Tải bản đầy đủ (.pdf) (30 trang)

Ôn luyện theo cấu trúc đề thi môn Toán Phần 2 Ôn thi tốt nghiệp THPT TS.Vũ Thế Hựu, Nguyễn Vĩnh Cận

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (9.38 MB, 30 trang )

CHI

DAN

Xet dau tarn thuTc h(x) = 2x^ - 3x - 5, c6 h(x) = Oc^x = - l , x = -

2

2

5

5

h(x) > 0 vdi X < - 1 hoac x > — ; h(x) < 0 vdi - 1 < x < —
Xet tLfcmg tir vdi tam thufc g(x) = 4x^ - 19x + 12 ta lap diigfc bang sau :
X

+

^ _ h(x)
g(x)

+

g(x) = 4x2 - 19x + 12

+

h(x) = 2x' - 3x - 5


-1
0

0

-

J

r

5
2

-

-

+

+

-

0

0

^


+

-

0

+
0

-

+
+

TCf bang xet dau ta ket luan :
f(x) > 0 vdi X e

(-oo;

-1) u ' 3 .
v4'

5^
u (4;
2y

+oo)

rs ^


3^

f(x) < 0 vdi X e

f(n) = 0 vdi X = - 1 , X = 2
3
f(n) khong xac dinh vdi n = —, x = 4.
4
5x +phifong
2 > 0 t r i n h va bieu d ib)
4x + 3 < tren
0. true so.
18.a) 2x2
Giai- bat
l n x^
tap+ nghiem
HI

DAN

a) Xet dau tam thufc ve trai : fix) = 2x2 _ 5x + 2
A = 52 - 16 > 0, fix) = 0

Xj = -

= 2

, X2

fix) > 0 (f(x) cung dau vdi 2) vdi x < - hoac x > 2. Vay tap nghiem

2
1]
2; + c o ) . Bieu dien tap
cua bat phirong t r i n h la: T = {
-00;

I
2_
nghiem tren true so' (phan true so khong bi danh cheo).
1.

^ ] » « f ^



b) Lam nhiT cau a). Tap nghiem T = (-3; -1).
-3

-1

32 S TS. Vu The Hi^u - Nguygn VTnh CSn


19.

Giai he bat phifofng trinh va bieu dien tap nghiem tren true so :
(I)

x' + x - 6 > 0


(1)

x'-5x +4<0

(2)

CHI D A N

Tap nghiem cua (1) :
T i = (-oo; - 3 ] u [2; +oo).

Tap nghiem ciia (2) :
T2 = (1; 4).

-3

(D(2)i
(i)i

Tap nghiem cua he (I) : T = T i n T2 = [2; 4).
^
20. Trong moi trirdng hop, t i m cac gia t r i tham so m de :
a) PhtfOng t r i n h : (3m + l)x^ - (3m + l ) x + m + 4 = 0 (1) c6 hai nghiem
phan biet.
b) Phuong trinh : (m - 4)x^ + (m + l ) x + 2m - 1 = 0
(2) v6 nghiem.
CHI D A N

a) PhLfOng t r i n h (1) c6 hai nghiem neu 3m + 1 ;t 0 va biet thuTc
m ^ —

3
-.(3m + l)(m + 15) > 0
Tarn thufc theo bien m : A(m) = -3m^ - 46m - 15 c6 cac nghiem : m i = -15,
A = (2m +

- 4(m + 4)(3m + 1) > 0

<

m2 = - — CO gia t r i diiong (trai dau vdi - 3 ) vdi -15 < m < - —.
3
3
Ket luan : Phirong t r i n h (1) c6 hai nghiem neu -15 < m < - - .
b) Neu m = 4 phirong trinh (2) c6 dang : 5x + 7 = 0 c6 mot nghiem.
. fm ^ 4
PhUOng trinh (2) v6 nghiem neu \
^
'
^ •
[A = (m + l ) ' - 4 ( m - 4 ) ( 2 m - l ) < 0
A = -7m^ + 38m - 15 c6 gia t r i am (cung dau vdi - 7 ) neu m lay gia t r i
3
ngoai khoang hai nghiem la : m.^ ^ — va m2 = 5.

21.

DS : m < — hoac m > 5.
7
Tim cac gia t r i cua tham so m de bat phufong t r i n h
x^ - (3m - i)x + 3m - 2 > 0

(1)
dutJc nghiem dung vdi moi x thoa man I x I > 2.

CHI DAN

Tarn thufc fix) = x^ - (3m - l)x + 3m - 2 c6 biet thufc
A = (3m - 1) - 4(3m - 2) = 9(m - 1)'.
• Neu m = 1, A = 0=:> f(x) > 0 Vx e R, f(x) = 0 o x = 1, do do.
f(x) > 0 Vx:

> 2.
Hoc

6n luy?n theo CTDT mfln Todn THPT S 33


22.

Neu m vi 1 => f ( x ) = 0 <=> x i = 1, x = 3 m - 2.
Vdfi m < 1 t h i 3 m - 2 < 1 tap nghiem cua (1) la: ( - o o ; 3m - 2) u ( 1 ; +oo)
De X sao cho x | > 2 thuoc t a p n g h i e m t h i p h a i c6
- 2 < 3 m - 2 c^O < m < 1.
Vdfi m > 1 t h i 3m - 2 > 1 tap nghiem cua (1) la: ( - o o ; 1) u (3m - 2; +oo)
De t h o a m a n yeu cau b a i t o a n t h i p h a i c6
3m-2<2<=>lT o n g hap k e t qua : De

3
x


> 2 thuoc t a p n g h i e m cua (1) t h i m p h a i
4

lay gia t r i sao cho : 0 < m <
T r o n g m o i triTdng hop diidi day, h a y t i m cac gia t r i cua t h a m so m de

a) phirofng t r i n h : (m - l)x^ - 2mx + m + 5 = 0

(1)

CO m o t n g h i e m thuoc k h o a n g (0; 1).
b) phirong t r i n h : 4x^ - (3m + l ) x - m - 2 = 0

(2)

CO h a i n g h i e m thuoc k h o a n g ( - 1 ; 2).
CHI DAN
a) Neu m = 1, phtTong t r i n h (1) c6 n g h i e m duy n h a t x = 3 g (0; 1).
Neu m ^ 1, phirong t r i n h (1) la phiiong t r i n h bac h a i . A p dung d i n h l i
dao ve dau cua t a m thiJc, phiTong t r i n h
fix) = (m - l)x^ - 2mx + m + 5 = 0
CO m o t n g h i e m t r o n g khoang (0; 1) neu va chi neu
fIO).fll) < 0

o

(m + 5)4 < 0 o

m < -5.


b) PhiTcfng t r i n h (2) c6 h a i n g h i e m t r o n g khoang ( - 1 ; 2) neu m lay cdc
gia t r i thoa m a n cac dieu k i e n sau :
A = (3m +

+ 16(m + 2) > 0

af (-1) = 4[4 + (3m + 1) - m - 2] > 0
af (2) = 4[16 - 2(3m + 1) - m - 2] > 0
,
S
3m + l
-1 < —=
< 2
2
8

-3 < m < 5

- 8 < 3 m + 1 < 16

3
m > —
2
12
m < —

- 7 m + 12 > 0

9 m ' + 2 m + 33 > 0
2m + 3 > 0


23.

