Tải bản đầy đủ (.pdf) (181 trang)

NEW TỔNG HỢP 1250 CÂU TRẮC NGHIÊM HÀM SỐ MŨ TOÁN 12 NĂM 2017

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (12.22 MB, 181 trang )

z
BỘ GIÁO DỤC VÀ ĐÀO TẠO


[ NEW]

TỔNG HỢP 1250 CÂU
TRẮC NGHIỆ HÀM SỐ -MŨ
1: 600 câu hỏi trắc nghiệm chuyên đề hàm số Mũ và Logarit
2 : 350 câu hỏi trắc nghiệm chuyên đề hàm số và các vấn đề
liên quan
3 : 200 bài trắc nghiệm cực trị của hàm số - Lê Văn Đoàn
4 : 100 câu trắc nghiệm hàm số lũy thừa, mũ và logarit - Bùi
Thế Việt

Năm học : 2017


GROUP NHĨM TỐN
NGÂN HÀNG ĐỀ THI THPT 2017
CHUN ĐỀ : MŨ – LƠGARIT
ĐỀ 01

C©u 1 : Hàm số

y

x ln( x

x2 )


1

A. Hàm số có đạo hàm

x2

1

y'

ln( x

A.
C©u 3 :

(

y

B.

; 2)

9

(0;

)
)


2

Nghiệm của bất phương trình
B.

D.

)

10

C.

(

;1)

D. 10

26 có tổng các nghiệm là:

B. 2

4

(1;

23.2 1 5 3.54
là:
10 3 :10 2 (0,1) 0


5.0,2x

1

A. 4

A. 1 x

C.

( 2;0)

B. 9

C©u 4 : Phương trình 5x

C©u 5 :

D. Hàm số giảm trên khoảng

D

(0;

nghịch biến trên khoảng :

x2 .e x

Giá trị của biểu thức P


A.

B. Hàm số tăng trên khoảng

x2 )

1

C. Tập xác định của hàm số là
C©u 2 : Hàm số

. Mệnh đề nào sau đây sai ?

D. 3

C. 1
32.4 x

18.2x

1

0

là:

1
16


x

1
2

C. 2

x

4

D.

4

x

1

C©u 6 : Tìm m để phương trình sau có đúng 3 nghiệm: 4x  2x 2  6  m
2

A. 2  m  3
C©u 7 : Phương trình 31

B. m  3
x

31


x

2

C. m  2

D. m  3

10

A.

Có hai nghiệm âm.

B. Vơ nghiệm

C.

Có hai nghiệm dương

D. Có một nghiệm âm và một nghiệm
dương

C©u 8 :

1
Tập nghiệm của phương trình
25

x 1


1252x bằng

1


A.

1

B.

4

1
4

C.

C©u 9 : Nghiệm của phương trình log 4 (log2 x ) log2 (log 4 x )
A.

x

2

C©u 10 : Nếu a

B.
log30 3 và b


x

4

C.

x

D.

1
8

D. x

16

2 là:
8

log30 5 thì:

A. log30 1350

2a

b

2


B. log30 1350

a

2b 1

C. log30 1350

2a

b 1

D. log30 1350

a

2b

C©u 11 :

Tìm tập xác định hàm số sau: f ( x)  log 1
2

2

3  2x  x 2
x 1

A.


 3  13
  3  13 
D
; 3   
;1
2
2

 


B.

C.

 3  13
  3  13 
D  
; 3   
;1
2
2

 


D. D   ;

D   ; 3  1;   





3  13   3  13
;  

2
2
 


C©u 12 : Phương trình 4x  x  2x  x1  3 có nghiệm:
2

x  1

A. 
x  2

2

 x  1

B. 
x  1

x  0

C. 

x  1

 x  1

D. 
x  0

C©u 13 : Tính đạo hàm của hàm số sau: f ( x)  x x
A.

f '( x)  x x1 ( x  ln x)

B.

f '( x)  x x (ln x  1)

f '( x)  x ln x

C.

f '( x)  x x

D.

C.

29
3

D. 87


C©u 14 : Phương trình: log3 (3x  2) 3 cú nghim l:
A.

11
3

B.

25
3

Câu 15 : Tìm mệnh đề đúng trong các mệnh đề sau:
A. Hàm số y = loga x víi a > 1 lµ mét hµm sè nghịch biến trên khoảng (0 ; +)
B. Hàm số y = loga x víi 0 < a < 1 lµ một hàm số đồng biến trên khoảng (0 ; +)
C. Hµm sè y = loga x (0 < a  1) có tập xác định là R

2


D. Đồ thị các hàm số y = loga x vµ y = log 1 x (0 < a  1) thì đối xứng với nhau qua trục hoành
a

Câu 16 : Giả sử các số logarit đều có nghĩa, điều nào sau đây là đúng?
A. Cả 3 đáp án trên đều sai

B. loga b  log a c  b  c

C. log a b  log a c  b  c


D. loga b  log a c  b  c

C©u 17 : Hàm số
A.
C©u 18 :

(0;

y

đồng biến trên khoảng :

x ln x

B.

)

1
;
e

C.

D.

(0;1)

f '( x) 


4
(e  e  x ) 2

B.

f '( x)  e x  e x

C.

f '( x) 

ex
(e x  e  x ) 2

D.

f '( x) 

5
(e  e  x ) 2

x

C©u 19 : Nếu a

x

log15 3 thì:

A. log 25 15


3
5(1 a )

B. log 25 15

5
3(1 a )

C. log 25 15

1
2(1 a )

D. log 25 15

1
5(1 a )

C©u 20 : Cho ( 2
A. m

A.

