hiệu của mẫu số

và tử số không thay đổi.
- Tìm hiệu của mẫu số và tử số của phân số

211
313

- Coi tử số của phân số mới là 3 phần thì mẫu số là 5 phần .
Áp dụng bài toán tìm 2 số khi biết hiệu và tỷ số của 2 số để tìm tử số (hoặc mẫu số).
Lấy tử số cũ trừ đi tử số mới ta được số phải tìm
Đáp số : 28
Bài 4 : Cho phân số
phân số bằng

3
.
4

35
.
49

Cộng vào tử số 1 số nào đó và mẫu số trừ đi số đó ta được

Tìm số đó ?

Đáp số : 1

Bài 5 : Hãy tìm một số nào đó sao cho khi tử số và mẫu số của phân số
số đó thì được phân số mới bằng

29
64

cùng trừ đi

2
.
9

Đáp số : 19
Bài 6 : Tìm một số sao cho cả tử số và mẫu số của phân số

35
cùng
49

trừ đi số đó thì

1

được phân số mới bằng 3 .
Đáp số : 28
Bài 7 : Tìm 1 phân số bằng
(Giải tương tự ví dụ 3)


7
sao
13

cho mẫu số của nó lớn hơn tử số 114 đơn vị .
Đáp số :

133
247

 133 : 19 7 
= 

 247 : 19 13 


9
16

Bài 8 : Tìm 1 phân số bằng

sao cho tổng của tử số và mẫu số của phân số ấy bằng

1000.
(HD tương tự bài 2)

Bài 9 : Tìm 1 phân số bằng

21
;

23

 360 : 40 9 
= 

 640 : 40 16 

360
640

Đáp số :

biết rằng khi ta cộng thêm vào tử số và mẫu số của
66

phân số đó với cùng 1 số tự nhiên ta được phân số 72 .
HD : Nhận xét

66
72

là phân số chưa tối giản ta phải rút gọn
66 33 11
=
=
72 36 12

Áp dụng giải như ví dụ 2
Đáp số : 1
Bài 10 : Tìm phân số bằng phân số


15
,
19

biết rằng khi ta trừ cả tử và mẫu của phân số đó

đi cùng 1 số tự nhiên ta được phân số bằng

21
.
37
15
19

Gợi ý : Xét hiệu của mẫu số và tử số của phân số

bằng 4

Xét hiệu số phần bằng nhau giữa mẫu số và tử số của phân số mới là : 37 - 21 = 16.
Ta thấy hiệu của mẫu số và tử số của phân số

15
19

nhỏ hơn hiệu số phần số lần là :

16 : 4 = 4 ( lần )
Vậy phân số phải tìm là :


15 x 4 60
=
19 x 4 67

Số trừ đi là : 60 - 21 =39 hoặc 76 - 37 = 39
So sánh phân số
Bài 1. Hãy so sánh các phân số sau bằng nhiều cách:
a.

3
4



4
5

b.

6
8
và 9
7

Bài 2. Hãy so sánh các phân số sau bằng cách nhanh nhất:
a.

16
27




15
29

;

b.

1995
1996



1996
1997

;

c.

327
326



326
325



Bài 3. Xếp các phân số sau theo thứ tự tăng dần:
a.
b.

1
2

9

2
3

;

4
5

1992 1993
;
1991 1992

;

1994
1993

; 10 ;

8
9


;

;

7
8

;

1995
1994

;

1996
1995

;
;

5
6

3
4

;

7

8

.

.

7
8

c.

;

17
18

;

57
58

;

97
98

.

Bài 4. Xếp các phân số sau theo thứ tự giảm dần:
a.


5
7

6
9

;

;

7
9

7

.

b. 10 ;

80
750
. 1000 .
100

Bài 5. Hãy chứng tỏ các phân số sau đều bằng nhau:
a.

23
31


b.

1995
1996

2323
3131

;

;

;

232323
313131

19951995
19961996

;

23232323
31313131

199519951995
199619961996

;


;

c.

1234
5678

;

2468
11356

;

8638
39746

.

