Tải bản đầy đủ (.pdf) (26 trang)

Phân tích sự làm việc không gian của kết cấu lõi cứng nhà nhiều tầng chịu tải trọng ngang tĩnh

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (421.34 KB, 26 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC XÂY DỰNG

NCS. Ninh Đức Thuận

PHÂN TÍCH SỰ LÀM VIỆC KHÔNG GIAN CỦA KẾT CẤU
LÕI CỨNG NHÀ NHIỀU TẦNG CHỊU TẢI TRỌNG NGANG TĨNH
Chuyên ngành : Cơ kỹ thuật
Mã số: 62. 52. 01. 01

TÓM TẮT LUẬN ÁN TIẾN SỸ KỸ THUẬT
NGƯỜI HƯỚNG DẪN KHOA HỌC
PGS.TS. NGUYỄN VĂN HÙNG

Hà nội - năm 2016


1

A. GIỚI THIỆU LUẬN ÁN
1. Cơ sở khoa học và thực tiễn.
Trong lĩnh vực kết cấu công trình nói chung và chuyên ngành Cơ học kết
cấu nói riêng thì việc tìm một sơ đồ tính không quá phức tạp cho hệ kết cấu
không gian phức tạp là một trong các nhiệm vụ quan trọng, cơ bản của Cơ học
kết cấu. Đến thời điểm hiện tại ở Việt Nam và trên thế giới, các nghiên cứu về
mô hình tính toán lõi cứng và hệ kết cấu bằng thanh công xôn theo các hướng
tiếp cận khác nhau [11], [25], [41], độ cứng của thanh thường tính bằng tổng độ
cứng của các kết cấu đứng gồm vách, lõi và cột, chưa kể đến độ cứng của sàn,
trong khi sàn là một bộ phận quan trọng trong hệ kết cấu có độ cứng xác định.
Việc nghiên cứu một sơ đồ thanh công xôn xấp xỉ có kể đến ảnh hưởng của
sàn, gồm lõi cứng, cột và sàn trong hệ kết cấu nhiều tầng giúp cho người thiết


kế hiểu được bản chất cơ học của các cấu kiện kết cấu, hiểu được ảnh hưởng
của các đại lượng đặc trưng của các cấu kiện đến sự làm việc chung của cả hệ,
từ đó có được những nhận định nhanh phù hợp với quy luật cơ học khi hệ kết
cấu làm việc là vấn đề rất cần thiết. Do lõi cứng đóng vai trò quan trọng trong
kết cấu chịu lực nhiều tầng và quyết định chủ yếu đến các phản ứng tính toán
của toàn hệ kết cấu nên nếu có một cách tính toán nhanh trong việc lựa chọn sơ
bộ các kích thước đặc trưng của lõi cứng thì sẽ mang lại hiệu quả to lớn cho
việc thiết kế ngay từ giai đoạn thiết kế sơ bộ.
2. Mục đích, phương pháp, phạm vi và đối tượng nghiên cứu.
- Mục đích. Nghiên cứu một sơ đồ tính thanh công xôn xấp xỉ có kể đến ảnh
hưởng của sàn cho hệ kết cấu lõi cứng nhà nhiều tầng, có sơ đồ giằng. Nghiên
cứu về sơ đồ tính là một trong các nhiệm vụ của Cơ học Kết cấu. Đồng thời,
qua các nghiên cứu bằng số, xây dựng biểu thức thực nghiệm, các bảng tra xác
định độ cứng của liên kết đàn hồi nhằm lựa chọn nhanh kích thước tiết diện lõi
cứng gần đúng với một số dạng nhà trong giai đoạn thiết kế sơ bộ công trình
- Phương pháp nghiên cứu.
+ Nghiên cứu lý thuyết kết hợp với các thử nghiệm bằng số trên máy tính, bằng


2
phần mềm ETABS, theo phương pháp phần tử hữu hạn, sử dụng ETABS với
vai trò như một công cụ thí nghiệm số, đồng thời làm chuẩn để so sánh, kiểm
chứng kết quả nghiên cứu ;
+ Sử dụng các phương pháp của cơ học kết cấu, theo nguyên lý cân bằng lực và
thỏa mãn điều kiện biên của kết cấu, dựa trên các kết quả đã có, viết các công
thức dưới dạng tổng quát, chuyển đổi chúng về dạng ma trận độ cứng và véc tơ
tải trọng nút để phục vụ cho việc thiết lập chương trình tính toán trên phần
mềm Visual Basic 6.0. Thực nghiệm số dựa trên chương trình đã lập và các kết
quả nhận được của cùng một bài toán nhưng được giải bằng phần mềm thương
mại ETABS.

+ Sử dụng chương trình tự lập và phần mềm ETABS xây dựng các đường
thực nghiệm độ cứng các liên kết đàn hồi, từ đó thiết lập các biểu thức thực
nghiệm gần đúng kết hợp các bảng tra xác định độ cứng của liên kết đàn hồi.
- Phạm vi và đối tượng nghiên cứu: Do hiện nay ở Việt Nam có nhiều nhà
cao từ 10 đến 20 tầng nên phạm vi nghiên cứu của luận án với kết cấu từ 10
đến 20 tầng, có hệ kết cấu với mặt bằng đối xứng gồm lõi cứng (loại lõi cứng
một khoang), sàn phẳng và cột, chịu tải trọng ngang tĩnh hoặc tương đương
tĩnh, nhằm lựa chọn nhanh kích thước tiết diện lõi cứng gần đúng trong giai
đoạn thiết kế sơ bộ.
3. Nội dung, bố cục của luận án.
Nội dung luận án trình bày trong 113 trang gồm phần mở đầu, 3
chương, kết luận và kiến nghị, 55 hình vẽ, 51 bảng biểu, phụ lục 1 gồm 25
trang, phụ lục 2 về mã nguồn chương trình AC-1 gồm 29 trang và phụ lục 3 về
chương trình AC-2 gồm 27 trang.

NHỮNG KẾT QUẢ MỚI CỦA LUẬN ÁN:
- Từ sơ đồ tính không gian phức tạp (gồm lõi cứng, cột và sàn) đã mô hình hóa
thành một sơ đồ thanh công xôn xấp xỉ có kể đến ảnh hưởng của sàn, trong đó
lõi cứng mô hình bằng các phần tử thanh liên kết ngàm vào móng, có liên kết
nửa cứng giữa các phần tử thanh, cột và sàn liên kết với lõi cứng bằng các liên


3
kết đàn hồi.
- Đã xây dựng chương trình AC-1, AC-2 làm công cụ để nghiên cứu, phân tích
kết cấu lõi cứng nhiều tầng.
-Đã khảo sát sự ảnh hưởng của một số yếu tố đến chuyển vị đỉnh trong kết cấu
nhiều tầng có sơ đồ giằng, có mặt bằng đối xứng, khi chịu tải trọng ngang,
gồm: số tầng, bề dày lõi cứng, chiều cao lanh tô cửa lõi cứng, chiều rộng
khoảng hở mặt cắt tiết diện lõi cứng, số lượng cột, mô men quán tính các cột,

bề dày sàn, mô đun đàn hồi của vật liệu. Trong các thông số này thì chiều rộng
khoảng hở mặt cắt tiết diện lõi cứng a1 là yếu tố ảnh hưởng nhiều nhất đến độ
cứng lõi cứng.
- Đã xây dựng biểu thức thực nghiệm kết hợp các bảng tra xác định độ cứng
của liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y và độ cứng của
liên kết đàn hồi ngăn cản chuyển vị xoay quanh trục Z với một số dạng kết cấu
nhiều tầng, có sơ đồ giằng, chịu tải trọng ngang để lựa chọn kích thước tiết
diện lõi cứng gần đúng trong giai đoạn thiết kế sơ bộ công trình.

