SÁNG KIẾN KINH NGHIỆM
"GI
H
SINH
NH
ĐỀ TÀI:
N
ỆN K N NG GI I H
H
NG
NH
"
NG
N
I.
-
:
m
k
Trong
h
-
n
II.
S
N:
.
chung
.
.
,
sinh
S
III.
H
I N:
B
AB
: A B, A B
nêu n
, khi
-
.
IV. N I
NG
A.
1)
g
f ( x) g ( x) :
2 x 1 3x 1
ta ch
3x 1 0 x
1
3
1
1
x
3x 1 0
4
x
3
pt
x 0Vx
3
2
4
9
2 x 1 (3x 1)
9 x 2 4 x 0
x 0, x
9
g ( x) 0
f ( x) g ( x)
2
f ( x) g ( x)
f ( x) 0 )
t 2x 1
x 4 1 x 1 2x .
4 x
pt
1
(*).
2
x 4 1 2 x 1 x x 4 1 2 x 2 (1 2 x)(1 x) 1 x
1
2x 1 0
x
2 x 1 (1 2 x)(1 x)
2 x 0.
2
2
(2 x 1) (1 2 x)(1 x)
2
x
7
x
0
:
1 x
p
.
f ( x) g ( x) :
g ( x) 0
f ( x) g ( x) f ( x) 0
f ( x) g 2 ( x)
2x2 6x 1 x 2
3:
(1)
x2
x2
x2 0
3 7
3 7
3 7
3 7
(1) 2 x 2 6 x 1 0
x
Vx
x
Vx
2
2
2
2
2 x 2 6 x 1 ( x 2) 2
2
1
x
3
x
2
x
3
0
3 7
x 3.
2
f ( x) g ( x) :
f ( x) 0
g ( x) 0
f ( x) g ( x)
g ( x) 0
2
f ( x) g ( x)
4:
bpt:
2( x 2 16)
x 3
x3
7x
x 3
- 2004)
x4
bpt
x 2 16 0
10 2 x 0
2( x 2 16) x 3 7 x 2( x 2 16) 10 2 x
10 2 x 0
2
2
2( x 16) (10 2 x)
x5
x 10 34
10 34 x 5
2x 6x2 1 x 1
5:
x 1 0
x 1
x 1
pt
2
2
2
2
2
2
2
2 x 6 x 1 ( x 1)
6 x 1 x 1 6 x 1 ( x 1)
x 1
4
x 0, x 2
2
x 4x 0
x( x 1) x( x 2) 2 x 2 .
:
x 2
x 1 (*) .
x 0
Pt
2 x 2 x 2 x 2 ( x 1)( x 2) 4 x 2 2 x 2 ( x 2 x 2) x(2 x 1)
x 0
9
x 2 8 x 9 0
x 8
4 x 2 ( x 2 x 2) x 2 (2 x 1) 2
:
1)
*
* x 1 pt x 1 x 2 2 x 2 x 2 x 2 2 x 1
4x2 4x 8 4x2 4x 1 x
* x 2 pt
9
8
x(1 x) x( x 2) 2 ( x)( x)
1 x x 2 2 x 2 x 2 x 2 2 x 1 x
9
8
9
8
k
a, b 0
a, b 0
:
3
ab a . b!
ab a . b .
x 1 3 x 2 3 2x 3 .
3 x 1 3 x 2 3 2 x 3
pt 2 x 3 33 ( x 1)( x 2) (3 x 1 3 x 2 ) 2 x 3
(*)
3 ( x 1)( x 2)( 2 x 3) 0
3
x 1; x 2; x .
2
:
a
2 x 3 33 ( x 1)( x 2) (3 x 1 3 x 2 ) 2 x 3 3 ( x 1)( x 2)(2 x 3) 0!? .
pt sau:
3
1 x 3 1 x 1 2 33 1 x 2 (3 1 x 3 1 x ) 1 3 1 x 2 1 x 0.
b
3
a 3 b 3 c
(a b)3 a 3 b3 3ab(a b)
8:
3 a 3 b 3 c
3
a b 3 a..b.c 0
t
a)
b)
a) pt x 2 ( x 7) ( x
t
x 2 x 7 7 (1)
4 x 1 3x 2
x3
5
(2)
x 7 x
x 7) 0 ( x x 7 )( x x 7 1) 0
x 7 x 1
1 29
x
2
x2
x
x2
1 29
2
.
b) pt 5( 4x 1 3x 2 ) (4x 1) (3x 2)
5( 4 x 1 3x 2 ) ( 4 x 1 3x 2 ).( 4 x 1 3x 2 )
4 x 1 3x 2 0
x2
4 x 1 3x 2 0
:*
y2 x 7
2
x y 7
y x7
( y x)( y x 1) 0 .