1)m

n

( 2


1)n . Khi đó

B. m

Nghiệm của phương trình 8
1, x

x

2
7

B.

n
2x 1
x 1

\ {2}

A.

0

0,25.

(x

2


7x

2
7
2)

3

B.

x

32

x

n

D. m

n

D. x

1, x

là:
2
7


x

1, x

C. (

;2)

D. (2;

3

D.

C.

2
7

là:

B.

C©u 23 : Nghiệm của phương trình 32
x

C. m

1, x


x

C©u 22 : Tập xác định của hàm số y

A.

1
e

e x  e x
Tính đạo hàm của hàm số sau: f ( x)  x  x
e e

A.

C©u 21 :

0;

)

30 là:

Phương trình vơ
nghiệm

C.

x


x

1
3


C©u 24 :

10  x

Tập xác định của hàm số y  log3 x 2  3x  2 là:

A. (1; )

B. (;10)

C©u 25 : Giá trị của a 8 loga2 7 0
A. 7 2
C©u 26 :

a

C. (;1)  (2;10)

D. (2;10)

C. 716

D. 7 4


C. 4

D. 2

1 bằng

B. 7 8

 

Cho f(x) = ln sin 2x . Đạo hàm f  b»ng:
8

A. 1

B. 3

C©u 27 : Phương trình

32 x

1

4.3x

1

có hai nghiệm

0


trong đó

x1 , x 2

x1

, chọn phát biểu

x2

đúng?
x1

2x2

1

C©u 28 : Tập xác định của hàm số

f x

log

A.

2 x1

x2


0

B.

x1

C.
2

x

2

x2

1 log 1 3 x

log 8 x 1

D.
3

x1.x 2

1

là:

2


A.
C©u 29 :
A.
C©u 30 :

x

B.

1

x

3

x 1

Nghiệm của phương trình 3 .5
x 1

B.

Giá trị của biểu thức P

A. 8
C©u 31 : Cho
A.

1


A

2x  2
x

log 2 m

với

3 a a

m

B.

x

3

D.

C.

x4

D.

1

1


x

 15 là:

x  2, x   log 2 5

x  3, x  log3 5

25log5 6 49 log7 8 3
là:
31 log9 4 4 2 log2 3 5log125 27

B. 10
a

C.

0; m
A

C. 9
1



3

a


A

log m 8m

a

D. 12

. Khi đó mối quan h gia
C.

A

3 a
a

D.

A
A

v

a

3

l:

a a


Câu 32 : Hàm số y = ln  x2  5x  6  cã tập xác định là:
A. (-; 2) (3; +)

B. (0; +)

D. (2; 3)

C. (-; 0)

C©u 33 : Tập các số x thỏa mãn log0,4 ( x  4)  1  0 là:
 13 

A.  4; 
 2



13 

B.  ; 
2


13



C.  ;   
2



D. (4;  )

4


C©u 34 : Cho hàm số
A.
C.

y

x.e

max y

1
; min y
e x 0;

min y

1
;
e

x 0;

x 0;


x

, với

x

0;

. Mệnh đề nào sau đây là mệnh đề đúng ?

1
e

B.

khơng tồn tại

D.

max y

x 0;

C©u 35 : Tập nghiệm của bất phương trình 32.4x
A. ( 5; 2)

18.2x

B. ( 4; 0)


max y

1
; min y
e x 0;

max y

1
;
e

x 0;

x 0;

1

0

không tồn tại

min y

x 0;

0 là tập con của tp :

C. (1; 4)


D. ( 3;1)

Câu 36 : Tìm mệnh đề đúng trong các mệnh đề sau:
A. Hàm số y = ax víi 0 < a < 1 lµ mét hàm số đồng biến trên (-: +)
B. Hàm số y = ax víi a > 1 lµ mét hµm sè nghịch biến trên (-: +)
C. Đồ thị hàm số y = ax (0 < a 1) luôn đi qua điểm (a ; 1)
x

1
D. Đồ thị các hàm số y = a vµ y =   (0 < a 1) thì đối xứng với nhau qua trục tung
a
x

Câu 37 : Trong các khẳng định sau, khẳng định nào sai ?
B. logx2 3 2007

A. log3 5

0

C. log3 4

log4

1
3

D. log0,3 0, 8


logx2

3

2008

0

C©u 38 : Dùng định nghĩa, tính đạo hàm của hàm số sau: f ( x)  x. cot gx
A.

f ' ( x)  cot gx 

C.

f ' ( x)  cot g1

C©u 39 :

C©u 40 :

3

1

3

2

Cho (a


A. a

2

3

B.

1)

B.

f ' ( x)  x. cot gx

D.

f ' ( x)  tgx 

3 . Khi đó giá trị của biểu thức log

Cho loga b

A.

x
sin 2 x

2
3


1

b
b
a

C.

a

3

x
cos 2 x



1

D.

3

1

3

2


1

(a

1) 3 . Khi đó ta có thể kết luận về a là:

B. a

1

C. 1

a

2

D. 0

a

1
5


Câu 41 :

Hàm số y = log

1
có tập xác định là:

6x

5

B. R

A. (0; +)

Câu 42 : o hm ca hm số f (x )

A.

