Tải bản đầy đủ (.doc) (7 trang)

chuyên đề Tính giá trị BTcó điều kiện

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (103.03 KB, 7 trang )

Chuyên đề tính giá trị của biểu thức đại số
đại số 9 với điều kiện cho trớc

Ngời viết : tạ phạm hải
Giáo viên trờng THCS thị trấn Hng hà
A. Đặt vấn đề
Bài tập tính giá trị của một biểu thức đại số có hai loại chính là :
- Tính giá trị của biểu thức không có điều kiện dàng buộc giữa các biến
số
- Tính giá trị của biểu thức trong đó giá trị của các biến số lại bị dàng
buộc bởi một hoặc nhiều điều kiện nào đó
Ví dụ 1: Các bài tập sau đây là loại tính giá trị không có điều kiện
1) Tính f(2) biết f(x) = 5x
5
+ 4x
4
+ 3x
3
+ 2x
2
+ x + 1
2) Cho biểu thức :
A =
2 2 3 3
2
(1 ) 1 1
:
1 1 1
x x x x
x x
x x x




+
+

ữ ữ
+ +



Tính giá trị của A nếu x = 2007
Ví dụ 2 : Các bài tập sau đây là loại tính giá trị có điều liện
1) Cho a
3
+ b
3
+ c
3
= 3abc và abc 0
Tính giá trị của biểu thức B =
1 1 1
a b c
b c a

+ + +
ữ ữ ữ

2) Cho a + b + c = 0 và a
2
+ b

2
+ c
2
= 14
Tính giá trị của biểu thức : C = a
4
+b
4
+ c
4
3) Giả sử m , n thoả mãn mn = 3 là hai nghiệm phân biệt của
phơng trình :
x
4
+ a.x
3
+ b.x
2
+ a.x + 1 = 0
Tính giá trị của biểu thức Q = 9a
2
48b + 2007 .
Việc luyện tập cho HSG có cách nhìn tổng quát về loại bài tập tính giá
trị của biểu thức đại số nói chung và tính giá trị của biểu thức có diều
kiện nói riêng là rất quan trọng .Nó giúp HS có một t duy toán học chặt
chẽ , chính xác , rèn luyện phép biến đổi đại số linh hoạt để HS tự tin khi
gặp các loại toán này.Tuy nhiên chuyên đề này chỉ bàn tập trung vào loại
tính giá trị với điều kiện cho trớc . Loại tính giá trị không có điều kiện đã
dợc bàn tới nhiều trong sách giáo khoa và sách bài tập
B . Nội dung chuyên đề

Loại 1 : Không tính đợc giá trị cụ thể của các biến số
Ví dụ 1 : Cho x+y = 3 Tính giá trị của biểu thức
A = x
2
+ y
2
+ 2xy 4x 4y + 1
Với loại này ta cần biến đổi A thành gồm toàn các nhóm x + y rồi thay 3
vào :
A = ( x + y)
2
- 4( x + y)+ 1 = 3
2
- 4.3 + 1 = - 2
Ví dụ 2 : Cho a
3
+b
3
+c
3
= 3abc 0 . Tính giá trị của biểu thức :
B =
1 1 1
a b c
b c a

+ + +
ữ ữ ữ

Rõ ràng ta có thể đánh giá quan hệ giữa a, b, c từ giả thiết chứ không thể

tính đợc cụ thể a , b , c.Để thuận lợi biến đổi biểu thức A về dạng dễ đánh
giá hơn
B =
( ) ( ) ( )
a b b c a c
abc
+ + +
Từ giả thiết: ( a + b )
3
+ c
3
- 3ab( a + b ) 3abc = 0

( a + b + c)( a
2
+ 2ab + b
2
- ac bc + c
2
) 3ab( a + b + c) = 0


( a + b + c )( a
2
+ b
2
+ c
2
- ab bc ca ) = 0
Vậy ta đợc a + b + c = 0 , hoặc a

2
+ b
2
+ c
2
ab bc ca = 0
* Với a + b + c = 0 , ta đợc a + b = - c ; b + c = - a ; c + a = - b
Khi đó B =
abc
abc

= - 1
* Với a
2
+ b
2
+ c
2
- ab bc ca = 0


2a
2
+ 2b
2
+ 2c
2
- 2ab 2bc 2ca = 0



( a b)
2
+ ( b c)
2
+ ( c a)
2
= 0 . Vậy a = b = c
Khi đó B =
2 .2 .2b c a
bca
= 8
Ví dụ 3 : Cho 3 số dơng x , y , z thoả mãn điều kiện xy + yz + zx = 1
Tính giá trị của biểu thức
A =
( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2
2 2 2
1 1 1 1 1 1
1 1 1
y z z x x y
x y z
x y z
+ + + + + +
+ +
+ + +

Ta thấy con số 1 trong điều kiện đã cho và trong biểu thiức có liên quan
với nhau, hãy tính riêng từng bộ phận :
1 + x
2

= xy + yz + zx + x
2
= y( x + z ) + x( x + z ) = ( x + y )( x + z )
1 + y
2
= xy + yz + zx + y
2
= y( x + y) + z( x + y) = ( x + y )( y + z )
1 + z
2
= xy + yz + zx + z
2
= y( x + z ) + z( x + z) = ( x + z )( y + z )
Thay vào A rồi rút gọn , ta đợc :
A = 2( xy + yz + zx ) = 2.1 =2
Loại 2 : tính đợc giá trị của các biến số
Ví dụ 1 : Tính giá trị của biểu thức
M =
( ) ( )
( )
5 1
5
x y
x x
+ +