B. NỘI DUNG LUẬN ÁN
MỞ ĐẦU
CHƯƠNG 1: TỔNG QUAN VỀ VẤN ĐỀ NGHIÊN CỨU.
1.1. Các hệ kết cấu nhiều tầng sử dụng lõi cứng chịu lực.
1.1.1. Hệ kết cấu lõi chịu lực.
1.1.2. Hệ kết cấu hộp chịu lực.
1.1.3. Hệ kết cấu khung – lõi.
1.1.4. Hệ kết cấu khung – hộp.
1.1.5. Hệ kết cấu hộp - tường vách.
1.1.6. Hệ kết cấu hộp – lõi.
1.1.7. Hệ kết cấu tường – lõi.
1.2. Phương pháp và sơ đồ tính toán kết cấu nhiều tầng
1.2.1. Phương pháp tính toán kết cấu nhiều tầng.


4
1.2.2. Sơ đồ tính toán kết cấu nhiều tầng.
1.3. Mô hình liên kết nửa cứng ở hai đầu phần tử thanh.
1.4. Khái niệm về độ cứng.
1.5. Kết quả nghiên cứu của một số tác giả trên thế giới và Việt Nam liên
quan đến đề tài nghiên cứu.

1.5.1. Kết quả nghiên cứu của một số tác giả liên quan đến mô hình tính
toán kết cấu lõi cứng.
1.5.2. Kết quả nghiên cứu của một số tác giả liên quan đến kết cấu có liên
kết nửa cứng và liên kết đàn hồi.
1.6. Nhận xét chung.
Đến thời điểm hiện tại ở Việt Nam và trên thế giới, các nghiên cứu về mô
hình tính toán lõi cứng và hệ kết cấu bằng thanh công xôn theo các hướng tiếp
cận khác nhau, độ cứng của thanh thường tính bằng tổng độ cứng của các kết
cấu đứng gồm vách, lõi và cột, chưa kể đến độ cứng của sàn, trong khi sàn là
một bộ phận quan trọng trong hệ kết cấu có độ cứng xác định.
Việc nghiên cứu về sơ đồ tính là một nhiệm vụ quan trọng của Cơ học kết
cấu, việc tách hệ kết cấu thực thành hai hệ: hệ lõi cứng và các hệ còn lại, liên
kết giữa hai hệ này là các liên kết đàn hồi. Thông qua các đặc trưng cơ lý của
các liên kết đàn hồi này có kể đến ảnh hưởng của các sàn đến sự làm việc của
lõi cứng, còn ít được công bố kết quả nghiên cứu.
1.7. Một số giả thiết được sử dụng trong luận án
1.8. Mục đích, phương pháp, phạm vi và đối tượng nghiên cứu.
CHƯƠNG 2: MÔ HÌNH TÍNH TOÁN HỆ KẾT CẤU LÕI CỨNG NHIỀU
TẦNG CÓ SƠ ĐỒ GIẰNG, CHỊU TẢI TRỌNG NGANG.
Chương này mô hình hóa từ công trình thực về sơ đồ tính công trình (sơ đồ
tính không gian phức tạp gồm lõi cứng, cột và sàn), từ sơ đồ tính không gian
phức tạp chuyển về sơ đồ thanh công xôn xấp xỉ có kể đến ảnh hưởng của sàn,
trong đó lõi cứng mô hình bằng các phần tử thanh liên kết ngàm vào móng, có
liên kết nửa cứng giữa các phần tử thanh, cột và sàn liên kết với lõi cứng mô


5
hình bằng các liên kết đàn hồi, thiết lập thuật toán và chương trình để phân tích
mô hình tính theo phương pháp phần tử hữu hạn, xác định độ cứng các liên kết
đàn hồi. Tiến hành các thử nghiệm số đối với một số bài toán, so sánh kết quả

tính toán theo chương trình trong luận án và phần mềm ETABS [9], [30] để
kiểm tra độ tin cậy.
2.1. Mô hình hóa từ công trình thực về sơ đồ thanh công xôn xấp xỉ.
Từ sơ đồ tính công trình, tác giả mô hình hóa thành sơ đồ tính xấp xỉ có kể đến
ảnh hưởng của sàn, thể hiện ở hình 2.2, được gọi là sơ đồ thanh công xôn xấp
xỉ. Trong đó, lõi cứng mô hình bằng các phần tử thanh không gian có mặt cắt
tiết diện kín, hở, liên kết ngàm vào móng, làm việc đồng thời với các bộ phận
kết cấu khác tại mức sàn các tầng thông qua liên kết đàn hồi tại các tầng (thay
thế sự làm việc đồng thời giữa lõi cứng và các bộ phận kết cấu khác gồm cột và
sàn), liên kết giữa các phần tử thanh tại các tầng có dạng nửa cứng (liên kết có
độ cứng hữu hạn) để phù hợp với công nghệ thi công xây dựng.
mÆt c¾t lâi cøng
tiÕt diÖn kÝn

mÆt c¾t lâi cøng
tiÕt diÖn hë

Hình 2.2: Sơ đồ thanh công xôn xấp xỉ
2.1.1. Ma trận độ cứng của phần tử thanh có liên kết nửa cứng.
2.1.2. Các phần tử của ma trận độ cứng và véc tơ tải trọng nút của phần tử
thanh hai đầu liên kết nửa cứng.


6
Xét phần tử thanh trong mô hình tính ở hình 2.2, có chiều dài là L2 và các đặc
trưng tiết diện I x , I y , I xo , G, A. Hai đầu 1 và 2 có liên kết nửa cứng được mô
hình hóa bằng các lò xo, với độ mềm cho chuyển vị dọc trục là k1u , k 2u ;
Độ mềm của biến dạng uốn trong mặt phẳng YZ gồm độ mềm của chuyển vị
ngang là k1v , k 2v và độ mềm của chuyển vị xoay là k1 , k 2 . Độ mềm của biến
dạng uốn trong mặt phẳng XZ gồm chuyển vị ngang là k1w , k 2w và chuyển vị

xoay là k1 , k 2 . Độ mềm của biến dạng xoắn quanh trục Z là k1 , k 2 .
Quan hệ giữa biến dạng và nội lực của liên kết được xác định như sau:
 = k  .M x ;  = k  .M y ; u = k u .N ; v = k v .V y ; w = k w .Vx ;  = k  .M xo .
2.1.3. Ma trận độ cứng và véc tơ tải trọng nút của phần tử thanh có liên
kết nửa cứng, có liên kết đàn hồi.
- Ma trận độ cứng của thanh có các gối tựa đàn hồi [4].
Thay các độ cứng liên kết đàn hồi CiX , CiY , CiZ , CiXX , CiYY , CiZZ (i = 1 đến n,
n là số tầng) vào đường chéo chính của ma trận độ cứng của thanh, ta có:

[[K ]s + [C]s ][. u]s = [R ]s
trongđó: [C ]s là véc tơ độ cứng liên kết đàn hồi của thanh.