C.

x ) là:

2cos2x .ln2 (1

x)

2 sin 2x .ln(1
1 x

x)

f '(x )

2cos2x.ln2(1

x)


2 sin 2x.ln(1

x)

A. Đạo hàm

y'

y

ex
x

1

ex
(x

B. f '(x )

2cos2x .ln2 (1

D. f '(x )

2cos2x

D. Hàm số tăng trên

(0;1)


Nghiệm của bất phương trình log 4 3x 1 .log 1

C©u 45 :

A.

;1

x

2;

P

P

4

x log2 4 x

1;2

B.

x

log 2

5.2 x 8

2x 2

B.

P

Giải phương trình
trị

2 ln(1

B. Hàm số đạt cực đại tại

1)2

4

A.

2 sin 2x
1 x

x)

x)

. Mệnh đề nào sau đây là mệnh đề đúng ?

C. Hàm số đạt cực tiểu tại
C©u 44 :


sin 2x.ln2 (1

f '(x )

C©u 43 : Cho hàm số

D. (-; 6)

C. (6; +)

3x 1
16

C.

3

x

với

x

x

(0;1)

\ 1


3
là:
4
1;2

D. x

0;1

2;

là nghiệm của phương trình trên. Vậy giá

là:
8

C.

P

D.

2

P

1

C©u 46 : Bất phương trình log2 (2x  1)  log3 (4x  2)  2 có tập nghiệm:
A. (;0)

C©u 47 :

Phương trình 3x.5

2x 2
x

15 có một nghiệm dạng x

dương lớn hơn 1 và nhỏ hơn 8. Khi đó a
A. 13
C©u 48 : Cho phương trình
A.

log 2 6 4 2

B. 8
log 4 3.2 x

B.

2

D.  0;  

C. (;0]

B. [0; )

loga b , với a và b là các số nguyên


2b bằng:

D. 5

C. 3
1

x 1

có hai nghiệm
C.

4

x1 , x 2 .

Tổng

x1

x2

D.

là:
6

4 2


6


C©u 49 : Giải bất phương trình: ln( x  1)  x
A. Vơ nghiệm

C. 0  x  1

x0

B.

C©u 50 : Nghiệm của phương trình: 4log
A.

x  0, x 

1
4

x

B.

2 2x

D.

x2


 xlog2 6  2.3log2 4x .
2

1
4

C.

x

2
3

D. Vơ nghiệm

C©u 51 : Điều nào sau đây là đúng?
A. am  an  m  n

B. am  an  m  n

C. Cả 3 câu đáp án trên đều sai.

m
m
D. Nếu a  b thì a  b  m  0

C©u 52 : Nếu a

log 2 3 và b


log 2 5 thì:

A. log 2 6 360

1
3

1
a
4

1
b
6

B. log 2 6 360

1
2

1
a
6

1
b
3

C. log 2 6 360


1
2

1
a
3

1
b
6

D. log 2 6 360

1
6

1
a
2

1
b
3

C©u 53 :

A.

Phương trình


1
5 lg x

2

2
1 lg x

1 có số nghiệm là

B. 1

C. 3

D. 4

C. (0; )

D.

C©u 54 : Tập giá trị của hàm số y  a x (a  0, a  1) là:
A. [0; )

C©u 55 : Bất phương trình: xlog
1

\{0}

B.




2

x4

 32 có tập nghiệm:

1

A.  ; 2 
10 



B.  ; 4 
 32 

1

1





D.  ; 4 
10 

C.  ; 2 

 32 

C©u 56 : Tìm giá trị nhỏ nhất của hàm số: f ( x)  2x1  23 x
A. 4
C©u 57 :

B. 6

D. Đáp án khác

C. -4

 x  y  30
có nghiệm:
log x  log y  3log 6

Hệ phương trình 
 x  16
 x  14


 y  14
 y  16

A. 

 x  15
 y  15 và

B. 


 x  14

 y  16

7


 x  15
 y  15

 x  18
 x  12

 y  18 và  y  12

D.

C.

Câu 58 : Hàm số y = x2 2x 2 ex có đạo hàm là :
B. y = -2xex

A. Kết quả khác

C. y = (2x - 2)ex

D. y’ = x2ex

C©u 59 : Tập giá trị của hàm số y  loga x( x  0, a  0, a  1) là:

A. (0; )

B. [0; )

C©u 60 :
Cho biểu thức
A. b

a

a

b

2

B. a

C.

D.

Cả 3 đáp án trên
đều sai

1

4 ab

, với b


a

0 . Khi đó biểu thức có thể rút gọn là

C. a

b

D. a

b

8


ĐÁP ÁN

01
02
03
04
05
06
07
08
09
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

{
{
)
{
{
{
{
{
{
)
{
{
{
{

{
{
)
{
)
{
)
{
{
{
{
{

)
|
|
|
)
|
|
|
|
|
|
)
|
|
|
)
|

|
|
|
|
|
|
|
|
)

}
)
}
}
}
}
}
}
)
}
)
}
)
}
)
}
}
)
}
}

}
}
)
}
}
}

~
~
~
)
~
)
)
)
~
~
~
~
~
)
~
~
~
~
~
)
~
)
~

)
)
~

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54

{
{
{
{
{
)
{
)
{
{
)
)
)
{
)
{
{
{
{
)
{
{
{
{
{
)
{


)
)
|
)
|
|
)
|
|
|
|
|
|
|
|
)
|
)
|
|
)
)
)
|
|
|
|

}
}

)
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
)
}
}
}
}
)
)
}
)