3
12
<=> — < m < — .
2
7

T i m cac gia t r i cua t h a m so m de phirong t r i n h
(m - 2)x^ - 2mx + 2 m - 3 = 0
(1)
CO h a i n g h i e m thoa m a n dieu k i e n - 6 < X i < 4 < X 2 .
£ 2 TS. Vy Th6' H^fu - NguySn Vinh CJn

34


CHI DAN
- 6 < x i < 4 < X2 o

af (4) = (m - 2)(10m - 35) < 0
af (-6) = (m - 2)(50m - 75) > 0

c>2
2
m-2
Tuy theo tham so m, hay so sanh 2 vdi nghiem cua phuang trinh
y - ( m + l ) x + m = 0(l)

CHI DAN
Ta CO : af(2) = lf(2) = 2 - m

24.

• Neu 2 - m < 0

o m > 2 t h i (1) c6 hai nghiem thoa man xi < 2 < X2.

• Neu 2 - m = 0 <=> m = 2 t h i (1) c6 cac nghiem 1 = x i < X2 = 2.
• Neu 2 - m > 0 o m < 2 t a xet them biet thufc
A = (m + 1)^ - 4m = (m - 1)^
S „ m+1 „ m-3
o\
2=
2=
< 0 (vi m < 2)
2
2
2
Vdi m = 1 ta CO nghiem kep x i = X2 = 1 < 2
Vdi m < 2 va m ^ 1 t h i X i < X 2 < 2.
25. Giai, bien luan theo tham so m he bat phiTOng t r i n h
(I)

x ' - (m + l)x + 2(m - 1) < 0 (1)
x' - (m + 2)x + 3(m - 1) > 0 (2)

CHI DAN
Tam thu-c ve trai (1) la : fix) = x^ - (m + l ) x + 2(m - 1) = 0

o X = m - 1 hoac x = 2
• Neu m - 1 < 2 o m < 3 t h i (1) c6 tap nghiem
• Neu m - 1 > 2

Tj = [m - 1; 2].

m > 3 t h i nghiem cua (1) la : Ti = [2; m - 1].

• Neu m = 3 t h i T i = 121.
Xet tam thufc ve trai cua bat phtTcfng trinh (2) :
g(x) = x^ - (m + 2)x + 3(m - 1) c6 cac nghiem x = m - l v a x = 3.
• Neu m < 4 tap nghiem cua (2) la : T2 = (-00; m - 1] u [3; +co).
• Neu m > 4 tap nghiem cua (2) la : T2 = ( - c o ; 3] u [m - 1; +00).
• Neu m = 4 : T2 = {3}.
Tap nghiem T = T i n T2 cua he (I) nhif sau :
+ Neu m < 3 t h i (I) c6 nghiem chung duy nhat x = m - 1.
+ Neu 3 < m < 4 t h i T = [2; m - 1].
+ Neu m = 4 t h i (I) c6 hai nghiem chung T = {2; 3}.
+ Neu m > 4 t h i T = [2; 3] u !m - 1}.
HQC va 6n luy?n theo CTDT m6n Toan THPT SS 35


1.

§4. PHlIC(NG T R I N H , B A T P H U C I N G T R I N H

CHlfA D A U

GIA TRI T U Y E T DOI


KIEN THLfC
Phx:ifofng t r i n h chtfa d a u g i a t r i t u y ^ t d o i
La phucfng t r i n h t r o n g bieu thufc cua no c6 chufa a n n a m t r o n g dau gia
t r i tuyet do'i.
Vt
: I 2x - 1 1 - 3x = 2.
Dudng l o i g i a i phirong t r i n h
a

neu

l a diTa

t r e n d i n h nghia

a > 0

-a
neu
a < 0
ta phan chia tap xac d i n h t h a n h nhufng tap nho de thay the bieu thufc c6
gia t r i tuyet doi bkng bieu thufc khong c6 gia t r i tuyet doi ti/cfng diTOng.
Dac b i e t : | A(x) | = | B(x) i o (A(x)f = (B(x)f'.
2.

B a t phu:cifng t r i n h chtfa d a u g i a t r i t u y $ t d o i
Cac phtrong t r i n h don g i a n chufa dau gia t r i tuyet doi :

M o t so t i n h chat cija gia t r i tuyet doi can n h d k h i g i a i bat phuong
t r i n h chufa dau gia t r i tuyet doi.

2. a.b

1.

I fix) I < g(x) <=> - g ( x ) < fix) < g(x).

c)

I f(x) I > g(x)

b)

I fix) I < I g(x) I «

a)

3.

o

f ' ( x ) < g'(x).

fix) < - g ( x ) hoSc fix) > g(x).

-a
a

4.

a + b


+

BAI TAP
26.

G i a i cac phuong t r i n h :
- 2x = 7
(1)

b)

X + 4
a
CHI DAN

X +

a) Theo d i n h nghia I x + 4

(A)
(1)

«
(B)
.

4

2x + 3


vdi

- ( x + 4) v d i

X >
X <

3x - 2

= 3

(2)

-4
-4

Jlx + 4 ) - 2 x = 7
X

> -4

- ( x + 4) - 2x = 7
-4

X <

63 TS. Vu Thg Hi^u - Nguyln VFnh CJn

36



-x + 4 = 7

_
(B)

o

<=>x = - 3 ;

r-3x-4 =7

= > v 6
nghiem
X < -4
-4
Vay phuong t r i n h (1) c6 nghiem duy nhat x = - 3 .
b) De CO bieu thufc khong chufa gia t r i tuyet doi ttrcrng duong ta lap bang sau
(A)

<

X >

3
"2

X


2

3

2x + 3

-2x - 3

0

2x + 3

2x + 3

3x- 2

-3x + 2

Bieu thufc (2)

-5x - 1 = 3

- X

Nghiem

X = — (loai)
5

X = 2 (loai)


-3x + 2

0

3x - 2

+5=3

5x + 1 = 3
X = — (loai)
5

Vay phiiong t r i n h (2) v6 nghiem (theo bang c6 nghia la vdi x < —
2
4
thi (2) CO bieu thufc : - 5 x - l = 3 = > x =
khong thuoc khoang
3 nen loai).
5
-2

27.