(2.9)

2.2. Sơ đồ khối và lập trình.
2.2.1. Sơ đồ khối.
2.2.2. Lập trình.

Hình 2.6: Giao diện chương trình AC-1, khi nhập file dữ liệu chuyển vị.


7

Hình 2.5: Giao diện chương trình,
AC-1 khi nhập thông tin về vật liệu
và kích thước hình học lõi cứng.

Hình 2.8: Giao diện chương trình
AC- 2, khi nhập thông tin tải trọng
và độ mềm của liên kết, độ cứng

của liên kết đàn hồi tại các tầng.
2.3. Kiểm tra độ tin cậy của lời giải và chương trình tính.
Để kiểm tra độ tin cậy của lời giải và chương trình tính, tác giả tiến
hành so sánh kết quả bằng số với phần mềm ETABS có vai trò như một công
cụ thí nghiệm số, đồng thời làm chuẩn để so sánh.
2.4. Nguyên nhân cần xác định hệ số điều chỉnh độ cứng chống uốn, chống
xoắn tương đương khi phân tích lõi cứng mô hình bằng các phần tử thanh.
2.4.1. Phân tích kết cấu lõi cứng theo phương pháp giải tích và phương
pháp phần tử hữu hạn.
Bảng 2.1: Bảng kết quả chênh lệch S1 (%) về mômen quán tính trung tâm của
lõi cứng quanh trục Y.
Chuyển vị ngang tại

I cxY

I ltY

S1

đỉnh theo trục X (m)

( m4 )

( m4 )

(%)

Stt

a1 (m)


1

a1 =0

0,000592

86,377

102,544

15,766

2

a1 =2 m

0,001970

25,948

102,344

74,646

3

a1 =4 m

0,002729


18,729

100,944

81,446

4

a1 =8 m

0,00450

11,352

91,131

87,543


8
Từ mô hình tính lõi cứng bằng các phần tử tấm, khi chuyển sang mô
hình lõi cứng bằng các phần tử thanh cần phải xác định hệ số điều chỉnh độ
cứng chống uốn, chống xoắn tương đương.
Có sự chênh lệch về mô men quán tính chống uốn của của lõi cứng khi
mô tả lõi cứng bằng thanh công xôn thay thế và mômen quán tính chống uốn
của lõi cứng xác định theo công thức lý thuyết sức bền vật liệu. Độ cứng của
lõi cứng khi mô hình bằng phần tử thanh khác với độ cứng của lõi cứng khi mô
hình lõi cứng bằng các phần tử tấm. Vì vậy, khi quy đổi lõi cứng về thanh công
xôn thay thế thì cần phải sử dụng hệ số điều chỉnh độ cứng chống uốn, chống

xoắn tương đương.
2.5. Cách xác định hệ số điều chỉnh độ cứng chống uốn, chống xoắn khi
phân tích lõi cứng mô hình bằng các phần tử thanh.
2.5.1. Cách xác định hệ số điều chỉnh độ cứng chống uốn, chống xoắn của
lõi cứng thông qua cân bằng năng lượng
2.5.1.1. Phương pháp xác định: Xác định thông qua việc cân bằng thế năng
biến dạng tích lũy trong hệ đàn hồi.
2.5.1.2. Ví dụ tính toán.
- Hệ số độ cứng chống uốn, chống xoắn trong tất cả các trường hợp đều có giá
trị dương, nằm trong khoảng (0, 1), có giá trị khác nhau và phụ thuộc cả vào tải
trọng, tức là với các dạng tải trọng khác nhau thì hệ số độ cứng chống uốn,
chống xoắn khác nhau. Nguyên nhân do độ cứng là đại lượng đặc trưng cho
khả năng chống lại biến dạng của cấu kiện, với các dạng tải trọng khác nhau thì
biến dạng khác nhau. Và việc xác định hệ số độ cứng xác định thông qua cân
bằng toán học về năng lượng giữa hệ kết cấu mô tả lõi cứng bằng các phần tử
thanh và phần tử tấm.
- Giá trị hệ số độ cứng luôn nằm trong khoảng (0, 1) là do ứng xử của hệ tấm
khác với hệ thanh khi chịu tải trọng ngang. Khi lõi mô tả bằng các phần tử tấm
là hệ kết cấu không gian với mô hình tính toán liên tục nên có độ cứng lớn hơn
khi mô tả lõi cứng bằng các phần tử thanh với mô hình tính toán rời rạc.


9
Bảng 2.3: Bảng kết quả hệ số điều chỉnh độ cứng chống uốn, chống xoắn tương
đương với các dạng tải trọng khác nhau.

M xo tập

Tải trọng
Số


Tải trọng

Tải trọng

tầng

Mặt cắt

ngang phân

ngang phân

kết

tiết diện

bố đều

bố tam giác

cấu

ngang tập

M xo

trung tại

trung trên


tại đỉnh

các mức

đỉnh

sàn

x

y

x

y

x

y

 xo

 xo

0,637

0,233

0,524


0,187

0,723

0,250

0,058

0,106

0,723

0,255

0,580

0,202

0,770

,265

0,028

0,055

0,017

0,034


10

a=8,3m,

15

a1 =4m, 

20

= 0,3m

0,760

0,270

0,603

0,213

0,788

0,278

10

a=6,3m,
a1 =3m,


0,700

0,254

0,555

0,203

0,757

0,268

0,757

0,283

0,601

0,224

0,786

0,294

0,018

0,036

0,779


0,311

0,614

0,247

0,796

0,324

0,012

0,023

15
20



= 0,3 m

0,036

0,068

10

a=4,3m,

0,751


0,318

0,596

0,253

0,781

0,337

0,022

0,041

15

a1 =2m,

0,780

0,395

0,614

0,316

0,794

0,425


0,014

0,025

0,791

0,474

0,621

0,382

0,799

0,522

0,011

0,019

20



= 0,3 m

2.5.2. Cách xác định hệ số điều chỉnh độ cứng chống uốn, chống xoắn của
lõi cứng thông qua cân bằng chuyển vị tại đỉnh.
2.5.2.1. Phương pháp xác định: Xác định thông qua việc cân bằng chuyển vị

tại đỉnh.
2.5.2.2. Ví dụ tính toán.
Thể hiện ở mục 3.2.3 và 3.2.4, kết quả tính toán thể hiện ở bảng 3.10.
2.5.3. Nhận xét về các cách xác định hệ số điều chỉnh độ cứng chống uốn,
chống xoắn của lõi cứng.
- Với các phương pháp xác định hệ số điều chỉnh độ cứng chống uốn, chống
xoắn khác nhau sẽ tìm được giá trị hệ số điều chỉnh độ cứng khác nhau.
- Hệ số điều chỉnh độ cứng chống uốn, chống xoắn trong tất cả các trường hợp
đều có giá trị dương, nằm trong khoảng (0, 1), có giá trị khác nhau và phụ


10
thuộc cả vào dạng tải trọng cụ thể. Nguyên nhân bởi vì, độ cứng của lõi khi mô
hình bằng phần tử thanh và mô hình bằng phần tử tấm có giá trị khác nhau.
2.6. Kiểm tra thuật toán và chương trình AC-1, AC-2.
2.6.1. Chọn công trình để tính toán, thực nghiệm bằng số.
Xét các kết cấu 10 tầng, 15 tầng và 20 tầng, mỗi tầng cao 3,3 m, có mặt bằng
đối xứng như hình 2.12, tải trọng gió theo trục X và Y với Wo = 95 daN / m 2 .