~
~
~
~

)
~
~
~
)
)
~
~
~
)
~
~
)
~
~
~
~
~
~
~
~
~
~

55
56
57
58
59
60


{
)
{
{
{
)

|
|
|
|
|
|

)
}
)
}
)
}

~
~
~
)
~
~

9



GROUP NHĨM TỐN
NGÂN HÀNG ĐỀ THI THPT 2017
CHUN ĐỀ : MŨ – LƠGARIT
ĐỀ 02

C©u 1 : Số nghiệm của phương trình: 3x  31 x  2 là
A. 0
C©u 2 :

B. 3

C. 1

log 2 x  3  1  log3 y

. Tổng x  2 y bằng

(x; y) là nghiệm của hệ 

log 2 y  3  1  log3 x

B. 9

A. 6

D. 2

C. 39


D. 3

C. 2

D. 1

C. 1

D. 3

C©u 3 : Số nghiệm của phương trình 3x  31 x  2
A. Vơ nghiệm

B. 3

C©u 4 : Số nghiệm của phương trình
2

x+ 2x+5

-2

1+ 2x+5

A. 4

+ 26-x - 32 = 0 là :

B. 2


C©u 5 : Hàm số y = ln(x2 -2mx + 4) có tập xác định D = R khi:
A. m < 2
C©u 6 :

B. -2 < m < 2

C©u 7 :

2 x 2  5 x  2  ln

Tập xác định của hàm số

A. 1; 2
1
Phương trình  
2

A. -1

B.

C. m = 2

D. m > 2 hoặc m < -2

1
là:
x 1


1; 2 

2

C.

1; 2

D. 1; 2 

3 x

 2.4 x  3.( 2)2 x  0

B. log2 5

C. 0

D. log2 3

C©u 8 : Số nghiệm của phương trình log3 ( x 2  4 x)  log 1 (2 x  3)  0 là:
3

A. 3
C©u 9 :

C. Vơ nghiệm.

B. 2
 y2  4x  8


Số nghiệm của hệ phương trình 

2

x 1

 y 1  0

D. 1

là:

1


A. Vơ nghiệm

B. 2

C. 3

D. 1

C©u 10 : Tập xác định của hàm số y  ( x2  3x  2)e là:
(1; )

A. (; 2)

B.


C. (2; 1)

D.  2; 1

C©u 11 :

3

2

Nếu a 3  a 2 và logb

3
4
 logb thì:
4
5

A. 0 < a < 1, 0 < b < 1

B. 0 < a < 1, b > 1

C. a > 1, 0 < b < 1

D. a > 1, b > 1

C©u 12 : Cho a>0, b >0 thỏa mãn a2  b2  7ab . Chọn mệnh đề đúng trong các mệnh đề sau:
1
2


3
2

A. 3log(a  b)  (log a  log b)

B. log(a  b)  (log a  log b)

C. 2(log a  log b)  log(7ab)

D. log

ab 1
 (log a  log b)
3
2

C©u 13 : Tập nghiệm của bất phương trình 32 x1 10.3x  3  0 là :
A.

 1;1

B.

 1;0 

C.

 0;1


D.

 1;1

C©u 14 : Phương trình 4x  m.2x1  2m  0 có hai nghiệm x1 , x2 thỏa x1  x2  3
khi
A. m  4
C©u 15 :

B. m  2

C. m  1

Tập nghiệm của bất phương trình log3 x < log

3

D. m  3

(12-x) là :

A.

(0;12)

B.

(0;9)

C.


(9;16)

D.

(0;16)

C©u 16 : Hàm số y = x.lnx có đạo hàm là :
A.
C©u 17 :

1
x

B.

Đạo hàm của hàm số y 

lnx + 1

C. lnx

D.

1

2x 1
là :
5x


2


x

A.

2 x
2
  ln  5 ln 5
5
5

C.

2
x.  
5

C©u 18 :

x 1

1
 x 
5

x

B.


D.

2
x.  
5

x 1

Cho phương trình: 23 x  6.2 x 

A. Vô nghiệm.

1
3( x 1)

2



x

2 1
2
  ln    ln 5
5 5
5
x 1

1

 x.  
5

x 1

12
 1 (*). Số nghiệm của phương trình (*) là:
2x

B. 2

C. 1

D. 3

C©u 19 : Tính log36 24 theo log 12 27  a là
A.

9a
6  2a

B.

9a
6  2a

9a
6  2a

C.


D.

9a
6  2a

C©u 20 : Số nghiệm của phương trình log25(5x) - log25 (5x) - 3 = 0 là :

A. 1

B. 2

C. 4

D. 3

C©u 21 : Tính log30 1350 theo a, b với log30 3  a và log30 5  b là
A. 2a  b  1
C©u 22 :

5
4

Rút gọn biểu thức
A. 2xy

C. a  2b  1

B. 2a  b  1


D. 2a  b  1

5
4

x y  xy
(x, y  0) được kết quả là:
4
x4 y

B. xy

xy

C.

D. 2 xy

C©u 23 : Tích hai nghiệm của phương trình 22 x 4 x 6  2.2x 2 x 3  1  0 là:
4

A. -9

2

B. -1

4

2


C. 1

D. 9

C©u 24 : Tập nghiệm của bất phương trình (2- 3 )x > (2 + 3)x+2 là :
A.