Tuong tir nhir vay, ta loai x = 2 va x = —.
5
Giaix cac
phiTOng
t
r

i
n
h
:
^-x
2x-4
= 3 ( 1 ) b ) 2 x ' + 6x + 8 + x^ - 1
a)

=30(2)

CHI DAN

a) x ^ - x = 0 « x = 0; x = l , 2 x - 4 = 0 o x = 2
x^ - X

x^-x

-x^ + x

vdi X < 0
vdi 0 <

2x - 4 vdi

2x- 4

-2x + 4

vdi


X <

X >

2

X <

2

hoac

x >1

1

Ta lap bang de d i theo doi.
X

x^-x
2x- 4

0

-00

x^ -

0


X

-2x + 4

1

-x^ +

-2x + 4

Bieu thufc (1) x^ - 3x + 4 = 3 -x^ Nghiem

3±V5
(loai)
2

X

X +

2

0

x^ -

x^-x

X


-2x + 4

+00

0

2x - 4

4 = 3 x^ - 3x + 4 = 3 x^ +

- 1 +Vs
2

3±V5
— - — (loai)

Hoc

X -

4=3

- 1 + V29
2

6n luyOn theo CTDT mSn Toan THPT S

37



Phifdng t r i n h (1) c6 cac nghiem : X j =

- i + Vs.
_

1

_ - 1 + V29
X 9

b) Ta lap bang sau :
X

-00

-4

x'^- 1

Ix^-ll

-2{x^ + 6x + 8)

2|x^ + ex + 8l

2(x2 + 6 x + 8)

0


B i e u thiifc (2) 3x^ + 12x + 15 = 30

-2

-1

1

0 2(x^ + Gx + 8
x^ - 1

-x2-12x-17=30

2(x^ + 6x + g
0

-x^ + 1

(c)

+CO

2(x^ + 6x + 8)
0

x^ - 1

(d)

(e).


Nghiem

(c) o
_^ ^2x + 15 = 30
(d)
x^ + 12x + 17 = 30
(e)
3x2 _^ -^2x + 15 = 30
TCr cac phirong t r i n h trong cac khoang ta t i m dtfoc cac nghiem cQa (2)
la : X = - 5 , X = 1.
Giai cac phirong t r i n h :
2x-l
-3x = 1
b) 2x - 3
X + 4 =6

28.
a)

c) x 2 - x = 3 x - 1
CHI DAN

2
b) X = 1 va X = —
c) X = 1, X = ±3.
a) X = 3
11
29. Giai cac bat phuong t r i n h va bieu dien tap nghiem tren true so.
a) | 3 x - l | < 2

(1)
b) i'2x+*l| > 3 ' (2)
CHI DAN

a) (1)

<;> - 2 < 3x - 1 < 2 <=> - 1 < 3x < 3
«



3

< X <

2x + l > 3

1

p3

1.

2x + 1 < - 3

b) (2)

•/W/MW/////////////,

<=:>


x < -2

-2

1

x>l

Giai bat phuong t r i n h va bieu dien tap nghiem tren true so'.
_|x2 - 2 x - 3 f < 3 x - 3
(1)

30.

CHI DAN

(1)

o-(3x-3)<(x2-2x-3)<3x-3
rx<-3

0

fx' + X - 6 > 0

< X <

5


x>2

x ' - 5x < 0

0

< X <

<=> 2

< X <

5.

5

3 8 C3 TS. Vu Th6' Huu - Nguyin VTnh CJn


§5. PHlIOfNG TRINH, BAT PHlJOfNG TRINH CHlfA CAN THtJC
KIEN THCfC
1.

PhvfoTng t r i n h chufa c a n thijfc
PhiTofng phap chung de g i a i phtTOng t r i n h c6 bieu thufc chufa a n nam
diTdi dau can l a n a n g l e n l u y thCra bieu thufc cua phifcfng t r i n h v d i cac
dieu k i e n d i k e m de c6 diroc phucfng t r i n h k h o n g con chufa a n t r o n g
dau can. Cung c6 the dSt a n p h u de d a n d e n cac phifcfng t r i n h , he
phuong t r i n h don g i a n va de g i a i h o n . M o t v a i dang phifOng t r i n h
chufa can thiJc dan g i a n l a :

Jg(x) > 0
a) VfOO=g(x)
^ |f (x) = (g(x))'
f (x) = g(x)

b) V f U ) = Vg(x)
2.

[f(x)>0,

g(x)>0'

B a t phu!ofng t r i n h chufa c a n thiJc
Dang CO b a n cua b a t phiTOng t r i n h chura can bac h a i .
f (x) > 0
a)

g(x) < 0

4Ux)>gix)

g(x) > 0



f(x) > [g(x)]^
f (x) > 0
b) V f O O < g ( x )

ojg(x)>0


f (x) < [ g ( x ) ] '
De g i a i cac b a t phiTOng t r i n h chufa cSn thufc, t a dtfa r a cac dieu k i e n
xac d i n h r o i luy thCra m o t each t h i c h hop cac ve cua b a t phiTOng t r i n h
de g i a m d a n cac dau can thufc, d a n d a n dtTa t d i b a t phifong t r i n h , he
bat phufong t r i n h k h o n g chuTa cSn thufc. Cung c6 t h e dat cac a n p h u
hoSc b i e n l u a n cac ve cua b a t phuong t r i n h de t i m n g h i e m .

BAITAP
31.
a)

G i a i cac phiTOng trinh :
x - V2x + 7 = 4

(1)

b) V3x + 4 - V x - 3 = 3.

CHI D A N
a) (1)

V2x + 7 = X - 4

x-4 >0
2x + 7 - ( x - 4 f
Hgc vJ On luy§n theo CTBT m6n To^n THPT S

39



<=>

<

X >

4

x ' - lOx + 9 = 0

b) ( 2 ) o V3x + 4 = 3 + V x - 3 c ^

o 9(x - 3) = (x - If
32.

X >

4

-irx =

1

C:>X =

9.

3Vx-3 = x - 1


3x + 4 = 6 + x + 6 V x - 3

x>3

x-3>0

o x^ - l l x + 28 = 0 <^

x =4
x = 7'

Giai cac phuang t r i n h :

a) 2x - x^ + V e x ' - 12x + 7 = 0

(1)

b) V x ' - 3x + 3 + V x ' - 3x + 6 = 3
(2)
CHI DAN
a) Nhan x e t : 6x^ - 12x + 7 = 6(x - 1)^ + 1 > 0 Vx e R.
Dat t = V e x ' - 1 2 x + 7 vdi t > 0, ta c6 :
x^ - 2x =
7-t'
6

va phirang t r i n h (1) dan den
t = -1

+t =0


(loai)

t =7

o

Vex' - 12x + 7 = t > 0

6x' - 12x + 7 = t '

<=> ex^ - 12x + 7 = 49 c:> xi,2 = 1 ± V s .
b) Nhan xet : x^ - 3x + 3 =
Dat t =

x^ -

(2)

(2)o
33.

3x + 3, ta

3

\

+ - > 0 Vx
4


X

2

CO :

G

R.

0
0
t ' + 3t = 9 + 1 ' - et

V t ' + 3t = 3 - t

t >0

t >0

2t + 3 + 2Vt(t + 3) = 9

Vt + V t T 3 = 3

ot = 1

Vx' - 3 x + 3 = l c : > x ^ - 3 x + 2 = 0 o x = l


hoac x = 2.