Bài 6. Hãy viết 10 phân số khác nhau nằm giữa hai phân số:
a.

100
101



101
102


b.

1996
1995

1993
1992



Bài 7. Hãy tìm 5 phân số có tử số chia hết cho 5 và nằm giữa hai phân số :
a.

999
1001



1001
1003

b.

9
10



11

13

DẠNG 2: 4 PHÉP TÍNH VỀ PHÂN SỐ.
A. Kiến thức cần ghi nhớ :
1. Phép cộng : Muốn cộng hai phân số có cùng mẫu số, ta cộng hai tử số với nhau và
giữ nguyên mẫu số.
a
c
a+c
+
=
b
b
b

Muốn cộng hai phân số khác mẫu số, ta quy đồng mẫu số rồi cộng hai phân số đó .
ad + b x c
a
c
+
=
bxd
b
d

2. Phép trừ (tương tự như phép cộng)
3. Phép nhân: Muốn nhân hai phân số, ta nhân tử số với tử số, mẫu số nhân với mẫu
số



axc
a
c
x
=
bxd
b
d

4. phép chia: Muốn chia một phân số cho một phân số, ta lấy phân số thứ nhất nhân
với phân số thứ hai đảo ngược .
axd
a
c
a d
:
= x =
bxc
b
d
b c

5. Các tính chất của phép tính trên phân số .
a. Tính chất giao hoán
a
c
c
a
+
=

+
;
b
d
d
b

a
c
c
a
x
= x
b
d
d
b

b.Tính chất kết hợp:
a c
e
a c e
 +  + =
+ +  ;
f
b d f 
b d

a c  e a c e
 x x = x  x 

b d  f b d f 

c. Tính chất phân phối của phép nhân đối với phép cộng:
c e
a
a
c
a
e
x  +  =
x
+
x
b
b
d
b
f
d f 

B. Các bài mẫu :
Ví dụ 1.Tính giá trị của các biểu thức sau đây bằng cách nhanh nhất:

a.

3
7
2 16 19
1995 1990 1997 1993 997
6

+
+
+ +
+
; b.
x
x
x
x
5 11 13
5
1997 1993 1994 1995 995
11 13

HD : Áp dụng tính chất giao hoán và kết hợp của phép cộng , phép nhân phân số .
Giải.
a.

3
7
2 16 19
 3 2   6 16   7 19 
6
+
+
+ +
+
= +  + + + + 
5 11 13
5

11 13
 5 5   11 11   13 13 

=
b.

5
26
22
+
+
= 1 + 2 + 2= 5
5
13
11

1995 1990 1997 1993 997  1995   1997 
 1990 1993  997
x
x 
 x
x
x
x
x
x
=
1997 1993 1994 1995 995  1997   1994 
 1993 1995  995



 1995 1990  997
x
=
x
 1994 1995  995

1990 997
995 x 2 x 1997
x
=
=1
1994 995
997 x 2 x 1995

=

Ví dụ 2: Tính nhanh.
a/

2 1 3 2
x + x
5 4 4 5

6 2 5 2
: + :
11 3 11 3

b/


Giải:
a/

2 1 3 2
2
2 1 3 2
x + x = x +  = x 1 =
5 4 4 5
5
5 4 4 5

b/

2
3 3
6 2 5 2 6 5 2
: + : =  +  : = 1: = 1 x =
3
2 2
11 3 11 3  11 11  5

Ví dụ 3:

1 1
2 3

1 1 1  1
5 6 7 3

1

4

1
4

1 1 1 1
5 6 7 8

Tính nhanh hiệu sau:  + + + + +  −  + + + + + 
Giải

 1 1 1 1 1 1  1 1 1 1 1 1
 + + + + + − + + + + + 
2 3 4 5 6 7 3 4 5 6 7 8

=

1 1 1 1 1 1 1 1 1 1 1 1
1 1 3
+ − + − + − + − + − −
= − =
2 3 3 4 4 5 5 6 6 7 7 8
2 8 8