(-2;+ )

B.

(- ;-1)

C.

(-1;+ )

D.

(- ;-2)

C©u 25 : Nghiệm của phương trình

A.

1
3

B. 1


3

x 4

1
 
9

3 x 1



C.

6
7

D.

7
6

3


C©u 26 :

Tập nghiệm của bất phương trình log2


2

(2x) - 2log2 (4x2) - 8  0 là :

A.

[2;+ )

B.

1
[ ;2]
4

C.

[-2;1]

D.

1
(- ; ]
4

C©u 27 :

Biểu thức A = 4

log23


có giá trị là :
9

A.
C©u 28 :

16

B.

Rút gọn biểu thức

A. a4

7 1

a
(a

C. 12
.a 2

2 2

)

7

2 2


D.

3

(a  0) được kết quả là

C. a5

B. a

D. a3

C©u 29 : 10.Đạo hàm của hàm số: y  (x 2  x) là:
B.  (x 2  x) 1 (2 x  1)

A. 2 (x 2  x) 1
C.
C©u 30 :

D.  (x 2  x) 1

 (x 2  x) 1 (2 x  1)

Hàm số y 

ln x
x

A. Có một cực tiểu


B. Có một cực đại

C. Khơng có cực trị

D. Có một cực đại và một cực tiểu



 

C©u 31 : Nghiệm của phương trình 3  5 x  3  5



x

 3. x2 là:

A. x = 2 hoặc x = -3

B. Đáp án khác

C. x = 0 hoặc x = -1

D. x = 1 hoặc x=-1

C©u 32 : Số nghiệm của phương trình ln3x – 3ln2x – 4lnx+ 12 = 0 là
A. 1

B. 3


C. 2

D. 0

C©u 33 : Trong các điều kiện của biểu thức tồn tại, kết quả rút gọn của
A   log3b a  2logb2 a  logb a   log a b  log ab b   logb a là
A. 1

B. 2

C. 0

D. 3
4


C©u 34 : log2 ( x3  1)  log2 ( x2  x  1)  2 log2 x  0
A.
C©u 35 :

x  1

B.

A.

2 x

3


2

0
D. x > 0

x

2
   là:
5

B. x < -2 hoặc x > 1

.Nếu a 3  a 2 và logb

x

C.

2
Tập nghiệm của bất phương trình  
5

A. 1  x  2
C©u 36 :

x0


C. x > 1

D. Đáp án khác

C. 0
D. a>1,0
C. 0

D. 1

3
4
thì :
 logb
4
5

B. C.a>1,b>1

C©u 37 : Số nghiệm của phương trình log3 ( x  2)  1 là
A. 3

B. 2

C©u 38 : Tích các nghiệm của phương trình: 6x  5x  2x  3x bằng:
A. 4

B. 3


C. 0

D. 1

C©u 39 : Nghiệm của bất phương trình log 1 log2 (2  x2 )  0 là:


2

A. (1;1)  (2; )

C. Đáp án khác

B. (-1;1)

D. (1;0)  (0;1)

C©u 40 : Phương trình 9x  3.3x  2  0 có hai nghiêm x1, x2 ( x1  x2 ) Giá trị của A  2 x1  3x2
A. 0

B. 4 log2 3

D. 3log3 2

C. 2

C©u 41 : Phương trình: 9 x  3.3x  2  0 có hai nghiệm x1 , x2 ( x1  x2 ) .Giá trị của A  2 x1  3x2 là:
A. 0


B. 4log 2 3

C©u 42 : Tập xác định của hàm số log

A.

 2
  1 
  ;   \  ;0  B.
 3
  3 

3x2

C. 3log3 2

1 

1  4 x2

 2
  1
  ;   \  
 3
  3

C©u 43 :
Giá trị rút gọn của biểu thức A 

1


9

1
4

5
4

a4  a4
a a

A. 1 + a

B.

1-a

D. 2

 là
 2



C.   ;   \ 0
 3


 2




D.   ;  
 3


là:
C. 2a

D.

a

C©u 44 : Số nghiệm của phương trình log2 x.log3 (2 x  1)  2 log2 x là:
5


A. 0

B. 1

C©u 45 :

1

Rút gọn biểu thức

1




3

(ab)

1

3

a 2  3 b2

B.

2

3

D. 2

1

a 3b 3  a 3b 3

1

A.

C. 3
(a, b  0, a  b) được kết quả là:


C. C.

(ab)2

1
3
ab

3

D.

ab

C©u 46 : Chọn khẳng định sai trong các khẳng định sau
A. log 1 a  log 1 b  a  b  0

B. ln x  0  x  1

C. log3 x  0  0  x  1

D. log 1 a  log 1 b  a  b  0

3

3

2


2

C©u 47 : Phương trình log 2 x  log 2 x  1  2m  1  0 có nghiệm trên 1;3 3  khi :
3
3



A.
C©u 48 :

 3
m  0; 
 2

B.

3

m   ;0   ;  
2
C.




0;  

3


D.  ; 
2



1 
Giá trị nhỏ nhất , giá trị lớn nhất của hàm số y = x - lnx trên 2;e theo thứ tự là :


A.

1
+ ln2 và e-1
2

B.

1 và e-1

C.

1
1 và + ln2
2

D.