Giai phiTcfng t r i n h : Vx - 2 + V4 - x = x ' - 6x + 11

(11)

CHI DAN
Ve phai (1) la : x^ - 6x + 11 = (x - 3)^ + 2 > 2 Vx
Theo bat dang thiJc Bunhiacopxki ve t r a i
V x - 2 + V 4 - X = l . V x - 2 + 1.V4 - X
4 0 GH T S . VU Th§' Huu - Nguyen VTnh Can


x-2 >0

Do do : (1)

4-x> 0
N/X-2

+

V4-X

34. Giai cac phuong t r i n h :
a) ^ / ^ 7 3 4 - ^ / I ^ = l (1)
CHI


= 3.

ox

x' - 6 x + l l = 2
=2

b) ^/^r75+^x + 6- = fe + l l (2)

DAN

a) Cdc/i i : Lap phUdng hai ve (1) ta difoc :

( D o (x + 34) - (x - 3) - 3^x + 34.^/^r^[^x + 34 - ^ x - 3 ] = 1
(Ap dung hang dang thuTc : (a - b)^ = a^ - b^ - 3ab(a - b))
( D o ^(x + 34)(x - 3) = 12 o (x + 33)(x - 3) = 1728
"x = 30
o x ^ + 31x - 1830 = 0 o

x = -6l'

Cdch 2 : DSt an so phu u = ^x + 34, v = ^ x - 3 ta c6 :
(1) o u - V = 1, u^ = 37
1 = (u - v)^ = u^ - 3uv(u - v) o 1 = 37 - 3uv => uv = 12
u + (-v) = 1

Ta dilgfc he phirong t r i n h

u ( - v ) = -12
u va - V la nghiem cua phifcfng t r i n h

- X - 12 = 0
o Xi = - 3 , X2 = 4
^x + 34 = 4
'^x + 34 = -3
x = 30
hoac
o
X--61'
^/^r^ = 3
^/^r^ = -4
b) Dat u = ^x + 5,
V = ^x + 6 ta thay u^ + v^ = 2x + 11. Suy ra
(u + v f = + v^ + 3uv(u + v) => 2x + 11 = 2x + 11 + 3uv(u + v)
o uv(u + v) = 0 o ^x + 5.^x + 6.^2x + l l = 0
=0
o

^x + 6 = 0
^2x + l l = 0

35.

x = -5
o

x = -6
X

11


= --

Giai, bien luan theo tham so m cac phifOng t r i n h :

a) Vx + m + V x - m = V2m (1)
CHI

b) Vx^ - 2mx + 1 + 2 = m

(2)

DAN

a) DK : m > 0.
• Ne'u m = 0 t h i (1) c6 nghiem x = 0.
X > m >0
• Neu m > 0(1) o

X

2x + 2Vx^ - m ^ = 2m

o

HQC

> m >0

4^


m

=m-

X

6n luygn theo C T D T mOn Toan T H P T 0 41


X > m

<=>m-x>0

o x =m

x^-m'=(m-x)'
Ket luan : V d i m > 0, phuong t r i n h (1) luon c6 mot nghiem x = m .
b) TCr bieu thiJc cua phirong t r i n h t a t h a y dieu k i e n xac d i n h m > 0.
m-2>0
(2) o

Vx^ - 2mx + 1 = m - 2

x ' - 2mx + 1 = ( m - 2)2

m > 2
| ( x - m ) ' - 2m^-4m +3

(*)


V i 2m^ - 4 m + 3 = 2(m - 1)^ + 1 > 0 V m n e n phirong t r i n h (*) luon c6

36.

2 n g h i e m p h a n b i e t xi,2 = m ± V2m^ - 4 m
Ket luan : N e u m < 2 t h i (2) v6 n g h i e m ,
2 nghiem.
V d i cac gia t r i nao cua t h a m so m phifcfng
V3 + X + V6 - X - V(3 + x)(6 - x) = m

+3
n e u m > 2 phiTofng t r i n h c6
t r i n h c6 n g h i e m .
(1)

CHI DAN
Cdch 1 : D K X D : - 3 < x < 6. DSt u = VSHOC > 0,V = V6 - x > 0. K h i do
(1) <=> u + V - uv = m
(2)
(2)

=>

uv = u + V - m
(u + v ^2
) ' = ..2
u ' +. . 2 + 2uv = (3 + x ) + (6 - x ) + 2uv
= 9 + 2uv = 9 + 2(u + V - m )
(u + v)^ - 2(u + v ) + 2m - 9 = 0
u +V = 1+Vl0-2m


^

ju^ +

(loai u + v = 1 - V l 0 - 2 m )

=9

Ta t h a y u + v = Vu^ +
+ 2uv > Vu^ +
= 3 ( v i uv > 0)
Mat khac, theo b a t dSng thufc Co si - Svac
u + V = l . u + l . v < V ( l ' + l ' ) ( u ' + v ' ) - 3V2
V a y 3 < u + v < 3 V 2 ^ 3 < 1 + VlO - 2m < 3V2
~ ^< m < 3
2
6V2 — 9
Ket luan : Ydi
< m < 3 phiTcfng t r i n h (1) c6 n g h i e m .
2
Cdch 2 : D u n g phiTOng phap khao sat h a m so.
Dat t - V3 + X + V 6 - X vdri - 3 < x < 6.
T i m gia t r i \dn n h a t , gia t r i n h oV6
n h -a txcua
e n [^- 3 ; 6 ] . T a
- V3t +t rX
3 c6 :
t'(x) =
—,

=—,
,—=^ = 0 o X =—
2V31 + X 2 V 1
6-X
2V3 + X . V 6 - X
2
M i n t(x) = m i n - | t ( - 3 ) ; t - ; t(6)^ = min{3; 3^2; 3} = 3
v2y
42 ^

TS. VQ ThS' H^u - Nguygn VTnh C?n


Max t = 3V2
Vay t e [3; 3>/2]
Ta c6:

= (3 + x) + (6 - x) + 2^(3 + x)(6 - x) => V(3 + x)(6 - x) =

Ve trai cua phiTOng t r i n h (1) t r d thanh :
^t^-9^
= - - t ^ + t + - = m v d i t e [3; 3V2]
fit) = t 2
2
Khao sat SLT bien thien cua fit) tren [3; 3V2] ta thay :
f'(t) = - t + 1 < 0 Vt
t

[3; 3V2]


G

^ f t

3yf2

6\f2i — 9

TCf bang bien thien cho thay :
< m < 3 t h i phirong t r i n h (1)
C O nghiem.
3 7 . Giai cac phuong t r i n h :
b) V3x + 4 - V x - 3 = 3
a)
N / X - 1 = 13
d)>/5x-l = V 3 x - 2 - V 2 x - 3 .
c) ^Jl6-x + ^|9 + x= ^
X

CHI

+

D A N

a)
= 10
c) X = 0, x = 7

b)

4 va = 7
d) v6 nghiem.

X

38.
a)

X

=

X

Vdi gia t r i nao cua tham so m phiiOng trinh diTdi day c6 nghiem :
X

+ m = 2Vx + 3

b) V x - 1 + V 3 - x - V(x - 1)(3 - x) = m

C H I D A N

a) m < 4
3 9 . Giai cac phiiOng t r i n h :

b) 1 < m < V2.

a) 2 ^ 3 x - 2 + 3 V 6 - 5 x - 8 = 0


(1)

(Trich de thi tuyen sinh DH khoi A - 2009)
b)

3V2

+

X

-

6V2

-

X

+

4N/4

-

X '

= 10 - 3 X
(2)
(Trich de thi tuyen sinh DH khoi B - 2011)


C H I D A N

a) DKXD : 6 - 5x > 0 o
he phifcfng t r i n h :

x < - . DSt u = ^3x - 2, v = N / 6 - 5 X ,

f2u.3v = 8
5u^ + 3v^ = 8

^

V

V

> 0 ta

C6

=

15u' + 4u' - 32u + 40 = 0
Hoc va 6n luy?n theo CTBT m6n ToSn THPT S

43


b)


V =

8-2u
<=>

<=> i
(u + 2 ) ( 1 5 u ' - 2 6 u + 20) = 0

ru =
V =

-2
4

=^ X =

-2.