Hình 2.12: Mặt bằng kết cấu 10 tầng, 15 tầng và 20 tầng gồm lõi cứng, hệ cột
và sàn phẳng..
2.6.2. Mô hình tính toán.

LâI cøng

Hình 2.13: Mô hình không gian bằng phần mềm ETABS và mô hình thanh
công xôn xấp xỉ tính bằng chương trình AC-1, AC2.
2.6.3 Kiểm tra thuật toán và chương trình AC-1.
2.6.3.1. Các trường hợp tính toán thực nghiệm bằng số.



11
2.6.3.2. Trình tự các bước tính toán.
2.6.3.3. Kết quả tính toán.
Bảng 2.8: Bảng kết quả độ cứng CiX , CiY , CiZZ (i = 1 đến n, n là số tầng)
trong hệ kết cấu 10 tầng.
Tầng

Cao độ sàn (m)

CiX(i =1→10 )

CiY(i =1→10 )

CiZZ
( i =1→10 )

(daN/m)

(daN/m)

(daNm/rad)

10

33

979892

540252


6300012

9

29,7

980167

540242

6299997

8

26,4

980175

539628

6299993

7

23,1

980009

539797


6299983

6

19,8

979478

539573

6300015

5

16,5

980366

541799

6300019

4

13,2

980293

537851


6299966

3

9,9

979997

535376

6300009

2

6,6

980154

546585

6299962

1

3,3

970986

544197


6300214
X
i

Y
i

Tổng hợp kết quả chênh lệch lớn nhất về độ cứng C , C , CiZZ (i = 1 đến n,
n là số tầng) của lõi cứng 10, 15 và 20 tầng thể hiện ở bảng 2.12.
Bảng 2.12: Bảng tổng hợp kết quả chênh lệch lớn nhất giữa độ cứng CiX , CiY ,

CiZZ (i = 1 đến n, n là số tầng) tại các mức sàn tầng của lõi cứng 10 tầng, 15
tầng và 20 tầng, tính toán bằng AC-1 và độ cứng cho trước.
Stt Số tầng

Chênh lệch
CiX(i =1→n ) (%)

Chênh lệch
CiY(i =1→n ) (%)

Chênh lệch
CiZZ
( i =1→ n ) (%)

1

10


0,920

0,856

0,00060

2

15

0,254

1,150

0,00112

3
20
0,414
2,506
0,00071
- Căn cứ vào bảng 2.12, với lõi cứng 10, 15 và 20 tầng có tiết diện hở, chênh
lệch lớn nhất ở các tầng về CiX( i =1→n ) là 0,92 %, về CiY( i =1→n ) là 2,506 % về


12
ZZ
i ( i =1→ n )

C


là 0,00112 %. Do các giá trị chênh lệch này không lớn nên có thể sử

dụng AC-1 để phân tích độ cứng các liên kết đàn hồi trong hệ kết cấu lõi cứng
nhiều tầng.
- Kết quả phân tích độ cứng của liên kết đàn hồi trong kết cấu 10 tầng, 15 tầng
và 20 tầng bằng chương trình AC-1 cho thấy độ cứng tại vị trí lõi cứng ngàm
vào móng có giá trị lớn vô cùng, độ cứng CiX , CiY , CiZZ (i = 1 đến n, n là số
tầng) tại các tầng có giá trị dương, theo quy luật với giá trị độ cứng xấp xỉ
nhau.
2.6.4. Kiểm tra thuật toán và chương trình AC-2.
2.6.4.1. Các trường hợp tính toán thực nghiệm bằng số.
Để kiểm tra thuật toán, chương trình AC-2, tác giả thực hiện các ví dụ
tính toán kết cấu lõi cứng có liên kết đàn hồi ngăn cản chuyển vị ngang theo
trục X, Y và chuyển vị xoay quanh trục Z, có liên kết cứng và nửa cứng giữa
các phần tử thanh trong các kết cấu 10 tầng, 15 tầng và 20 tầng với mặt bằng
đối xứng với các số liệu đầu vào ở mục 2.6.1 và các số liệu ở mục 2.6.4.1 trong
luận án.
Về độ mềm của liên kết giữa các phần tử thanh: phụ thuộc vào dạng
liên kết giữa các phần tử thanh, với công nghệ thi công lõi cứng toàn khối thì
liên kết lõi cứng giữa các tầng là cứng, tức là giá trị độ mềm của liên kết giữa
các phần tử thanh k ij ( j = u, v,  , w,  ,  , i = 1→n, n là số tầng), khi đó có thể
quan niệm lõi cứng là một thanh liên tục. Với công nghệ thi công lõi cứng lắp
ghép thì liên kết lõi cứng giữa các tầng là nửa cứng (liên kết có độ cứng hữu
hạn) [16], tức là một số độ mềm của liên kết giữa các phần tử thanh k ij
( j = u, v,  , w,  ,  , i = 1→n, n là số tầng) có giá trị khác không.
2.6.4.2. Mô hình tính toán. Thể hiện ở hình 2.14, hình 2.15 trong luận án.
2.6.4.3. So sánh kết quả tính toán giữa AC-2 và ETABS về chuyển vị của
lõi cứng có liên kết cứng giữa các phần tử thanh, có liên kết đàn hồi.