*D
(2)
:
4x 1 3
3x 2 2
x2 x a a .
x2
5
x2
3
x
2
4x 1 1
1
(*)
( 4 x 1 3)( 3x 2 2) 5
4( x 2)
4x 1 3
3( x 2)
x2
5
3x 2 2
(do
2
x )
3
9:
a)
x2
x4
(1 1 x ) 2
b) ( x 2 3x) 2 x 2 3x 2 0 (2)
(1)
x 1 .
0
1 x 1 0 .
Nhân l
x 2 (1 1 x )2
x 4 (1 x 1) 2 x 4 x 1 3 x 8 .
2
2
(1 1 x ) .(1 1 x )
T [1;8)
TH 1:
2 x 2 3x 2 0 x 2
Vx 1 , k
2
2 x 2 3x 2 0
TH 2: BPT
x 2 3x 0
1
1
x Vx 2
x Vx 3 .
2
2
x 0Vx 3
1
T (; ] {2} [3; ) .
2
o
:
g
c
:
:
2 x 2 mx 3 x 1
x 1
.
pt 2
x (m 2) x 4 0(*)
P
2 m m 2 4m 8
2 m m 2 4m 8
x1
0; x2
0.
2
2
1
(*)
m4
x2 1 4 m m 2 4m 8
m 2.
2
2
(4 m) m 4m 8
m2
B
1:
F (n f ( x ) 0 ,
t 0)
t n f ( x)
r
x.
t
af ( x) b f ( x) c 0.
a)
x 2 x 2 11 31
b) ( x 5)(2 x) 3 x 2 3x
t x 2 11, t 0 .
a)
K
t 2 t 42 0 t 6 x 2 11 6 x 5.
t x 2 3x , t 0
b) pt x 2 3x 3 x 2 3x 10 0
t 2 3t 10 0 t 5 x 2 3x 5 x 2 3x 25 0 x
3 109
.
2
x 2 2 x 2m 5 2 x x 2 m 2 .
m
t 5 2 x x 2 6 ( x 1) 2 t [0;6]
x2 2x 5 t 2 .
t 2 2mt m2 5 0(*) t m 5
(*)
t [0; 6 ] ,
hay:
0 m 5 6
5 m 6 5
.
0 m 5 6
5m 6 5
m[ f ( x) g ( x) ] 2n f ( x).g ( x) n[ f ( x) g ( x)] p 0.
t
f ( x) g ( x) .
3 x 6 x m (3 x)(6 x) .
:
m 3.
b)
m
t 3 x 6 x t 2 9 2 (3 x)(6 x) (*).
3 t 3 2.
2 (3 x)(6 x) 9
t m
m3
t2 9
t 2 2t 9 2m (1)
2
t 2 2t 3 0 t 3
(*)
x 3
(3 x)(6 x) 0
.
x6
b)
(1)
t [3;3 2 ] .
f (t ) t 2 2t 9
t [3;3 2 ]
f (t )
6 f (3) f (t ) f (3 2 ) 9 6 2 , t [3;3 2 ] .
t [3;3 2 ] 6 2m 9 6 2
(1)
m [
6 2 9
m 3.
2
6 2 9
;3]
2
:
f ( x) k
Y
D k Y.
2 x 3 x 1 3x 2 (2 x 3)( x 1) 16
:
x 1
t 2 x 3 x 1, t 0 t 2 3x 2 (2 x 3)( x 1) 4(*)
t t 2 20 t 2 t 20 0 t 5
21 3x 2 2 x 2 5 x 3
t 5
1 x 7
1 x 7
2
2
2
441 126 x 9 x 8 x 20 x 12
x 146 x 429 0
Thay
x3
F ( n f ( x) , n g ( x) ) 0
k.
f (x)
:
TH 1: g ( x) 0
TH 2: g ( x) 0
g k (x)
F1 (t ) 0
k.
:
:
x 1 .
2
a. f ( x) b.g ( x) c. f ( x) g ( x) 0.
: 5 x3 1 2( x 2 2) .