Biết : x
2
+ 9y
2

= 6xy -
3x

Ta chỉ cần giải phơng trình x
2
+ 9y
2
= 6xy -
3x

để tìm giá trị của x ,
y nh sau
Ta có x
2
+ 9y
2
= 6xy -
3x

tơng đơng với phơng trình .
( x 3y)
2
+
3x

= 0
Từ đó tính đợc x = 3 , y = 1 chỉ việc thay vào biểu thức M rồi tính toán
Ví dụ 2 : Cho các số x , y , z thoả mãn hệ

2 2 2

3 3 3
1
1
1
x y z
x y z
x y z
+ + =


+ + =


+ + =

Tính giá trị của biểu thức Q =
4 5 6
x y z
+ +
Ta chỉ cần giải hệ phơng trình đã cho để tìm x , y , z
Ta có 1
3
= ( x + y + z )
3
= x
3
+ y
3
+ z
3

+ 3( x + y)( y + z)( z + x) mà x
3
+ y
3
+
z
3
= 1
Vì vậy : ( x + y)( y + z)( z + x) = 0 . Nên hoặc x = - y , hoặc y = - z ,
hoặc z = - x
Nếu x = - y thì x+ y = 0 và từ x + y + z = 1 ta có z = 1 nên z
2
= 1 và x
2
+ y
2
=
0 suy ra x = y = 0 khi đó Q = 0
4
+ 0
5
+ 1
6
= 1 .
Hoàn toàn tơng tự cho các trờng hợp còn lại ta vẫn đợc Q = 1 . Tóm lại là
Q = 1
ví dụ 3 : Cho x =
3 3
20 14 2 20 14 2
+ +

. Tính giá trị của biểu thức :
P = x
3
6x + 1993
. Ta có :

3
3 2 2
20 14 2 20 14 2 3 20 2.14 6 40x x x
= + + + = +
.
Vậy x
3
6x = 40 . Ta có thể giải phơng trình x
3
6x 40 = 0 để tìm
x,
nhng việc đó lại là không cần thiết do cấu trúc của biểu thức P .
Từ đó P = x
3
6x + 1993 = 40 + 1993 = 2033
Loại 3 : đại số hoá một số biểu thức số để tính toán
Ví dụ 1 : Tính giá trị của biểu thức :
A =
2 2 2 2
1 1
3 3
2 2 2 2
1 1
3 3

+ +
+

Giải : Đặt
2 2
3
a
=
ta có
( )
2
2
1 1
1 1 1 1
2
1 1
a a
a a a
A
a a
a a
+ +
+ + +
= = =
+
Sau đó thay giá trị của a vào tính toán ta đợc kết quả là A =
2

Ví dụ 2 : Tính giá trị của biểu thức
17 17

1 1 5 1 5
2 2
5
A


+

=
ữ ữ
ữ ữ



Giải : Đặt
1 2
1 5 1 5
;
2 2
x x
+
= =
Ta có
1 2
1x x
+ =

1 2
1x x
=


Theo định lý Vi-et thì
1 2
,x x
là các nghiệm của phơng trình bậc hai :
X
2
-X 1 = 0 Đặt
1 2
n n
n
S x x
=

Và ta có công thức truy hồi là :

2 1
0
n n n
S S S
+ +
=

2 1
2 1
5 5 5
n n n
n n n
S S S
S S S

+ +
+ +
= + = +
Đặt
1 1 5 1 5
2 2
5 5
n n
n
n
S
U


+

= =
ữ ữ
ữ ữ



ta có :
2 1n n n
U U U
+ +
= +
, (*)
với n N
Dễ tính đợc

0 1
0, 1U U
= =
sau đó từ công thức (*) ta tính đợc :

2 1 0
3 2 1
4 3 2
5 4 3
0 1 1
1 1 2
2 1 3
3 2 5
U U U
U U U
U U U
U U U
= + = + =
= + = + =
= + = + =
= + = + =
v.vĐây chính là dãy Phibonaci và
n
U
là số hạng tổng quát của
dãy này :
0,1,1,2,3,5,8,13,21,34,55,89,233 ,cứ nh vậy ta tính đợc

17
1597U A

= =
Loại bài tập này rất phong phú,đa dạng mà trên đây chỉ một vài ví dụ cơ
bản . Để luyện tập chuyên đề mời các bạn làm một số bài tập luyện tập sau
đây :
Bài tập 1 : Cho a + b = ab .
Tính giá trị của biểu thức A = ( a
3
+ b
3
- a
3
b
3
) + 27a
6
b
6
Bài tập 2 : Cho a và b là các số thoả mãn

3 2
3 2
3 19
3 98
a ab
b a b
=
=
Tính giá trị của biểu thức B = ( a
2
+ b

2
)
3
Bài tập 3 : Cho 3x y = 3z và xy 0
2x + y = 7z
Tính giá trị của biểu thức
2
2 2
2x xy
C
x y

=
+


Bài tập 4 : Cho a
3
+ b
3
+ c
3
= 3abc và a + b + c 0
Tính giá trị của biểu thức :
( )
2 2 2
2
a b c
D
a b c

+ +
=
+ +
Bài tập 5 : Cho
13a
x y x z
=
+ +

( )
( ) ( )
2
169 27
2z y x y z
x z

=
+ +
+

Tính giá trị của biểu thức
3 2
2 12 17 2
2
a a a
E
a
+
=


Bài tập 6 : Cho
0
x y z
a b c
+ + =

2
a b c
x y z
+ + =

Tính giá trị của
2 2 2
2 2 2
a b c
F
x y z
= + +


Bài tập7: Cho x, y , z là các số dơng thoả mãn
4x y z xyz
+ + + =
Tính giá trị của biểu rhức :
( ) ( ) ( ) ( ) ( ) ( )
4 4 4 4 4 4H x y z y z x z x y xyz
= + +

×