D K X D : - 2 < X < 2 . D a t u = V2 + x , v = V2 - x t a c6 h e :
(I)

+

= 4

3u - 6 v + 4 u v = 3v^ + 4

Tii (*) => 3 ( u - 2 v ) = ( u +


= 4

u - 2v = 0

( D o

+

= 4

u - 2v = 3

2vf

3 u - 6 v = 4v' - 4 u v + u'(*)
u - 2v = 0
u - 2v = 3

(A)

(B)

H e ( A ) CO n g h i e m v ^ = — o
5

40.

2-x

= — =>x

5

= —.
5

H e ( B ) v 6 n g h i e m . V a y phucfng t r i n h (2) c6 n g h i e m d u y n h a t x = - .
5
G i a i cac phtrcfng t r i n h :

a) 2Vx + 2 + 2>/^7T - Vx + 1 = 4
b)

(1)

(Trich
de thi tuyen
(2)

V2x - l + x ' - 3 x + l = 0

(Trich

de thi tuyen

sinh
sinh

DH khoi
DH khoi


D D -

2005)
2006)

CHI D A N
a) Cdch

1 : B K x > - 1 , b m h phiTofng h a i v e .
2Vx + 2 + 2Vx + 1 = 4 + Vx + l

(1)

4(x + 2 + 2Vx + l ) = 17 + x + 8Vx + l
x>-l
'4x + 8 = 17 + x

o

o

x> - 1

Cdch

3.

X =

2 : N h a n x e t x + 2 + 2Vx + 1 = (1 + yfx + lf

2(1 + V x + 1 ) - V x + 1 - 4

(1) <=>

<=>

x > - l

b)(2)<»

suy r a

[Vx + 1 - 2

X =

<

^x>-l

3.

- x ' + 3x - 1 > 0

= - x ^ +3x-l<=> .

V2x-1

2x - 1 =: (-x' + 3x - x ^ + 3x - 1 > 0
x' -6x=' + l l x ' - 8 x + 2 = 0


44 S5 TS. Vu Thg' Huu - Nguygn VTnh Can


3-V5
2

< X <

3 + V5
c:>x = l v x = 2 - V 2 .

2

( x - l ) ' ( x ' - 4 x + 2) = 0
41.

T i m m de phifofng t r i n h sau c6 h a i n g h i e m thiTc p h a n b i e t .
Vx^ + m x + 2 = 2x + 1

CHI

(1)
(Trich

de thi tuyen sink DH kiwi B -

2006)

D A N


(1)

1

2x + 1 > 0

o

X >

- -

2
f (x) = 3 x ' + (4 - m ) x - 1 = 0(*)

x ' + mx + 1 = (2x +

N h a n xet phu'cfng t r i n h (*) c6 he so cua x^ va he so tu do t r a i dau nen
( * ) CO h a i n g h i e m t r a i dau. TCr dieu k i e n x > - — va h a i n g h i e m ciia
(*) t r a i dau, suy r a (*) p h a i c6 m o t n g h i e m thuoc

nUa khoang

. Dieu nay xay ra k h i m thoa m a n cac dieu k i e n sau :
>0

3f

S


1

4-m

1

o

m>-.
2

42.

>—
2 ^ 2
G i a i b a t phiTOng t r i n h 6: V x ' - 32x - 1 0 > (x - 2) (1)

CHI

D A N

Bat phu'cfng t r i n h (1) l a dang cO b a n . Neu x - 2 < 0 t h i m o i x de can
bac h a i c6 n g h i a deu n g h i e m diing (1). Neu x - 2 > 0 t h i (1) c6 n g h l a
vdi x^ - 3x - 10 > 0. K h i do 2 ve cua (1) deu k h o n g a m , t a b i n h
phiiong h a i ve t h i dau b a t phu'cfng t r i n h v a n giuf chieu. TCr l a p l u a n
t r e n t a c6 the v i e t n h u sau :
x-2>0
x-2<0
hoSc ( B )

(1) o (A)
x' - 3 x - 1 0 > 0
- 3x - 10 > (x - 2 ) '
X

(A)«

< 2
x<-2

C:>X<-2

x>5
!x>2

(B) o ^

x>2
x>14

X

> 14

X - - 3 x - 1 0 > x^ - 4 x + 4
Tap n g h i e m cua b a t phu'cfng t r i n h (1) l a h o p cac t a p n g h i e m cua he
(A) va he ( B ) :
T = (-oo; - 2 ] u [14; +oo).
43.
G i a i cac bat phiJOng t r i n h :

ai) V l 1 - X - Vx - 1 < 2 (1)
b) Vx + 3 - V7 - X > V2x - 8 (2)
Hoc va 5n luyen theo CTDT m6n Toan THPT S

45


CHI

DAN

ll-x>0
a) (1) c = > V l l - x < 2 + V x - l « - x - 1 >

0

o

ll-x<[2 +Vx-lf

1 < x < 11
4- x< 2Vx-l

'1
4-x<0
l < x < l l

o


{41

4-x>0

o

< X <

4

{4 < x < l l
o

1

< X <

4

2
-12x + 2 0 < 0

(4 - x ) ' < 4(x - 1)
C:>2 < X < 11.
b) (2)c^ Vx + 3 > V7 - X + V2x - 8
DKXD : x + 3 > 0 , 7 - x > 0 , 2 x - 8 > 0
'4 < X < 7
(2)


o4
X + 3 > (7 - x) + (2x - 8) + 2 V 7 - x V 2 x - 8
4
[4
V(7 - x)(2x - 8) < 2
4

< X <

^

[(7 - x)(x - 4) < 2
4
7

x <5

<=> <

-x' + l l x - 3 0 < 0

X >

6


_Vay t a p n g h i e m cua (2) la : 4 < x < 5 u 6 < x < 7.
44.

Giai b a t phirong t r i n h : V3x^ + 5x + 7 - VSx^ + 5x + 2 > 1 (1)

CHIDAN

o
D K : 3x^ + 5x + 2 > 0
x < - 1 hoac x > — . Dat t = 3x^ + 5x + 2 thi
3
(1) t r d t h a n h : V t + 5 - >/t > 1 <=> V t + 5 > l + V t o t + 5 > l + t + 2Vt
x<-l

<=>Vt<2

t > 0

=>0
2
X >

t < 4

o (-2; - 1 ] u

3

TS. Vu The'


- -

3
3 x ' + 5x - 2 < 0

-1

X <

<=> <

-2

46 ^

< X <

r

2
3



3

Nguygn Vinh CSn

Hifii -



45.