Ví dụ 4: Điền dấu ( < , = , > ) vào ô trống:
1 1

2 3

1

2x3

1 1

2 3

;

1 1
+
2 4

1−

1
4

1
6
3
4

1 1

3 4

;

1 1 1
+ +

2 4 8

;

1−

1
12

1
3x4

1
=
12

1
3x4

1
8

Giải
1 1

2 3

1
2x3


=

1 1
+
2 4

= 1−

1
4

=

Ví dụ5: Tính nhanh:

;

1 1

=
2 3

3
4

;

1 1 1
+ +
2 4 8


1
6

1 1
− =
3 4

;
=

1−

1
8


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x + x + x + x + x + x + x + x
2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

HD giải. Phân tích:

Vậy:

1 1
1
1 1
x =
= − ;

2 3 2x3 2 3

1 1
1
1 1
x =
= − …
3 4 3x4 3 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x + x + x + x + x + x + x + x
2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

=

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
− + − + − + − + − + − + − + −
2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

=

1 1 4 2
− = =
2 10 10 5

Ví dụ 6: Tính nhanh tổng sau:
1 1 1 1 1 1
+ + + + +
2 4 8 16 32 64


HD giải: Dựa vào ví dụ 3 để phân tích và giải

Ta thấy:

1
1
1 1 3
1
= 1−
+ = = 1−
;
2
2
2 4 4
4

;

1 1 1 7
1
+ + = = 1 − ...
2 4 8 8
8

Từ các kết quả trên suy ra

1 1 1 1 1 1
1 63
+ + + + + = 1− =
2 4 8 16 32 64

64 64

C. Các bài luyện tập.
Bài 1: Tính nhanh
a/

1 2 3
7 8 9
+ + + ... + +
48 48 48
48 48 48

c/

1 4 7 10 13 16 19
+ + + + + +
70 70 70 70 70 70 70

b/

1
3
5
7
9
+
+
+
+
100 100 100 100 100



Bài 2. Tính nhanh.
a/

2 3 3 2
: x : + 1999 =
5 7 7 5

b/

1 2 5 5
x : x =
2 3 6 6

c/

2 4 5 7
: : : =
3 5 6 8

Bài 3. Tính bằng cách thuận tiện nhất.
a/

5 1 1 2
x + x
7 4 4 7

b/


18 2 2 7
x − x
11 3 3 11

Bài 4. Tính nhanh các dãy tính sau:
a/
b/

1
1
1
1
1
1
+
+
+
+
+
2 x 3 3 x 4 5 x 6 7 x 8 8 x 9 9 x 10
1 1 1 1 1
1
1
+ + + + +
+
30 42 56 72 90 110 132

Gợi ý: phân tích các mẫu số thành tích 2 số tự nhiên liền nhau:
Chẳng hạn: 30 = 5 x 6; 42 = 6 x 7; 56 = 7 x 8…
c/


2
2
2
2
2
2
2
+
+
+
+
+
+
1 x 3 3 x 5 5 x 7 7 x 9 9 x 11 11x 13 13 x 15

Gợi ý:

2
1
= 1−
1x 3
3

2
1 1
= −
3x5 3 5

;


DẠNG 3: TOÁN ĐỐ VỀ PHÂN SỐ:
A. Các bài mẫu
Ví dụ 1: ( Tìm tỉ số của hai số )
3
4

số cam thì bằng

2
5

số quýt. Tính tỉ số giữa số cam và số quýt .

Giải :
Cách 1:
Quy đồng tử số :

3
4

=

6
8

;

2 6
=

5 15

Vậy

6
8

số cam bằng

6
15

số quýt

Hay

1
8

số cam bằng

1
15

số quýt.


Suy ra nếu số cam gồm 8 phần bằng nhau thì số quýt gồm 15 phần như thế.
Vậy tỉ số giữa số cam và số quýt là


8
15

Cách 2:
Quy đồng mẫu số
Vậy

15
20

3
4

số cam bằng

=

15
20

8
20

2
8
=
5
20

;


số quýt .