13
Bảng 2.17: Bảng tổng hợp kết quả chênh lệch (%) giữa AC-2 và ETABS về
Y
chuyển vị lớn nhất ( U iX( i =1→n ) ,  iZZ
( i =1→ n ) , U i ( i =1→ n ) ) của lõi cứng tiết diện kín và

hở trong kết cấu 10 tầng, 15 tầng và 20 tầng, có liên kết cứng giữa các phần tử
thanh, có liên kết đàn hồi.
Chênh lệch

Chênh lệch

Chênh lệch

Stt

Số
tầng

Mặt cắt tiết
diện lõi cứng

1

10

a=8,3m,

13,38


4,25

8,16

2

15

a1 =4 m,

9,40

3,25

12.79

3

20



=0,3m

6,87

2,90

2,72


4

10

a=8,3m,

10,24

5

15

a1 = 0,

4,92

6

20



=0,3m

U

X
i ( i =1→ n )


(%)



ZZ
i ( i =1→ n )

(%)

U iY(i =1→n ) (%)

2,72

- Với lõi cứng hở, chênh lệch về chuyển vị ngang theo trục X ở các tầng lớn
nhất là 13,38 %, chênh lệch về chuyển vị xoay quanh trục Z ở các tầng lớn nhất
là 4,25 %, chênh lệch về chuyển vị ngang theo trục Y lớn nhất là 12,79 %.
- Với lõi cứng tiết diện kín, chênh lệch về chuyển vị ngang theo trục X ở các
tầng lớn nhất là 10,24 %.
- Do chênh lệch về kết quả tính toán chuyển vị giữa phần mềm ETABS và
chương trình AC-2 như bảng 2.17 là không lớn nên có thể sử dụng chương
trình AC-2 để phân tích kết cấu lõi cứng tiết diện kín và hở, có liên kết cứng
giữa các phần tử thanh, có các liên kết đàn hồi ngăn cản chuyển vị ngang theo
trục X, Y và chuyển vị xoay quanh trục Z.
2.6.4.4. So sánh kết quả tính toán giữa AC-2 và ETABS về chuyển vị của
lõi cứng có liên kết nửa cứng giữa các phần tử thanh, có liên kết đàn hồi.
Do chênh lệch như bảng 2.19 là không lớn nên có thể sử dụng chương
trình AC-2 để phân tích kết cấu lõi cứng có liên kết nửa cứng giữa các phần tử
thanh, có các liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y và
chuyển vị xoay quanh trục Z, khi chịu tải trọng ngang.



14
Bảng 2.19: Bảng tổng hợp kết quả chênh lệch giữa chương trình AC-2 và phần
Y
mềm ETABS về chuyển vị lớn nhất ( U iX( i =1→n ) ,  iZZ
( i =1→ n ) , U i ( i =1→ n ) ) của lõi

cứng 10 tầng, 15 tầng và 20 tầng, tiết diện hở, có liên kết nửa cứng giữa các
phần tử thanh, có độ cứng liên kết đàn hồi thay đổi.
Chênh lệch

Chênh lệch



Chênh lệch

Stt

Số tầng

1

10

10,04

3,07

19,06


2

15

5,86

2,85

20,07

3

20

4,47

2,75

12,70

U

X
i ( i =1→ n )

(%)

ZZ
i ( i =1→ n )


(%)

U iY(i =1→n ) (%)

2.7. Nhận xét chương 2.
- Từ sơ đồ tính không gian phức tạp (gồm lõi cứng, cột và sàn) đã mô hình hóa
thành một sơ đồ thanh công xôn xấp xỉ có kể đến ảnh hưởng của sàn, trong đó
lõi cứng mô hình bằng các phần tử thanh liên kết ngàm vào móng, có liên kết
nửa cứng giữa các phần tử thanh ở dạng tổng quát (với công nghệ thi công lõi
cứng toàn khối thì liên kết lõi cứng giữa các phần tử thanh là cứng, với công
nghệ thi công lõi cứng lắp ghép thì liên kết giữa các phần tử thanh là nửa
cứng), liên kết với bộ phận kết cấu khác thông qua các liên kết đàn hồi (thay
thế sự làm việc đồng thời giữa lõi cứng và các bộ phận kết cấu khác).
- Đã phân tích kết cấu lõi cứng bằng các phần tử tấm và bằng các phần tử thanh
thông qua các hệ số điều chỉnh độ cứng chống uốn, chống xoắn tương đương.
- Đã xây dựng chương trình AC-1, AC-2 làm công cụ để nghiên cứu, phân tích
kết cấu lõi cứng nhiều tầng. Chương trình AC-1 để nghiên cứu về độ cứng của
liên kết đàn hồi. Chương trình AC-2 có khả năng phân tích kết cấu lõi cứng có
liên kết nửa cứng giữa các phần tử thanh, có liên kết đàn hồi, chịu tải trọng
ngang tĩnh hoặc tương đương. Khảo sát các ví dụ bằng số và so sánh kết quả
với phần mềm chuyên dụng phân tích kết cấu nhiều tầng ETABS cho thấy
chênh lệch về chuyển vị là không lớn nên chương trình AC-2 có thể sử dụng để
tính toán hệ kết cấu lõi cứng nhiều tầng.


15
CHƯƠNG 3. KHẢO SÁT MỘT SỐ YẾU TỐ ẢNH HƯỞNG ĐẾN
CHUYỂN VỊ ĐỈNH VÀ XÂY DỰNG BIỂU THỨC THỰC NGHIỆM
XÁC ĐỊNH ĐỘ CỨNG CỦA LIÊN KẾT ĐÀN HỒI TRONG KẾT CẤU

NHIỀU TẦNG CÓ SƠ ĐỒ GIẰNG, CHỊU TẢI TRỌNG NGANG.
Chương này trình bày việc khảo sát một số yếu tố ảnh hưởng đến
chuyển vị đỉnh kết cấu công trình bằng ETABS. Sử dụng sơ đồ thanh công xôn
xấp xỉ, chương trình AC-2 đã nghiên cứu ở Chương 2 kết hợp một số giá trị
chuyển vị phân tích bằng ETABS ở trên để xây dựng các biểu thức thực
nghiệm, các bảng tra xác định độ cứng của liên kết đàn hồi nhằm lựa chọn kích
thước tiết diện lõi cứng gần đúng trong giai đoạn thiết kế sơ bộ với một số dạng
kết cấu nhiều tầng.
3.1. Khảo sát một số yếu tố ảnh hưởng đến chuyển vị ngang và xoay tại
đỉnh của kết cấu nhiều tầng.
3.1.1. Giới thiệu mục đích.
Mục này sử dụng phần mềm ETABS để khảo sát sự ảnh hưởng của 8 yếu
tố đến chuyển vị ngang và chuyển vị xoay tại đỉnh hệ kết cấu khi chịu tải trọng
ngang gồm: số tầng, bề dày lõi cứng, chiều cao lanh tô cửa của lõi cứng, chiều
rộng khoảng hở mặt cắt tiết diện lõi cứng, số lượng cột, mô men quán tính của
các cột, bề dày sàn, mô đun đàn hồi của vật liệu. Kết quả tính toán một số công
trình chọn để thực nghiệm bằng số có thể xác định được quy luật, tìm ra thông
số nào là quan trọng nhất ảnh hưởng đến chuyển vị đỉnh công trình và cung cấp
các giá trị về chuyển vị đỉnh để xây dựng biểu thức thực nghiệm xác định độ
cứng của liên kết đàn hồi.
3.1.2. Chọn kết cấu để tính toán thực nghiệm bằng số.
Xét các kết cấu 10 tầng, 15 tầng và 20 tầng có mặt bằng đối xứng gồm
lõi cứng, cột và sàn phẳng như hình 3.1 và hình 3.2 trong luận án, chiều cao
mỗi tầng h = 3,3 m, kích thước hình học lõi cứng, cột và sàn các tầng giống
nhau. Vật liệu có hệ số Poison  = 0,2, tải trọng gió tác động theo trục X với

Wo = 95 daN / m 2 .