1
và e
2




C©u 49 : Nghiệm của bất phương trình 2.2x  3.3x  6x  1  0 là:
A.

x3

B.

x2

C. Mọi x

D. x < 2

C. 0

D. 3

C©u 50 : Số nghiệm của phương trình 22 x 7 x5  1 là:
2

A. 2
C©u 51 :

B. 1

x
2


Tập nghiệm của bất phương trình 4.3  9.2  5.6 là
x

A.  ; 4 

B.

x

 4;  

C.

 ;5

D.  5;  

C©u 52 : Nghiệm của phương trình e6 x  3e3 x  2  0 là:
A.

1
x  0, x  ln 2
3

1

B. x = -1, x  ln 2
3


C. Đáp án khác

D. x = 0, x = -1

6


C©u 53 :

2

1

 1 x  1 x
Bất phương trình       12  0 có tập nghiệm là
3  3

A. (0; )

B. (; 1)

C©u 54 : Phương trình: (m  2).22(x

2

1)

C. (-1;0)

 (m  1).2x


2

2

D.

R \ 0

.

 2m  6

có nghiệm khi
A. 2  m  9

B. 2  m  9

C. 2  m  9 .

D. 2  m  9

C. 1

D.

C©u 55 : Đạo hàm của hàm số y = x(lnx – 1) là:
A. lnx -1

B. lnx


1
1
x

C©u 56 : Nghiệm của bất phương trình log2 ( x  1)  2 log2 (5  x)  1  log2 ( x  2)
A. 2 < x < 5

B. -4 < x < 3

C. 1 < x < 2

D. 2 < x < 3

C©u 57 : Giá trị nhỏ nhất của hàm số f ( x)  x(2  ln x) trên  2;3
B. 2  2 ln 2

A. e
C©u 58 :

A.

C.

C©u 59 :

C. 4  2 ln 2

D. 1


x2
Giá trị nhỏ nhất , giá trị lớn nhất của hàm số y = x trên đoạn [-1;1] theo thứ tự là :
e
0 và

1
e

1
và e
e
1

Tập nghiệm của bất phương trình:
2

A.  ;0

B.  ;1

x2  2 x



B.

0 và e

D.


1 và e

2x
 0 là
2

C.

 2;  

D.

0; 2 .

7


ĐÁP ÁN

01
02
03
04
05
06
07
08
09
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

{
{
{
{
{
)
{
{
{
{
{
{
)

)
{
{
)
{
)
{
)
{
{
{
{
{
{

|
|
|
)
)
|
|
|
|
|
)
|
|
|
)

)
|
|
|
)
|
)
|
)
|
)
)

)
}
}
}
}
}
}
)
}
)
}
}
}
}
}
}
}

)
}
}
}
}
)
}
)
}
}

~
)
)
~
~
~
)
~
)
~
~
)
~
~
~
~
~
~
~

~
~
~
~
~
~
~
~

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54

{
{
{
{
{
)
{
)
{
{
{
{
{
{
)
)
{
{
)
)
{
{
)

)
)
{
{

|
|
)
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|

|
|

)
)
}
}
}
}
}
}
)
}
)
}
}
)
}
}
}
)
}
}
}
}
}
}
}
)
)


~
~
~
)
~
~
)
~
~
)
~
)
)
~
~
~
)
~
~
~
~
)
~
~
~
~
~

55

56
57
58
59

{
{
{
{
{

)
|
|
)
|

}
}
}
}
)

~
)
)
~
~

8



GROUP NHĨM TỐN
NGÂN HÀNG ĐỀ THI THPT 2017
CHUN ĐỀ : MŨ – LƠGARIT
ĐỀ 03

C©u 1 : Tập xác định của hàm số y  log x 2  x  12 :
3
A. (4;3)

B. (; 4)  (3; )

D. R \ 4

C. (4;3]

C©u 2 : Tập nghiệm của phương trình log 2 x  4log x  0
2
2
A. S  1;16

B.

S  1; 2

C. S  1; 4

D. S  4


C©u 3 : Cho hàm số y  ex  e x . Nghiệm của phương trình y'  0 là:
A. x  ln 3
C©u 4 :

C. x  0

B. x  1

Nếu log 3  a thì

D. x  ln 2

1
bằng
log81 100

A. a 4

B. 16a

C.

a
8

D. 2a

C©u 5 : Các kết luận sau , kết luận nào sai
I. 17


3

28 II.

A. I

1
3

3

1
2

2

III. 4

5

4

7

B. II và III

IV. 4 13

5


23

C. III

D. II và IV

C©u 6 : Hàm số nào sau đây có tập xác định là R?
A.



y  x 4
2



0,1

B.

y   x  4

1/2

3

C.

 x2
y 


 x 

D.



y  x2  2 x  3

C©u 7 : Nếu log12 6  a và log12 7  b thì
A. log12 7 

a
1 b

B. log12 7 

a
1 b

C. log12 7 

a
a 1

D. log12 7 

b
1 a


C©u 8 : Tìm m để phương trình log 22 x  log 2 x  m  0 có nghiệm x  (0;1)

1



2


B. m 

A. m  1

1
4

C. m 

1
4

D. m  1

C©u 9 : Số giá trị nguyên âm của m để m.9x   2m  1 6x  m.4x  0 với x 0;1 là
A. 6

B. 4

C. 5


D. 3

C©u 10 : Tập xác định của hàm số y   2 x  1 12 là:
1



A.  ;  
2


B.