Suy ra nếu số cam gồm 8 phần bằng nhau thì số quýt gồm 15 phần như thế .
Do đó tỉ số phải tìm là

8
15

Ví dụ 2: ( Tìm số trung bình cộng )
13
. Trung bình cộng của phân số thứ nhất và phân số
36
5
7
thứ hai là
, của phân số thứ hai và phân số thứ ba là . Tìm 3 phân số đó.
12
24

Trung bình cộng của 3 phân số =

Hd giải: Vận dụng kiến thức về số trung bình cộng để giải.
Tổng của 3 phân số là

13
39 13
x3 = =
36
36 12


Tổng của phân số thứ nhất và phân số thứ hai là:
Phân số thứ 3 là:

5
10
x 2=
12
12

13 12 1
− =
12 12 4

Tổng của phân số thứ hai và phân số thứ ba là:
Phân số thứ nhất là:
Phân số thứ hai là:

13 7 1
− =
12 12 2

7 3 1
− =
12 12 3

Đáp số:

1
1 1

, và
2 3
4

7
70
x 2=
22
12


Ví dụ 3: ( Tìm một phân số khi biết giá trị một phân số của số ấy )
Một người bán cam lần thứ nhất người đó bán

1
2
số cam. Lần thứ hai bán số cam thì
3
5

còn lại 12 quả. Hỏi người đó đem bán bao nhiêu quả cam?
Hd giải:
1 2
3 5

Cả hai lần người đó bán số phần cam là: + =
12 quả cam ứng với số phần cam là: 1 −
Người đó đem bán số quả cam là: 12 :

11

(số cam)
15

11 4
=
(số cam)
15 15

4
= 45 (quả cam)
15

Đáp số: 45 quả cam.
Ví dụ 4: Một cửa hàng bán vải, buổi sáng bán được

3
tấm vải, buổi chiều bán được
11

3
số vải còn lại, thì tấm vải còn lại 20m. Hỏi tấm vải dài bao nhiêu mét và mỗi lần bán
8

bao nhiêu mét ?
Hd giải: Tìm số phần tấm vải còn lại sau buổi sáng.
Tìm số phần tấm vải bán buổi chiều.
Tìm số phần tấm vải bán hai buổi sáng và chiều.
Tìm số phần tấm vải bán hai buổi sáng và chiều.
Tìm số phần tấm vải ứng với 20m.
Tìm số mét của tấm vải và số vải bán được của mỗi buổi.

Giải:
Sau khi bán buổi sáng, còn lại số phần tấm vải là: 1 −
Số phần tấm vải bán được buổi chiều là:

8 3 3
x = (tấm vải).
11 8 11

Cả sáng và chiều bán được số phần tấm vải là
Số phần tấm vải ứng với 20m vải là: 1 −

3 8
= (tấm vải).
11 11

3 3 6
− =
(tấm vải).
11 11 11

6 5
= (tấm vải).
11 11


Tấm vải dài là: 20 :

5
= 44(m )
11


Buổi sáng bán được số mét vải là: 44 x

3
= 12 ( m )
11

Vậy buổi chiều cũng bán được 12 mét vải.
Đáp số: tấm vải: 44 m; sáng :12m ;chiều : 12m.
Ví dụ 5 : (Tìm một phân số của một số )
Ba người chia nhau 720 ngàn ( đồng ). Người thứ nhất được
hai được

3
8

số tiền, còn bao nhiêu là của người thứ ba.

Tính số tiền của người thứ ba
Giải
Cách 1:
Người thứ nhất được:
720 : 6 = 120 ( ngàn )
Người thứ hai được
720 x

3
8

= 270 ( ngàn )


Hai người đầu được:
120 + 270 = 390 ( ngàn )
Người thứ ba được:
720 – 390 = 330 ( ngàn )
Cách 2 :
Phân số chỉ số tiền của hai ngươi đâùu là :
1
6

+

3
8

=

13
24

( tổng số tiền )

Phân số chỉ số tiền của người thứ ba là :
24 13
24 24

11

= 24 ( tổng số tiền )


Số tiền của người thứ ba là :
720 x

11
24

= 330 ( ngàn )

1
6

số tiền, người thứ


Đáp số : 330 ngàn đồng
Ví dụ 6 : ( Tìm các số biết tổng và tỉ số của chúng )
Tổng số tuổi của ba cha con là 85, trong đó :
- Tuổi con gái bằng

2
5

tuổi cha.