16

3.1.3. Các trường hợp tính toán thử nghiệm bằng số.
Khảo sát sự ảnh hưởng 8 yếu tố đến chuyển vị ngang và chuyển vị xoay tại
đỉnh công trình khi chịu tải trọng ngang bằng phần mềm ETABS gồm số tầng,
bề dày lõi cứng, chiều cao lanh tô cửa của lõi cứng, chiều rộng khoảng hở mặt
cắt tiết diện lõi cứng, số lượng cột, mô men quán tính của các cột, bề dày sàn,
mô đun đàn hồi của vật liệu, a1 / t.
3.1.4. Kết quả tính toán.
Thể hiện từ hình 3.4 đến 3.21, từ bảng 3.2 đến 3.11 ở mục 3.1.4 của luận án.
3.1.5. Nhận xét về các kết quả tính toán.
- Kết quả tính toán từ bảng 3.2 đến bảng 3.10 với sự khảo sát đối với bài toán
cụ thể của 8 yếu tố cùng các nhận xét về tỷ lệ % tăng, giảm về chuyển vị ngang
và xoay tại đỉnh thể hiện ở bảng 3.11 cho thấy có thể xác định quy luật để điều
chỉnh nhanh các thông số này trong giai đoạn thiết kế sơ bộ công trình. Bên
cạnh đó, kết quả khảo sát 8 yếu tố cho thấy: khi thay đổi mô đun đàn hồi của
vật liệu thì chuyển vị tại đỉnh thay đổi nhỏ nhất, khi thay đổi chiều rộng khoảng
hở mặt cắt tiết diện lõi cứng a1 thì chuyển vị tại đỉnh lớn nhất. Như vậy, với
lõi cứng tiết diện hở thì chiều rộng khoảng hở mặt cắt tiết diện lõi cứng a1 là
yếu tố quan trọng nhất ảnh hưởng đến độ cứng lõi cứng, bởi vì nó gây ra độ
lệch tâm giữa tâm cứng và tâm hình học, chính độ lệch tâm này gây ra hiện
tượng xoắn và làm mất tính đối xứng, dẫn đến lõi cứng tiết diện hở có xu
hướng bị biến dạng xung quanh chu vi và mất tính chất phẳng của tiết diện tại
vị trí hai bên mép khoảng hở lõi cứng, bắt sàn cùng làm việc với lõi cứng.
3.2. Xây dựng biểu thức thực nghiệm xác định độ cứng của liên kết đàn hồi
cho kết cấu nhiều tầng, có sơ đồ giằng, chịu tải trọng ngang.
3.2.1. Giới thiệu mục đích.
Mục này sử dụng mô hình đã xây dựng ở chương 2 và kết quả chuyển
vị đỉnh của một số kết cấu đã khảo sát ở mục 3.1 để xây dựng công thức thực
nghiệm với mô hình tính hệ kết cấu lõi cứng dạng thanh liên tục, độ cứng



17
không đổi, có liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y
( CiX , CiY , i = 1→n) và liên kết đàn hồi ngăn cản chuyển vị xoay quanh trục Z
( CiZZ , i = 1→n), với giả thiết độ cứng của liên kết đàn hồi CiX , CiY và CiZZ (i
= 1→n), có giá trị giống nhau. Với công thức thực nghiệm và các bảng tra có
thể nội suy xác định độ cứng của liên kết đàn hồi CiX , CiY , CiZZ (i = 1→n),
sau đó thay giá trị độ cứng kết hợp các số liệu khác của lõi cứng vào chương
trình AC-2 sẽ xác định được chuyển vị của hệ kết cấu, so sánh với các quy định
về giới hạn chuyển vị đỉnh công trình [42], [43], có thể lựa chọn nhanh kích
thước tiết diện lõi cứng trong giai đoạn thiết kế sơ bộ với một số dạng kết cấu.
3.2.2. Trình tự xây dựng biểu thức thực nghiệm.
3.2.3. Chọn kết cấu để tính toán thực nghiệm bằng số.
- Xét các kết cấu 10 tầng, 15 tầng và 20 tầng có mặt bằng đối xứng gồm lõi
cứng, cột và sàn phẳng như hình 3.22 và hình 3.23, chiều cao mỗi tầng h = 3,3
m, lõi cứng dày 0,3 m, chiều rộng khoảng hở mặt cắt tiết diện lõi cứng a1 =
4 m, kích thước hình học lõi cứng, cột và sàn các tầng giống nhau. Vật liệu có
mô đun đàn hồi E = 2,9 x 10 9 daN / m 2 , hệ số Poison  = 0,2, tải trọng gió
tác động theo trục X và Y với Wo = 95 daN / m 2 (chỉ xét thành phần tĩnh, giá
trị thể hiện ở bảng 2.4 và 2.5). Các tham số phân tích thay đổi gồm:
+ Số tầng n = 10 tầng; 15 tầng; 20 tầng.
+ Số lượng cột trên mặt bằng nc = 8 cột; 12 cột; 16 cột.
+ Mô men quán tính các cột I xc , I yc , I xoc tính theo biểu thức (3.1), (3.2),
(3.3), sử dụng kết quả ở bảng 3.1.
+ Bề dày sàn t = 0,2 m; 0,22 m; 0,25 m.
3.2.4. Kết quả tính toán.
- Sơ đồ tính toán: Sử dụng sơ đồ tính không gian bằng phần mềm ETABS và sơ
đồ tính thanh công xôn xấp xỉ bằng chương trình AC-2, thể hiện ở hình 3.24.


18


Hỡnh 3.24: S tớnh khụng gian bng phn mm ETABS v s thanh cụng
xụn xp x tớnh bng chng trỡnh AC-2.
1500
1400
1300
1200

Iyc (m4)

1100
1000
900
800
700
600
500
0

200 000

400 000

600 000

800 000

1 000 000 1 200 000 1 400 000 1 600 000

Độ cứng của liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X (daN/m)


10 tầng (8 cột)

10 tầng (12 cột)

10 tầng (16 cột)

15 tầng (8 cột)

15 tầng (12 cột)

15 tầng (16 cột)

20 tầng (8 cột)

20 tầng (12 cột)

20 tầng (16 cột)

Hỡnh 3.25: Biu cng ca liờn kt n hi CiX (i = 1n), trong kt cu
10, 15 v 20 tng, t = 0,22 m, khi mụ men quỏn tớnh trung tõm cỏc ct quanh
trc Y thay i.
3000
2800
2600

Ixoc (m4)

2400
2200

2000
1800
1600
1400
1200
1000
0

1 000 000 2 000 000 3 000 000 4 000 000 5 000 000 6 000 000 7 000 000 8 000 000 9 000 000 10 000 000

Độ cứng của liên kết đàn hồi ngăn cản chuyển vị xoay quanh trục Z (daNm/rad)
10 tầng (8 cột)

10 tầng (12 cột)

10 tầng (16 cột)

15 tầng (8 cột)

15 tầng (12 cột)

15 tầng (16 cột)

20 tầng (8 cột)

20 tầng (12 cột)

20 tầng (16 cột)

Hỡnh 3.26: Biu cng ca liờn kt n hi CiZZ (i = 1n) trong kt cu

10, 15 v 20 tng, t = 0,22 m, khi mụ men quỏn tớnh cc ca cỏc ct thay i.