1 
 
2

1



C.  ;  
2


D.

C©u 11 : Phát biểu nào sau đây không đúng?
A. Hai hàm số y  a x và y  loga x có cùng tập giá trị.
B. Hai đồ thị hàm số y  a x và y  loga x đối xứng nhau qua đường thẳng y  x

C. Hai hàm số y  a x và y  loga x có cùng tính đơn điệu.
Hai đồ thị hàm số y  a x và y  loga x đều có đường tiệm cận.
D.
C©u 12 : Tìm giá trị nhỏ nhất của hàm số: y  4sin2 x  4cos2 x
B. 

A. 2

C. 2

D. 4

C©u 13 : Cho a  0; b  0 và a2  b2  7ab . Đẳng thức nào sau đây là đúng?
A. log 7

ab 1
  log 7 a  log 7 b 
3
2

B. log3

ab 1
  log3 a  log 3 b 
2
7

C. log3

ab 1

  log3 a  log 3 b 
7
2

D. log 7

ab 1
  log 7 a  log 7 b 
2
3

C©u 14 :



Số nghiệm của phương trình cos360

A. 3
C©u 15 : Giá trị của a 4log
A. 58

   cos72 
x

B. 2
a2

5

0


x

 3.2 x là:

C. 1

D. 4

C. 5

D. 52

( a  0 và a  1 ) bằng
B. 54

C©u 16 : Cho hàm số y  ax , Các mệnh đề sau , mệnh đề nào sai
A. Đố thị hàm số luon đi qua điểm M 0;1 và

B. Đồ thị hàm số có đường tiệm cận là y

0

2


N 1; a

C. Đồ thị hàm số khơng có điểm uốn
C©u 17 :


D. Đồ thị hàm số ln tăng

4 x2 16  3 x  x 2  1  4 y2 8 y  3 y  4  y 2  8 y  17

Hệ phương trình 
có 1 cặp nghiệm
ln( x2  3x  3)  x 2  1 y  4 x 2  3x  8







 x; y  . Giá trị của 3x  y là:
A. -1

B.

-3

C. 0

D. -2

C©u 18 : Phương trình log2 x  log2  x  1  1 có tập nghiệm là:
A. S  1
C©u 19 :


A.

B.


 1  5 



 2 


S  1; 2
3

C. S  


 1  5 



 2 


D. S  

5

a 2 . a 2 .a. a 4

Tính giá trị biểu thức: A  log a
3
a
67
5

B.

62
15

C.

22
5

D.

16
5

C©u 20 : Đạo hàm của hàm số y  22 x3 là:
A. 2.22 x3 ln 2

B. 22 x3 ln 2

C. 2.22 x3

D.  2 x  3 22 x2


C©u 21 : Tập nghiệm của bất phương trình log2 x  log 2  2 x  1 là:
B. S  1;3

A. S  

C. S   ; 1

 1



D. S    ;0 
 2 

C©u 22 : Cho hàm số y  2x  31x . Giá trị của đạo hàm của hàm số tại x  0 :
A. 
C©u 23 :

2
3

B. ln 54

2
Bất phương trình  
3

2 x

 


A.  ;1
C©u 24 :

B.

C. 3ln 3

D. 2ln 6

x

 2
   có tập nghiệm là:
 3

1; 

C. 1;2

D. 1;2 



Cho hàm số y  x 4 , Các kết luận sau , kết luận nào sai

A. Tập xác định D

0;


B.

Hàm số luôn luôn đồng biến với mọi x
thuộc tập xác định
3


D. Hàm số khơng có tiệm cận

C. Hàm số ln đi qua điểm M 1;1

C©u 25 : Cho a  0 ; a  1 . Tìm mệnh đề đúng trong các mệnh đề sau:
x
A. Tập xác định của hàm số y  a là khoảng  0;  

B. Tập giá trị của hàm số y  loga x là tập
C. Tập xác định của hàm số y  loga x là tập
D. Tập giá trị của hàm số y  a x là tập
C©u 26 : Cho hàm số y  ln(x 2  1) . Nghiệm của phương trình y'  0 :
B. x  0

A. x  1

D. x  0 v x  1

C. x  1

C©u 27 : Cho hàm số f (x)  ln  x 2  x  . Giá trị của đạo hàm cấp hai của hàm số tại x  2 :
B. 


A. 36
C©u 28 :

17
3

15
8

Nếu a  a và logb

A. a  1 , b  1
C©u 29 : Cho a

0; a

1;b



2  5  logb

1
log 2 b



II. P

logb a.a 2 ...a n


IV. P

n n



2  3 thì

C. a  1 , 0  b  1

D. 0  a  1 , 0  b  1

R , một học sinh tính biểu thức

1
theo các bước sau
log n b
a

logb a 2

logb a

logb a1

......

a


I. P

III. P

1; n

D. 13

C. 2ln 6

B. 0  a  1, b  1

0;b

1
loga b

P



13
36

...

logb a n

2 3 ... n


1 logb a

Bạn học sinh trên đã giải sai ở bước nào
A. I

B. II

C. III

D. IV

C©u 30 : Khẳng định nào sau đây sai ?
A. 2

2 1

2

3

B.





2 1

2016








2 1

2017

4


C.
C©u 31 :


2
1 

2 


2018


2
 1 

2 



2017

D.