- Tuổi con trai bằng

3
4

tuổi con gái .


Tính số tuổi từng người
Giải
Phân số chỉ số tuổi của con trai là :
3
4

2
5

x

3
10

=

( tuổi cha )

Phân số chỉ số tuổi của cả ba cha con là :
10
10

2
5

+

+


3
10

=

17
10

( tuổi cha )

Tuổi cha là :
85 :

17
10

= 50 ( tuổi )

Tuổi con gái là
50 x

2
5

= 20 ( tuổi )

Tuổi con trai là :
50 x

3

10

= 15 ( tuổi )

Đáp số : Cha : 50 tuổi ; con gái : 20 tuổi ; con trai : 15 tuổi
Ví dụ 7 : ( Tìm các số biết hiệu và tỉ số của chúng )
Một giá sách có ba ngăn:
- Số sách ở ngăn thứ nhất bằng
- Số sách ở ngăn thứ hi bằng

3
4

2
3

số sách ở ngăn thứ ba.

số sách ở ngăn thứ nhất .

Biết ngăn thứ ba có nhiều hơn ngăn thứ hai 45 cuốn, hỏi số sách ở mỗi ngăn ?
Giải


Theo đầu bài thì :
Số sách ngăn thứ ba bằng

3
2


ngăn thứ nhất

Phân số chỉ 45 cuốn sách là :
3
2

3
4

-

=

3
4

( ngăn thứ nhất )

Số sách ở ngăn thứ nhất là :
45 :

3
=
4

60 ( cuốn)

Số sách ở ngăn thứ hai là :
50 x


3
4

= 45 ( cuốn )

Số sách ở ngăn thứ ba là :
45 + 45 = 90 ( cuốn )
Đáp số : 60 cuốn, 45 cuốn và 90 cuốn
Ví dụ 8 :
Người công nhân thứ nhất sửa xong một đoạn đường trong 4 giờ. Người công nhân
thứ hai có thể sửa xong đoạn đường đó trong 6 giờ. Nếu hai công nhân cùng làm thì
đoạn đường được sửa xong trong bao lâu?
Hd giải:
- Tìm số phần đường sửa được của mỗi người trong 1 giờ.
người sửa trong một giờ được bao nhiêu phần đường?
- Tìm thời gian để hai người sửa xong đoạn đường.
Giải:
Trong một giờ, công nhân thứ nhất sửa được là: 1: 4 =

1
(đoạn đường).
4

Trong một giờ , công nhân thứ hai sửa được là : 1: 6 =
1
4

1
6


Trong một giờ , cả hai công nhân sửa được là: + =
Thời gian để hai công nhân cùng sửa xong là: 1:

1
(đoạn đường).
6
5
(đoạn đường).
12

5 12
=
( giê )
12 5

- Cả hai


1 giờ = 60 phút ⇒ 60 x

12
= 144 phót = 2 giê 24 phót
5

Đáp số: 2 giờ 24 phút.
Ví dụ 9:
Trong phong trào thi đua lập thành tích chào mừng ngày 20/ 11, học sinh một
trường tiểu học đạt số điểm 10 như sau: Số điểm 10 của khối Một bằng
điểm 10 của 4 khối còn lại. Số điểm 10 của khối Hai bằng
khối còn lại. Số điểm 10 của khối Ba bằng

điểm 10 của khối Bốn bằng

1
tổng số
3

1
tổng số điểm 10 của 4
4

1
tổng số điểm 10 của 4 khối còn lại. Số
5

1
tổng số điểm 10 của 4 khối còn lại và khối Năm đạt 101
6

điểm 10. Hỏi toàn trường đạt bao nhiêu điểm 10 và mỗi khối đạt bao nhiêu điểm 10 ?
Hd giải: - Tìm số phần điểm 10 của mỗi khối so với tổng số điểm 10 của toàn trường
(dùng sơ đồ đoạn thẳng).
- Tìm tổng số phần điểm 10 của 4 khối: 1, 2, 3, 4.
- Tìm phân số chỉ số điểm 10 của khối Năm.
- Tìm số điểm 10 của 5 khối ⇒ tìm số điểm 10 của mỗi khối.
Giải:
Số điểm 10 của khối Một bằng
⇒ Ta có:

1
tổng số điểm 10 của 4 khối còn lại.