19
3.2.5. Đề xuất biểu thức thực ngiệm.
- Phương pháp đề xuất biểu thức thực nghiệm: Trên cơ sở biểu đồ độ cứng thể
hiện từ hình 3.25 đến hình 3.30, tác giả nhận thấy biểu đồ độ cứng CiX , CiY ,

CiZZ (i = 1→n) có dạng gần với bậc nhất nên chọn một đường độ cứng quy
ước tương ứng với các giá trị độ cứng quy ước và độ dốc của đường đó, các
yếu tố ảnh hưởng đến độ cứng CiX , CiY , CiZZ (i = 1→n) xét đến thông qua các
hệ số và lập thành bảng.
- Dựa trên phương pháp như trên, tác giả đề xuất biểu thức thực nghiệm xác
định độ cứng CiX , CiY , CiZZ (i = 1→n) có dạng:

CiX = CiX( 0 ) +  1Xu +  2Xu .auX( 0 ) .( I yc − I yc ( 0 ) ).

t
t0

CiZZ = CiZZ
( 0 ) +  1 xo +  2 xo .a xo ( 0 ) .( I xoc − I xoc ( 0 ) ).
CiY = CiY( 0 ) +  1Yu +  2Yu .auY( 0 ) .( I xc − I xc ( 0 ) ).

t
t0

(daN/m)

t

(daNm/rad)
t0
(daN/m)

(3.4)
(3.5)
(3.6)

Cách xác định các tham số trong công thức (3.4), (3.5), (3.6) thể hiện ở mục
3.2.5. Giá trị  1Xu ,  2Xu ,  1 xo ,  2 xo ,  1Yu ,  2Yu lần lượt được thể hiện từ bảng
3.25 đến bảng 3.30.
Với biểu thức thực nghiệm và các số liệu nêu trên có thể nội suy xác định độ
cứng CiX , CiY , CiZZ (i = 1→n) đối với các kết cấu từ 10 đến 20 tầng, có mặt
bằng kết cấu đối xứng gồm lõi cứng, hệ cột và sàn tương tự như hình 3.22 và
hình 3.23, thay các giá trị độ cứng này kết hợp với đặc trưng hình học của lõi
cứng và tải trọng ngang vào chương trình AC-2 sẽ xác định được chuyển vị của
hệ kết cấu một cách nhanh chóng. Mặt khác, theo [42], [43], quy định khi thiết
kế kết cấu phải đảm bảo độ cứng hệ kết cấu với chuyển vị đỉnh không vượt quá
chuyển vị giới hạn, do vậy có thể xác định được kích thước tiết diện lõi cứng
nhanh chóng trong giai đoạn thiết kế sơ bộ công trình


20
3.2.6. Kiểm tra biểu thức thực nghiệm với kết cấu cùng dạng.
Xét các kết cấu 10 tầng, 12 tầng, 15 tầng, 16 tầng, 18 tầng và 20 tầng
có mặt bằng đối xứng gồm lõi cứng, cột và sàn phẳng như hình 3.31, lõi cứng
dày 0,3 m, chiều rộng khoảng hở mặt cắt tiết diện lõi cứng a1 = 4 m, cột hình
vuông kích thước mỗi cạnh là 0,85 m, kích thước hình học lõi cứng, cột và sàn
các tầng giống nhau, , bề dày sàn t = 0,21 m. Vật liệu có mô đun đàn hồi E =
2,9 x 10 9 daN / m 2 , hệ số Poison  = 0,2, tải trọng gió tác động theo trục X

và Y với Wo = 95 daN / m 2 .

Hình 3.31: Mặt bằng kết cấu 10 tầng, 12 tầng, 15 tầng, 16 tầng, 18 tầng và 20
tầng gồm lõi cứng, sàn, cột (có 10 cột) và hệ trục tọa độ OXYZ.
- Áp dụng công thức thực nghiệm (3.4), (3.5), (3.6) để xác định giá trị CiX ,

CiY , CiZZ (i = 1→n) đối với kết cấu 12 tầng.
+ Xác định CiX (i = 1→n): ta có CnX( 0 ) = 420000 daN/m, nc = 8 cột, t = 0,21 m,

auX( 0 ) = 194,12 (daN / m 5 )  1Xu = 298000 daN/m (giá trị nội suy tuyến tính ở
bảng 3.25),  2Xu = 0,808 (giá trị nội suy tuyến tính ở bảng 3.26), I yc ( 0 ) = 916,94

m 4 và t 0 = 0,22 m, I yc = 627,481 m 4 . Thay các giá trị này vào công thức


21
(3.4) ta xác định được C

X
i

(i = 1→n) = 674682 daN/m.

+ Xác định CiZZ (i = 1→n): ta có CnZZ( 0 ) = 2800000 (daNm/rad), nc = 8 cột, t =
0,21 m, a xo ( 0 ) = 726,65 (daN / m 3 rad ) ,  1 xo = 1950000 (daNm/rad) (giá trị
nội suy tuyến tính ở bảng 3.27),  2 xo = 1,309 (giá trị nội suy tuyến tính ở bảng
3.28), I xoc ( 0 ) = 1837,06 m 4 và t 0 = 0,22 m, I xoc = 1404,680 m 4 . Thay các giá
trị này vào công thức (3.5) ta xác định được CiZZ (i = 1→n) = 4357518
(daNm/rad).
+ Xác định CiY (i = 1→n): ta có CnY( 0 ) = 255000 daN/m, nc = 8 cột, t = 0,21 m,


auY( 0 ) = 72,53 (daN / m 5 )  1Yu = 131000 daN/m (giá trị nội suy tuyến tính ở
bảng 3.29),  2Yu = 1,216 (giá trị nội suy tuyến tính ở bảng 3.30), I xc ( 0 ) = 920,11

m 4 và t 0 = 0,22 m, I xc = 777,199 m 4 Thay các giá trị này vào công thức (3.6)
ta sẽ có CiY (i = 1→n) = 373968 daN/m.
Đối với các kết cấu 10, 15, 16, 18 và 20 tầng thực hiện tương tự với trình tự
tính toán tương tự kết cấu 12 tầng.
Xác định chuyển vị của hệ kết cấu bằng phần mềm ETABS và chương
trình AC-2, sau đó so sánh sự chênh lệch chuyển vị đỉnh giữa phần mềm
ETABS và chương trình AC-2.
Bảng 3.31: Bảng kết quả chênh lệch (%) giữa AC-2 và ETABS về chuyển vị
đỉnh kết cấu 10, 12, 15, 16, 18 và 20 tầng.
ETABS
Số
Stt

U

X
n



ZZ
n

AC-2

U


Y
n

U

X
n



ZZ
n

Chênh lệch (%)

U

Y
n

U nX

 nZZ

U nY

tầng
(m)


(rad)

(m)

(m)

(rad)

(m)

(%)

(%)

(%)