3 1

2017







3 1

2016

1

Cho hàm số y  x 3 , Các mệnh đề sau , mệnh đề nào sai

A. lim f x


B. Hàm số có đồ thị nhận trục tung làm trục
đối xứng

1
3

x

; 0 và nghịch

Hàm số đồng biến trên
C. Hàm số không có đạo hàm tại x
C©u 32 :

3
4

4
5

Nếu a  a và logb

A. a  1 , b  1

0

D.

biến 0;


1
2
 logb thì
2
3

B. 0  a  1, 0  b  1

C. 0  a  1, b  1

D. a  1 , 0  b  1

C©u 33 : Đạo hàm của hàm số y  log 22  2 x  1 là:
A.
C©u 34 :

2 log 2  2 x  1

B.

 2 x  1 ln 2

Cho:

4 log 2  2 x  1

 2 x  1 ln 2

C.


4log 2  2 x  1
2x 1

D.

2
 2 x  1 ln 2

1
1
1

...
M
loga x loga2 x
logak x

M thỏa mãn biểu thức nào trong các biểu thức sau:
A.

M

k (k  1)
log a x

B.

M

4k (k  1)

log a x

C.

M

k (k  1)
2 log a x

D.

M

k (k  1)
3log a x

C©u 35 :
A.
C©u 36 :

11

Rút gọn biểu thức
6

B.

x

Cho hàm số y 


x x x x : x 16 , ta được :

1
x3

4

x

8

x

D.

x

, Trong các mệnh đề sau , mệnh đề nào sai

A. Hàm số đồng biến trên tập xác định
C. Hàm số lõm

C.

; 0 và lồi 0;

B. Hàm số nhận O 0; 0 làm tâm đối xứng
D. Hàm số có đồ thị nhận trục tung làm trục
đối xứng

5


C©u 37 :

x 3
có nghĩa khi :
2x

Hàm số y  log 2

B. 3  x  2

A. x  2

C. x  3  x  2

D. 3  x  2

C©u 38 : Cho hàm số y  3x2  2 2 , tập xác định của hàm số là


A. D

2
3

;

2

;
3

B. D

2 2
;
3 3

C. D

2
3

;

D. D

2
;
3

2
3

R\

C©u 39 : Cho hàm số y  3  x  15 , tập xác định của hàm số là
A. D


B. D

R

C. D

;1

D. D

1;

R\ 1

C©u 40 : Đạo hàm của hàm số f  x   log 2  2 x2  1 là
4x
 2 x  1 ln 2

A.

f '( x) 

C.

f '( x)  

C©u 41 :

f '( x) 


B.

2

1
 2 x  1 ln 2
2

D. Kết quả khác

4x
 2 x  1 ln 2
2

4

1

1

2

b
3
3
.
1

2


a
Rút gọn A  2
được kết quả:


2 

a
3

3
3 
a  2 ab  4b

a 3  8a 3 b

A. 1

B. a + b

C. 0

D. 2a - b

C©u 42 : Cho log15 3  a , giá trị của log 25 15 là:
A.

1 a
a


C©u 43 : Nếu
A.
C©u 44 :

B.



6 5



x

1 a
a 1

B.

x 1

Số nghiệm nguyên của bất phương trình

A. 1

B. 3
a

1 a
a


D.

a 1
1 a

C.

x  1

D.

x 1

 6  5 thì

x  1

C©u 45 : Giá trị của a log

C.

4



10  3




3 x
x 1

C. 0





10  3



x 1
x 3


D. 2

( a  0 và a  1 ) bằng
6


A. 4

B. 2

C. 16

D.


1
2

C©u 46 : Số nghiệm dương của phương trình là: log 2 x  2  log 2 x  5  log 1 8  0.
2

A. 0

B. 3

C. 2

D. 1

C. 3a 2

D. 3  2a

C. 2

D. e

C©u 47 : Nếu log 3  a thì log 9000 bằng
A. a 2  3

B. a 2

C©u 48 : Cho hàm số y  x ln x . Giá trị của y''(e)
A. 3

C©u 49 :

B.

1
e
x

1
Đạo hàm của hàm số f  x     là:
2

x

A.

1
f '( x)     ln 2
2

x

B.

x

1
f '( x)     lg 2
2


1
f '( x)    ln 2
2

C.

x

D.

1
f '( x)    lg 2
2

C©u 50 : Bất phương trình 2log3  4 x  3  log 1  2 x  3  2 là
3

3



3

A.  ;  
4


3 




B.  ;  
4


C©u 51 : Giá trị lớn nhất , nhỏ nhất của hàm số y
1
4

A. GTLN = 4 ; GTNN =
C. GTLN = 1 ; GTNN =

3 

C.  ;3
4 
2

x

D.  ;3
4 

2;2 là

trên

B. GTLN = 4 ; GTNN =

1

4

D. GTLN = 4 ; GTNN = 1

1
4





C©u 52 : Đạo hàm của hàm số y  ln x 2  x  1 là:

A.



1



ln x  x  1
2

B.

2x 1

C.


x2  x  1

C©u 53 : Cho a  log3 15; b  log 3 10 vậy log 50
3
A. 3 a

b

1

B. 4 a

b

1



2x 1



ln x  x  1
2

D.

1
x2  x  1


?

C. a b 1

D. 2 a b 1

C©u 54 : Cho phương trình 5x2 2 mx2  52 x2 4 mx2  x2  2mx  m  0 . Tìm m để phương trình vơ nghiệm?
7


×