G i a i bat phuong t r i n h :

^^^^^^^ + V^T^ > 4=^

(D
Vx - 3
Vx ^ 3
(Trich de thi tuyen sinh DH khoi A -

2004)

CHI DAN

D K X D : x ^ - 16 > 0, X - 3 > 0<=>x > 4
(1)

»

V2(x' - 1 6 ) + x - 3 > 7 - x
X

>4

(A)

<=>


fV2(x' - 1 6 ) > 10 - 2x
<

X >

4

10-2x<0
x>4
10-2x>0

(B)

46.

X

>4

2(x'-16) >(10-2x)'
He (A) CO n g h i e m : x < 5, he (B) c6 n g h i e m 10 - ^/34 < x < 5
Tap n g h i e m cua (1) l a : x > 10 - V34.
G i a i bat phifofng t r i n h :

a) V5x - 1 - Vx - 1 > V2x - 4
b)

(1)
(Trich de thi tuyen sinh DH khoi A -


x + l + Vx' - 4 x + l >3V^

2005)

(2)
(Trich di thi tuyen sinh DH khoi B - 2012)

CHI DAN

a) D K X D : 5x - 1 > 0, X - 1 > 0, 2x - 4 > 0 c:> X > 2
B i n h phiidng h a i ve (1), chuyen ve t h i c6 :
x> 2
X > 2
<=>
(1) «
X + 2 >V2(x-l)(x-2)
[(x + 2f > 2 ( x ' - 3x + 2)
X >

2

x ' - lOx < 0

o

2

< X <


10.

b) D K X D : x > 0 , x ^ - 4 x + l > 0 c : > 0 < x < 2-S
Ta CO X = 0 l a m o t n g h i e m cua (2)
X e t X > 0, chia h a i ve cho \fx t h i diroc : V x +

hoSc x > 2 + Vs

Vx

+Jx+—- 4 >3
V
X

Dat t = Vx + 4= t h i X + i - t^ - 6 t h i (2) c6 dang :
Vx
X
t +Vt^-6>3

Vt'-6>3-t

t > 2
G i a i bat phtfOng t r i n h : V x +
> — t a duoc 0 < V x < —, hoSc Vx > 2
Vx
2
2
Suy r a t a p n g h i e m cua (2) l a : 0 < x < — hoSc x > 4.
4


HQC V§ 6n luy§n theo CTDT mfln Jo&n THPT El 47


1.

§6. HE PHUCfNG TRINH NHIEU AN
KIEN THLfC
H $ phi^ofng t r i n h b a c n h a t h a i a n , b a a n
a) H e phuong t r i n h bac n h a t h a i a n (x va y) c6 dang:
(I)

ajX + b i y ^ C j
a 2 X + b 2 y = C2

K i hieu D =

(1)

(2)
=

aib2 -

a2bi

goi la d i n h thufc cila he ( I )

b2

-


C2

a2

C:

ai

b2

C2

b,

Ci

= Cib2 -

-

aiC2 -

C2bi

a2Ci

Quy tdc Crame. G i a i he phifcfng t r i n h bac n h a t .
Neu D 0 he (I) CO nghiem duy nhat (xo; yo) xac dinh bdi cong thijfc
D.,y

Xo =

D '

_
yo =

D

- N e u D = 0,
^ 0 hoac Dy ;^ 0 h e . ( I ) v6 n g h i e m .
- N e u D = Dx = Dy = 0 he ( I ) c6 v6 so n g h i e m l a t a p n g h i e m cua phiiong
t r i n h : aix + b i y = C i hoac ciia a 2 X + b 2 y = C2.
b) Gidi he phiiang trinh bac nhat hai an bdng phuang phdp do thi
+ b j y = c,
(1)
Cho he phiiong t r i n h : ( I )

-

aiX

[aaX +

\y

= C2

(2)


T r e n cung m o t m a t phSng t o a do Oxy, ve cac dirorng thSng (di) c6
phiiOng t r i n h (1) v a duTcfng t h a n g ( d 2 ) c6 phtfcfng t r i n h (2). K h i do t o a
do (xo; yo) ciaa giao d i e m (di) v a ( d 2 ) l a n g h i e m cua he ( I ) .
N e u (di) v a ( d 2 ) giao nhau he (I) c6 n g h i e m duy n h a t .
N e u d i // d2 he (I) v6 n g h i e m .
Neu d i v a d 2 trCing nhau, he (I) c6 v6 so n g h i e m .
Toa do m o i d i e m cua (di) (hay ( d 2 ) ) l a m o t n g h i e m .

BAI TAPi
47.

G i a i cac he phtfofng t r i n h sau:

a) ( I )

2x - 3y = - 4

x-2

b) ( I I )

3x + y = 5

2

I2-X

+ y=7
+ 5y - 3


48 S TS. Vu Thg' Hi;u - Nguyen Vinh CSn


CHI D A N

a) A p dung quy tac Crame cho he ( I ) .
2
-3
-4
D =
= 11 ^ 0,
=
3
1
5
2

-4

3

5

Dx

-3

= 11,

1


= 22

= ^ . 2 2 ^ 2
—i
D
11
11
N g h i e m duy n h a t cua he ( I ) l a (1; 2).
Xo =

D



b) Dieu k i e n xac d i n h

ox

^ 2. DSt X =

t h a y vao ( I I ) t a

X

dxsgc he phuong t r i n h bac n h a t v d i X va y.
[

(ir)


3X + y - 7
- 2 X + 5y = 3
X -

A p dung quy tSc Crame cho he ( I D t a difcJc
y =
48.

G i a i , b i e n l u a n theo t h a m so m he phiTcfng t r i n h
(I)

32
17
23
17

81
32
23'
y =
17
X =

6mx + (2 - m)y = 3
(m - l ) x - m y = 2

CHIDAN

Ta t i n h d i n h thufc cua he ( I ) .
D =


6m

2-m

m -1

- m

= -Gm^ - (m - 1X2 - m) = -5m^ - 3m + 2

D =0»

- 5 m ^ - 3 m + 2 = 0 « m = - l hoSc m = 5
+ Neu m = - 1 , D = 0, Dx = - 3 ;t 0 he ( I ) v6 n g h i e m .
2
22
+ N e u m = - , D = 0, Dx =
^0 he ( I ) v6 n g h i e m .
5
5
+ N e u m ^ -1, m ^ —, D = - 5 m ^ - 3 m + 2 ^ 0, he ( I ) c6 n g h i e m duy
5
n h a t (xo; yo) v d i ,
3
2-m
m +4
D.
2
- m

Xo =
D
D
5m^ + 3m - 2
6m
m-1

9m+ 3
D

-5m^ - 3m + 2 ã
Hoc

6n luyĐn theo CTDT mfln Jo&n THPT 0 49


49. Giai cac he phiTcrng trinh:
X
2y _ 29
x + 2 y + 1 15
a) (I) 2x
y
8
x + 2 y + 1 15

X + 2y + 3z = 10
b) (II) 2x + 3 y - z = l l
3x - 2y + z = 6

(1)

(2)
(3)