1

10

0,00812

0,00071

0,00310

0,00788

0,00065


0,00308

2,97

9,27

0,72

2

12

0,01512

0,00130

0,00619

0,01389

0,00110

0,00597

8,11

15,90

3,54


3

15

0,03166

0,00262

0,01447

0,03046

0,00239

0,01429

3,78

8,97

1,28

4

16

0,03903

0,00318


0,01849

0,03658

0,00283

0,01818

6,29

11,06

1,67

5

18

0,05696

0,00449

0,02883

0,05233

0,00391

0,02802


8,13

12,91

2,81

6

20

0,07953

0,00605

0,04275

0,07527

0,00556

0,04191

5,35

8,20

1,96


22

Nhận xét:
- Theo bảng 3.31, với các kết cấu 10 tầng, 12 tầng, 15 tầng, 16 tầng, 18 tầng và
20 tầng có mặt bằng như hình 3.31 thì kết quả tính toán giữa phần mềm
ETABS và chương trình AC-2 có chênh lệch lớn nhất về chuyển vị đỉnh với

U nX là 8,13 %,  nZZ là 15,9 %, U nY là 3,54 %.
- Với các kết quả chênh lệch % về chuyển vị đỉnh giữa phần mềm ETABS và
chương trình AC-2 như trên, việc sử dụng các giả thiết về sơ đồ tính thanh
công xôn xấp xỉ thể hiện ở mục 1.7 có thể chấp nhận được và có thể sử dụng
công thức thực nghiệm (3.4), (3.5), (3.6) kết hợp chương trình AC-2 để phân
tích kết cấu lõi cứng cùng dạng, có liên kết cứng giữa các phần tử thanh, có các
liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y và chuyển vị xoay
quanh trục Z, trong giai đoạn thiết kế sơ bộ công trình.
- Kết quả tính toán chuyển vị tại đỉnh của sơ đồ thanh công xôn xấp xỉ tính
bằng AC-2 có giá trị nhỏ hơn ETABS nên khi chọn kích thước tiết diện lõi
cứng trong giai đoạn sơ bộ, người thiết kế cần lưu ý thêm để có biện pháp xử lý
cho thích hợp.
3.3. Nhận xét chương 3.
- Đã khảo sát sự ảnh hưởng của một số yếu tố đến chuyển vị đỉnh kết
cấu nhiều tầng có sơ đồ giằng, có mặt bằng đối xứng, khi chịu tải trọng ngang
gồm: số tầng, bề dày lõi cứng, chiều cao lanh tô cửa lõi cứng, chiều rộng
khoảng hở mặt cắt tiết diện lõi cứng, số lượng cột, mô men quán tính các cột,
bề dày sàn, mô đun đàn hồi của vật liệu. Kết quả khảo sát một số yếu tố với
một số dạng nhà cho thấy có thể xác định quy luật, giúp điều chỉnh nhanh các
yếu tố này trong giai đoạn thiết kế sơ bộ công trình.
-Với lõi cứng tiết diện hở thì chiều rộng khoảng hở mặt cắt tiết diện lõi
cứng a1 là yếu tố quan trọng nhất ảnh hưởng đến độ cứng lõi cứng, bởi vì nó
gây ra độ lệch tâm giữa tâm cứng và tâm hình học, chính độ lệch tâm này gây
ra hiện tượng xoắn và làm mất tính đối xứng, dẫn đến lõi cứng tiết diện hở có



23
xu hướng bị biến dạng xung quanh chu vi và mất tính chất phẳng của tiết diện
tại vị trí hai bên mép khoảng hở lõi cứng, bắt sàn cùng làm việc với lõi cứng.
- Đã xây dựng biểu thức thực nghiệm kết hợp các bảng tra xác định độ
cứng của liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y và độ cứng
của liên kết đàn hồi ngăn cản chuyển vị xoay quanh trục Z với một số dạng kết
cấu nhiều tầng, có sơ đồ giằng, chịu tải trọng ngang để lựa chọn kích thước tiết
diện lõi cứng gần đúng trong giai đoạn thiết kế sơ bộ công trình.

KẾT LUẬN CHUNG
Đề tài “Phân tích sự làm việc không gian của kết cấu lõi cứng nhà
nhiều tầng chịu tải trọng ngang tĩnh” đã đạt được các kết quả sau đây:
- Từ sơ đồ tính không gian phức tạp (gồm lõi cứng, cột và sàn) đã mô hình hóa
thành một sơ đồ thanh công xôn xấp xỉ có kể đến ảnh hưởng của sàn, trong đó
lõi cứng mô hình bằng các phần tử thanh liên kết ngàm vào móng, có liên kết
nửa cứng giữa các phần tử thanh, cột và sàn liên kết với lõi cứng bằng các liên
kết đàn hồi.
- Đã xây dựng chương trình AC-1, AC-2 làm công cụ để nghiên cứu, phân tích
kết cấu lõi cứng nhiều tầng.
-Đã khảo sát sự ảnh hưởng của một số yếu tố đến chuyển vị đỉnh trong kết cấu
nhiều tầng có sơ đồ giằng, có mặt bằng đối xứng, khi chịu tải trọng ngang,
gồm: số tầng, bề dày lõi cứng, chiều cao lanh tô cửa lõi cứng, chiều rộng
khoảng hở mặt cắt tiết diện lõi cứng, số lượng cột, mô men quán tính các cột,
bề dày sàn, mô đun đàn hồi của vật liệu. Trong các thông số này thì chiều rộng
khoảng hở mặt cắt tiết diện lõi cứng a1 là yếu tố ảnh hưởng nhiều nhất đến độ
cứng lõi cứng.
- Đã xây dựng biểu thức thực nghiệm kết hợp các bảng tra xác định độ cứng
của liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y và độ cứng của
liên kết đàn hồi ngăn cản chuyển vị xoay quanh trục Z với một số dạng kết cấu



24
nhiều tầng, có sơ đồ giằng, chịu tải trọng ngang để lựa chọn kích thước tiết
diện lõi cứng gần đúng trong giai đoạn thiết kế sơ bộ công trình.

CÁC KIẾN NGHỊ VÀ HƯỚNG NGHIÊN CỨU TIẾP THEO
Trên cơ sở các kết quả đã đạt được ở các phần trên, đề tài của luận án
có thể tiếp tục nghiên cứu theo các hướng sau:
1. Nghiên cứu về lý thuyết và thực nghiệm về liên kết giữa lõi cứng và các bộ
phận kết cấu khác trong nhà nhiều tầng theo công nghệ xây dựng bê tông toàn
khối và lắp ghép.
2. Nghiên cứu về lý thuyết và thực nghiệm về độ mềm liên kết nửa cứng giữa
các phần tử lõi cứng trong nhà nhiều tầng theo công nghệ xây dựng lắp ghép.
3. Nghiên cứu biểu thức thực nghiệm xác định độ cứng liên kết đàn hồi có kể
đến ảnh hưởng của khoảng cách từ cột đến tâm cứng kết cấu với các dạng mặt
bằng kết cấu khác nhau.
4. Nghiên cứu mô hình phân tích động lực học nhà cao tầng và nhà siêu cao
tầng để hạn chế chuyển vị ngang đỉnh, biên độ và gia tốc dao động khi chịu tải
trọng động với các nhà có mặt bằng đối xứng, không đối xứng, có lõi cứng
nhiều khoang.


×