3

Khối Một có số điểm 10:
Số điểm 10 của 4 khối còn lại:

Vậy số điểm 10 của khối Một =

1
tổng số điểm 10 của toàn trường.
4

Tương tự như vậy ta có:
Số điểm 10 của khối Hai bằng
Số điểm 10 của khối Ba bằng

1
số điểm 10 của toàn trường.
5
1
số điểm 10 của toàn trường.
6


Số điểm 10 của khối Bốn bằng

1
số điểm 10 của toàn trường.
7

Phân số chỉ tổng số điểm 10 của 4 khối trên là:

1 1 1 1 319
+ + + =
(tổng số điểm 10 của cả trường)
4 5 6 7 420

Phân số chỉ số điểm 10 của khối Năm là:
1−

319 101
=
(tổng số điểm 10 của cả trường)
420 420

Số điểm 10 của toàn trường là: 101 :

101
= 420 (điểm 10)
420

Số điểm 10 của khối Một là: 420 x

Số điểm 10 của khối Hai là: 420 x

Số điểm 10 của khối Ba là: 420 x

1
= 105 (điểm 10)
4

1

= 84 (điểm 10)
5

1
= 70 (điểm 10)
6

Số điểm 10 của khối Bốn là: 420 x

1
= 60 (điểm 10)
7

Đáp số: Toàn trường: 420(điểm 10)
Khối Một : 105 (điểm 10)


Khối Hai : 84 (điểm 10)
Khối Ba : 70 (điểm 10)
Khối Bốn: 60 (điểm 10).
C. Các bài luyện tập.
1/ Trung bình cộng của 3 phân số bằng
trung bình cộng bằng
bằng

7
. Nếu tăng phân số thứ nhất lên hai lần thì
6

41

. Nếu tăng phân số thứ hai lên hai lần thì trung bình cộng
30

13
. Tìm 3 phân số đó ?
9

Đáp số: phân số thứ nhất:
2/ Một người bán vịt, lần thứ nhất bán

5
31
3
, phân số thứ hai:
, phân số thứ ba:
5
6
15
1
2
số vịt, , lần thứ hai bán số vịt, , lần thứ ba
5
7

bán 36 con thì vừa hết. Hỏi người đó đã bán bao nhiêu con vịt ?
Đáp số: 70 con vịt.
3/ Một cửa hàng bán một tấm vải làm 3 lần. Lần thứ nhất bán
thứ hai bán

1

tấm vải và 5 mét. Lần
3

3
chỗ vải còn lại và 3 mét. Lần thứ ba bán 17 mét thì hết tấm vải. Hỏi lần
7

thứ nhất, lần thứ hai mỗi lần bán bao nhiêu mét vải ?

Đáp số: Lần 1 : 25 m
.

Lần 2 : 18 m

4/ Một cái bể được bắc hai vòi nước chảy vào bể. Vòi thứ nhất chảy một mình sau 7
giờ thì đầy bể. Vòi thứ hai chảy đầy bể sau 5 giờ. Hỏi nếu mở cả hai vòi cùng chảy
một lúc thì sau bao lâu sẽ đầy bể ?
Đáp số: 2 giờ 55 phút.
5/ Trong tháng thi đua vừa qua, khối 4 của trường Tiểu học Sen Chiểu có 3 lớp 4 A,
4B, 4 C. Số điểm 10 của lớp 4A bằng

1
số điểm 10 của hai lớp còn lại. Số điểm 10
2


×