CHI DAN

a) DKXD: x ^ - 2 , y ^ - 1 . DM X = x + 2 Y = y + 1 thi (I) trd thanh:
X + 2Y = 29
15
(D
_8_
2 X - Y = 15
3
2
Ap dung quy tSc
3 ^Crame
, . 3 cho
. ^he =(I')2 ta^ tinh difdc X = —, Y = —.
Giai
y+1 3 ^
5
3
x +2 5
Vay (3; 2) la nghiem cua he (I).
X + 2y + 3z = 10
(1)
b) (II) J2x + 3 y - z = l l
(2)
3x - 2y + z = 6
(3)
Nhan phiicrng trinh (1) v6i - 2 dem cong vao phiTcfng trinh (2). Lai nhan

phifong trinh (1) vdi - 3 cong vao phifOng trinh (3) thi dufdc
x + 2y + 3z = 10 (1')
(II)i - y - 7 z = -9 (2')
- 8 y - 8 z = -24 (3')
Lai tiep tuc nhan phiTOng trinh (2') cua (II)i vdfi - 8 , cong vao phifong
trinh (3') thi diTcfc
x + 2y + 3z = 10 x = 3
(11)2 - y - 7 z = -9
y = 2.
48z - 48
z = l ta c6 the lap rieng bang cac he
Ghi chu: De thuc hien phep giai tren
so cua he (II) va thiTc hien nhtr sau:
'I 2 3 10^ ^1 2 3
10^
2 3 10^
2 3 -1 11 —> 0 -1 -7 -9
0 -1 -7 -9
6;
0 48 48j
10 -8 -8 -24;

13 -2 1

50

E3 TS. Vu The' HiAi - Nguyen Vinh C5n


2.


Mpt so
phxiofng t r i n h h a i a n d a n g d a c b i $ t
a) He gom mot phiiang trinh bdc hai, mot phiiong trinh
ax + by + c = 0
(1)
(I)
[ A x ' + Bxy + C y ' + D x + Ey + F = 0 (2)

bdc nhdt

G i a i he (I) b k n g phLrong phap the.
b) He phiiong trinh dot xiing loqi I
L a he phufdng t r m h co dang <
l g ( x , y ) = 0 (2)
Trong do f(x, y) va g(x, y) la cac bleu thufc doi xufng doi v 6 i cac bien x, y.
Cdch giai: D a t a n so phu S = x + y, P = xy.
Dieu k i e n can va du de he c6 n g h i e m la
- 4 P > 0.
rf(x,y) = 0 (1)
c) He phiiong trinh doi xiing loai H: ( I I )
fly,x) = 0
(2)
Cdch giai: Di/a viec g i a i he ( I I ) ve g i a i he: (F)
d) Phuang

trinh

(III)


'f(x,y)-f(y,x) =0
f(y,x) = 0

dang cap

fi(x,y) = gi(x,y)

(1)

f2(x,y) = g , ( x , y )

(2)

T r o n g do m 6 i phuong t r i n h cua he l a m o t dSng thiJc cua cac da thufc
dang cap cung bac.
Cdch giai: G i a i he ( I I I ) v d i x = 0 hoSc v d i y = 0
V d i x ;t 0 dat y = k x hoSc v6x y 0 dat x = k y r o i khuf a n de doi ve
g i a i phirong t r i n h m o t a n .

BAI TAP
50. G i a i , b i e n l u a n theo t h a m so m he phi/cfng t r i n h
3x + 5y = 13 (1)
(I)
x ' + 3 y ' = m (2)
CHI DAN
TCf (1)

X = l i z ^ y . The vao (2) t h i diroc
3
\

13-5y
+ 3 y ' - m = 0 o 52y^ - 130y + 169 - 9 m = 0 (2')

B i e t thufc cua (2'): A' = 65^ - 52(169 - 9m) = 4 6 8 m - 4563
4563 39
• Neu m <
468

= — , A' < 0, (2') v6 n g h i e m => (I) v6 n g h i e m .
4
HQC va 6n luy§n theo CTBT mOn Tcrin THPT S 5 1


39
5
9
Neu m = — , A' = 0, (2') c6 n g h i e m kep y = — => x = —
4
'
4
4
He (I) CO n g h i e m

[9

5^

4' 4

Neu m > — t h i (2') c6 h a i n g h i e m y i 2 =

4

'
n g h i e m cua he ( I ) .
51. G i a i he phiTOng t r i n h

xy +

X

52

tCr do suy r a h a i

+ y = 11

x V + xy^ = 30
(Trich

de thi vdo DHGTVT

-

2000)

CHI DAN
Dat

X


+ y = S, x y = P, t a c6:

fS + P = 11
S.P = 30

S v a P l a n g h i e m cua phtrong t r i n h :
X =5
X =6

x +y= 5
[xy = 6

hoac

X

- I I X + 30 = 0

+y= 6

xy = 5

G i a i cac he t r e n t a difoc cac n g h i e m (2; 3), (3; 2), ( 1 ; 5), (5; 1).
3y =
52. G i a i he phtfong t r i n h : (I)
3x =

y^+2
x^ + 2


(Trich

de thi tuyen sinh DH khoi B - 2003)

CHI DAN
TCr cac phifdng t r i n h cua (I) suy r a x > 0, y > 0.
3xV = y' + 2

'3xV = y ' + 2

(I)«

3xy(x - y) = y^ - x^

^ 3 y ' x = x^ + 2

3 x V = y^ + 2
x-y = 0

3xV = y ' + 2

C5>

(x - y)(3xy + x + y) = 0

3x'-x'-2 = 0

(A)

3x'y = y ' + 2

3xy

(A)c^

+ X

(B)

+y=0

<z>x = y = 1

y =X

TCr dieu k i e n x > 0, y > 0. Suy r a : 3xy + x + y > 0, do do he (B) v6
n g h i e m . V a y he (I) c6 n g h i e m duy n h a t x = y = 1.
52 a TS. Vij Thg' HUu - Nguyen Vinh CSn


X
y
- +- = a
y
X

53. G i a i v a b i e n l u a n theo t h a m so a h e phtfcfng t r i n h (I)

x +y = 8
(Trich
CHI


de thi tuyen

DHQG

Hd Nqi khoi B - 1997)

DAN
2

D K : x y ^ 0, t a c6: <

2

+y

X

<=> <

= axy

x +y =8

(x + y ) ' = (a + 2)xy
x +y = 8

fS = 8
- 4 P > 0 t a c6: (I) c^l
(a + 2 ) P = 64


Dat S = X + y , P = x y , d i e u k i e n


sinh

N e u a = - 2 he v6 n g h i e m .
8 = 8

• N e u a ^ - 2 , t a c6: <^

64

,
+

~ a+2

He CO n g h i e m k h i v a c h i k h i
- 4P = 64 - 4 . - ^ > 0 «
a+2

^—^ > 0
a+2

a < - 2 hoac a > 2

K h i do X , y l a h a i n g h i e m c u a p h i i O n g t r i n h :
z


64

- 8z +

X =

a +2

4+4

tufc l a
y =4 - 4

= 0 <=>zi,2 = 4 ± 4

a-2

x =4 - 4

a +2

hoSc

a-2

y =4+4

'a + 2

a-2

a +2
a-2
a +2
a-2
a +2

+ Vdi - 2 < a < 2 he v6 nghiem.
2x
54. G i a i h e p h i / o n g t r i n h :

+ l

.

y

(I)

(1)