5 ( x 1)( x 2 x 1) 2( x 2 x 1) 2( x 1)
x 1
x 1
5 2
2 0
x x 1
x x 1
2
tn
(Do
x 2 x 1 0, x).
f ( x)
g ( x)
x 1
,t 0 ,
2
x x 1
t
t
t 2
2t 2 5t 2 0 1 .
t 2
*t 2
x 1
4 4 x 2 5x 3 0 :
x x 1
*t 1
x 1
1
5 37
x 2 5x 3 0 x
2
x x 1 4
2
2
2
: Trong nh
x 2 2 x 2 x 1 3x 2 4 x 1.
:
a x 2 2 x , b 2 x 1 3x 2 4 x 1 3a 2 b2
a b 3a 2 b 2 a 2 ab b 2 0 a
1 5
1 5
b x2 2x
2x 1 .
2
2
x
:
1 5
2
:
m
3 x 1 m x 1 24 x 2 1
A - 2007)
x 1
* x 1
m 0.
* x 1,
t4
3t
4
x2 1
34
x 1
x 1
m4
2.
x 1
x 1
x 1 4
2
1
0 t 1, t 1
x 1
x 1
m
2 3t 2 2t m (*) .
t
(*)
1
3t 2 2t 1, t (0;1) (*)
3
t (0;1)
1
1
t (0;1) m 1 1 m .
3
3
1 m
1
3
il
a. f ( x) g ( x). f ( x) h( x) 0.
t
:
at 2 g ( x)t h( x) 0
.
2(1 x) x 2 2 x 1 x 2 2 x 1
8:
t x2 2x 1
t:
t 2 2(1 x)t 4 x 0
' ( x 1) 2
*t 2
t 2, t 2 x.
x 2 2 x 1 2 x 2 2 x 5 0 x 1 6.
* t 2 x
x0
x 2 2 x 1 2 x 2
3x 2 x 1 0
x 1 6 .
:
9:
1 x 1
x 1.
1 1 x2 2x2 .
1 x2 a2
x cost , t [0; ]
1 1 cos2 t 2 cos2 t 2 sin 2 t sin t 1 0 sin t
1
2
(do
sin t 0).
f (x)
x cost 1 sin 2 t
3
2
:
u ( x) a
u ( x) a sin t , t [
u( x) a cost , t [0; ] .
; ]
2 2
u ( x) [0; a]
u ( x) a sin 2 t , t [0; ].
2
x 3 (1 x 2 )3 x 2(1 x 2 )
:
x 1.
x cost , t [0; ]
cos3 t sin 3 t 2 cost sin t (sin t cost )(1 sin t cost ) 2 sin t. cost
u (1
u2 1
u2 1
) 2.
u 3 2u 2 3u 2 0
2
2
(u 2 )(u 2 2 2u 1) 0 u 2
*u
V
( u sin t cost , u 2 )
u 2 1.
2
2 cos(t ) 1 t x cos
.
4
4
4
2
* u 1
x 1 2
2 x 1 x2 1 2
2
2
1 x (1 2 x)
x 1 2
1 2 2 2
2
x
2
x (1 2 ) x 1 2 0
1
11:
0 x 1
2
x x2 x 1 x
3
(1)
2
2
(1) 1
x x2
3
x 1 x
2
1
4
4
x x2 ( x x2 ) 1 2 x x2
3
9
x x2 0
x 0Vx 1
2( x x ) 3 x x 0 x x 2 x x 3 0
3
2
xx
VN
2
2
2
2
2
x x2
x 1 x
1
2
x 1 x
t x 1 x
1 2 x x2
t 1
t 2 1
t t 2 3t 2 0
3
t 2
x 1 x 1
2 x x 2 0
x 0
VN
x 1 x 2
x 1
x 1 x
t
(*).
x 1 x
2
2
x 1 x 1
sin 2 cos2 1
x sin 2 t , t 0;
2
x 0;1 ).
2
1 sin t. cost sin t cost 3((1 sin t ) (1 sin t )(1 sin t ) (2 sin t 3) 0
3
sin t 1 x 1
x 1
x 1
2
3 1 sin t (3 2 sin t ) 1 sin t
sin t (4 sin t 6 sin t 8) 0
x 0
x x2
t 2 1
2
,
VI KẾ
NGHI N
sinh
10
tôi
sinh
,
thêm
m
. Riêng
t
p. Ngoài ra,
và C
II KẾ
;
N
môn T
.
Tr
.
.
VIII. KIẾN NGH
tôi
:
.
u
k