^
X

2y + - = X
y
(Trich
CHI

de thi tuyen


sinh

(2)
vdo DHQG

Hd Noi khoi B - 1999)

DAN
C o n g v e vdfi v e , r o i trCr v e v d i v e t a dUOc:
^ x +y
3(x + y )
2(x + y ) +
=

xy
xy
o/

Y

2(x - y ) +

_

xy

II-

^(V


-

xy

f

(x + y ) 1 V

J

<

Y^

(X

1 +

-y)
V

1

^1

= 0

J

xy

2 ^

= 0

xyj

T i f do r u t r a diigc 4 h e p h i i o n g t r i n h sau:

HQC va 6n luyen theo CTBT m6n Toan THPT 0

53


x +y =0
x - y =0

X

+y =0

(loai)
xy

1- — = 0
xy

v6 n g h i e m

1-


1
xy

= 0

<=>

x - y =0

xy

x = ^/2; y = - V 2
X =

- V 2 ; y = V2

x =l ,

y - 1

x =-l, y = - l '

55. G i a i he phi/dng t r i n h :
a) ( I )

(2)

x ' + 2 x y + 3 y ' = 17

(1)


3 x ' + 2 x y + y^ = 1 1

b) ( I I )

x^-y^=7

(1)

x y ( x - y ) = 2 (2)

CHI D A N
a) V e t r a i c u a ( 1 ) v a ( 2 ) h e ( I ) l a cac d a thufc d a n g c a p b a c 2 d o i v d i x , y .
R o r a n g vdfi x = 0 h o a c y = 0 h e ( I ) v 6 n g h i e m .
G i a sijf X

x'(3 + 2k + k ' ) = l l

0, d a t y = k x t a dixac:

(1')

x ' ( l + 2 k + 3 k ' ) = 17 ( 2 ' )

C h i a v e vdfi v e (1") v a (2') t h i difotc
k' + 2k+ 3
11
4k2 - 3k - 10 = 0 ^ k = - - h o a c k = 2
3k' + 2k + 1
17

5
5
T h a y k = - — t a dtfoc y = — x , p h i f o n g t r i n h ( 1 ) t r d t h a n h
4

4
5

3x2 _^ 2 x — x
4

16

-X

=

11

<=> X =

±4^3

+5^/3

3

T h a y k = 2 t a se t i m dtTcfc x = ± 1 , y = ± 2

(4V3


N h i r v a y h e ( I ) c6 4 n g h i e m l a :

3

-5V3

-4V3

5V3

'

, ( 1 ; 2),

(-i;-2).
b)

N h a n x e t rSng x = 0 k h o n g n g h i e m diing he ( I I )
V d i x ;t 0, d a t y = k x t h i h e ( I I ) t r d t h a n h
x ' ( l - t = ' ) = 7 (1')

(ID

_f3

1

n


^ = - =:> 2 t ' - 5 t + 2 = 0
t(l - t)
2

x ' t ( l - t ) = 2 (2')

1
=> t = 2 h o a c t = 2
L a m t u o n g tii cau a) t a dtroc h e ( I I ) c6 h a i n g h i e m l a ( - 1 ; - 2 ) v a ( 2 ; 1).
5 6 . C h o h e phucfng t r i n h vdi t h a m so m .
(I)

(2)

x^ + y ' + x y = 3

(1)

x ' - y', + m ( x + y ) =

X

- y +m

V(Ji g i a t r i n a o c u a m t h i h e ( I ) c6 d u n g 2 n g h i e m .
54 E J TS. Vu The Huu - Nguyen Vinh C$n


CHI DAN
(Do


(x - y)(x + y) + m(x + y) = x - y + m

2

2

o

x ' +[xy+' +
y xy
- 1 =-30

o(A)

hoSc (B)

r ( x - y + m)(x + y - 1) = 0
'^^ x^ + y^ + xy = 3

X- y +m= 0

x^ + y^ + xy = 3
I x ' + y ' + xy = 3
He (A) CO hai nghiem (2; -1) va (-1; 2). De he (I) c6 dung 2 nghiem
thi he (B) phai c6 2 nghiem trung vdi cac nghiem cua he (A) hoSc v6
nghiem. Ro rang vdi moi m he (B) khong the c6 nghiem trung vdi cac
nghiem cua he (A). Vay can t i m gia t r i cua m de he (B) v6 nghiem.
(B)o


=
[3x' + 3ax + a ' - 3 = 0(2')

PhucJng trinh (2') v6 nghiem neu A = 9a^ - 12(a^ - 3) < 0
o a < -2V3 hoac a > 2>/3.

MOT SO HE PHl/dNG TRINH DAI SO KHAC
57. Giai he phirong t r i n h : (I)

CHI DAN
(Do

x^ + y + x^y + xy^ + xy = — (1)
4
x ' + y ' + x y ( l + 2x) = - (2)
4
(Trich de thi tuyin sink DH kiwi A - 2008)

x^ + y + xy(x^ + y) + xy = —(x^ +y)^ + xy = - -

Dat x^ + y = u, xy = V ta diroc he

u + uv + v = —
4
2
5
u'^ + V =




fu =

u^ - u - uv = 0
5

<=> i
u

+ V=



u

2

U^ + U +

2
u +

V=

1-

4
5

0


=0

+ V=

<=>

Hpc

(A)

5

2
u

4

u' + u + -

=

2
u^ +

5

V=

0


(B)



6n luy§n theo CTDT mSn Toan THPT El

55


(A)o

+ y =0
xy = - X

(B)<=>

J5
\

25

Vl6

+y =

3
xy = - -

He ( I ) CO h a i n g h i e m
58. G i a i he phirong t r i n h : ( I )


o

5.

X =

1, y = —
y
2

_J25
16

va

(2)

x^ + 2xy = 6x + 6

(1)

x" + 2 x V + xV^ = 2x + 9
(Trich

de thi tuyen sinh DH khoi B -

2008)

CHI DAN

\2

3x + 3

(x^ + xy)^ = 2x + 9
(Do

xy = 3x + 3 - - x '

= 2x + 9

(1')

xy = 3x + 3 -

(2')

x =0
(1')
- (x^ + 12x^ + 48x + 64) = 0 o x(x + 4)^ = 0
X = -4
4
V i x = 0 k h o n g n g h i e m dung (2') n e n k h o n g la n g h i e m cua he ( I )
17
V d i X = - 4 t a dirge y = — .
V a y he ( I ) c6 n g h i e m duy n h a t
59. G i a i he phtfong t r i n h :
xy + X + 1 = 7y
a) ( I )


xY

+ xy + 1 = 13y2

(x +

y)^-4 + l

-4;

'

17
4

j

(1)
(2)
(Trich de thi tuyen sinh DH khoi B (1)

x(x + y + 1) - 3 = 0
b) ( I I )

=0

2009)

(2)


(Trich de thi tuyen sinh DH khoi D - 2009)
CHI DAN
a) V d i y = 0 k h o n g n g h i e m dung he ( I ) , do do chia cac phtfong t r i n h cua
y

y

1

X

X + — + — =

he oho y ?t 0 t h i dugc

7

X

x ^ + -— h+ ^- = 13
y

56

y

Ea 15. Vu Thg' H\ju - Nguyin Vinh CSn



×