Tải bản đầy đủ (.doc) (15 trang)

Nghiên cứu tổng hợp, cấu tạo của một số phức chất Pd(II) với dẫn xuất của thiosemicacbazon

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (272.64 KB, 15 trang )

MỞ ĐẦU
Việc nghiên cứu các phức chất của thiosemicacbazon với các kim loại
chuyển tiếp đang là lĩnh vực thu hút nhiều nhà hoá học, dược học, sinh – y học
trong và ngoài nước. Các đề tài trong lĩnh vực này rất phong phú bởi sự đa dạng
về thành phần, cấu tạo, kiểu phản ứng và khả năng ứng dụng của các
thiosemicacbazon
Đã từ lâu hoạt tính diệt nấm, diệt khuẩn của thiosemicacbazit và các dẫn xuất
thiosemicacbazon đã được biết đến và do vậy một số trong chúng đã được dùng
làm thuốc chữa bệnh [1,3]. Sau khi phát hiện ra phức chất cis-platin [Pt(NH 3)2Cl2]
có hoạt tính ức chế sự phát triển ung thư thì nhiều nhà hoá học và dược học
chuyển sang nghiên cứu các thiosemicacbazon cũng như phức chất của chúng với
kim loại nhóm VIIIB nhằm tìm ra những hợp chất có khả năng chống ung thư mới
[3,10,16,27].
Ngày nay, mỗi năm có hàng trăm công trình nghiên cứu hoạt tính sinh học,
đặc biệt là hoạt tính chống ung thư của các phức chất thiosemicacbazon và dẫn
xuất của chúng được đăng trên các tạp chí Hoá học, Dược học, Y-sinh học….như
Polyhedron, Inorganica Chimica Acta, Inorganic Biochemistry, European Journal
of Medicinal Chemistry, Toxicology and Applied Pharmacology, Bioinorganic
and Medicinal Chemistry, Journal of Inorganic Biochemistry…
Các nghiên cứu hiện nay tập trung chủ yếu vào việc tổng hợp mới các
thiosemicacbazon và phức chất của chúng với các ion kim loại khác nhau, nghiên
cứu cấu tạo của phức chất bằng các phương pháp khác nhau và khảo sát hoạt tính
sinh học của chúng. Trong một số công trình gần đây, ngoài hoạt tính sinh học
người ta còn khảo sát một số ứng dụng khác của thiosemicacbazon như tính chất
điện hoá, hoạt tính xúc tác, khả năng ức chế ăn mòn kim loại…
Mục tiêu của việc khảo sát hoạt tính sinh học là tìm kiếm được các hợp chất
có hoạt tính cao, đồng thời đáp ứng tốt nhất các yêu cầu sinh – y học khác như
không độc, không gây hiệu ứng phụ, không gây hại cho các tế bào lành để dùng
làm thuốc chữa bệnh cho người và động vật nuôi.



Để đóng góp một phần nhỏ vào lĩnh vực này, tôi đã chọn đề tài: “Nghiên cứu
tổng hợp, cấu tạo của một số phức chất Pd(II) với dẫn xuất của
thiosemicacbazon”

CHƯƠNG 1: TỔNG QUAN
1.1 THIOSEMICACBAZIT VÀ DẪN XUẤT CỦA NÓ
1.1.1 Thiosemicacbazit và thiosemicacbazon
Thiosemicacbazit là chất rắn kết tinh màu trắng, nóng chảy ở 181-1830C. Kết
quả nghiên cứu nhiễu xạ tia X cho thấy phân tử có cấu trúc như sau:
(1)

H2N

Gãc liªn kÕt MËt ®é ®iÖn tÝch
(2)

d NH
a
C c
H2N

(4)

b

S

o
a=118.8
o

b=119.7
o
c=121.5 o

d=122.5

N(1) =
(2)
N =
C(4) =
N =
S =

-0.051
0.026
-0.154
0.138
-0.306

Trong đó các nguyên tử N(1), N(2), N(4), C, S cùng nằm trên một mặt phẳng.
Ở trạng thái rắn, phân tử thiosemicacbazit có cấu hình trans (nguyên tử S
nằm ở vị trí trans so với nhóm N(1)H2 ) [1]
Khi thay thế một nguyên tử hidro nhóm N (4)H2 bằng các gốc R khác nhau ta
thu được các dẫn xuất của thiosemicacbazit. Ví dụ như 4-phenyl thiosemicacbazit,
4-etyl thiosemicacbazit, 4-metyl thiosemicacbazit,…
Khi phân tử thiosemicacbazit hay sản phẩm thế của nó ngưng tụ với các hợp
chất cacbonyl sẽ tạo thành các hợp chất thiosemicacbazon theo sơ đồ 1.1: (R’’: H,
CH3, C2H5, C6H5….):



R

+

C

δ

δ

+

O

H2N

R'

N
H

C

R'

NHR''

S

R


H

C

N

O

H

N
H

C

NHR''

S

R

R
C
R'

+

N


N
H

C

H

NHR''

H2O

R'

C

N

N
H

OH H

S

C

NHR''

S


Sơ đồ 1.1: Sự tạo thành hợp chất thiosemicacbazon

Phản ứng tiến hành trong môi trường axit theo cơ chế A N. Vì thế trong số các
nguyên tử N có thiosemicacbazit cũng như dẫn xuất thế N (4) của nó chỉ có nguyên
tử N(1) là mang điện tích âm nên trong điều kiện bình thường, phản ứng ngưng tụ
chỉ xảy ra ở nhóm N(1)H2 hidrazin [4].

1.1.2. Phức chất của kim loại chuyển tiếp với các thiosemicabazit:
Jesen là người đầu tiên nghiên cứu và tổng hợp các phức chất của
thiosemicacbazit [1]. Trong phức chất của thiosemicacbazit với Cu(II) ông đã chỉ
ra rằng:
+ Trong các hợp chất này thiosemicacbazit phối trí hai càng qua nguyên tử S
và N của nhóm hidrazin (N(1)H2).
+ Trong quá trình tạo phức phân tử thiosemicacbazit có sự chuyển cấu hình
từ trans sang cấu hình cis, đồng thời xảy ra sự chuyển nguyên tử H từ nhóm imin
(-N(2)H) sang nguyên tử S và nguyên tử H này bị thay thế bởi kim loại. Do đó sự
tạo thành phức phải xảy ra theo sơ đồ 1.2:
NH2

NH2
N
H2N

H2N

NH

N

C


C

D¹ng thion

HS

C

C

H2N

S

N

M

M

H2N

S

S

S

NH2


NH2

N

H2N

NH2
C

M

N

C

D¹ng thiol

NH2

cis

H2N

S
trans


Sơ đồ 1.2: Sự tạo phức của thiosemicacbazit.


Cũng trong nghiên cứu phức chất của Ni(II), Cu(II), Pt(II), Pd(II), Co(II)
[13,16, 31], Zn(II) [14] với thiosemicacbazit bằng các phương pháp từ hoá, phổ
hấp thụ electron, phổ hấp thụ hồng ngoại, các tác giả cũng đưa ra kết luận: liên kết
giữa phân tử thiosemicacbazit với nguyên tử kim loại được thực hiện trực tiếp qua
nguyên tử S và nguyên tử N của nhóm N (1)H2; đồng thời khi tạo phức phân tử
thiosemicacbazit tồn tại ở cấu hình cis.
Theo các tài liệu [8, 13, 23], trong đa số các trường hợp thiosemicacbazit tồn
tại ở cấu hình cis và đóng vai trò như một phối tử hai càng, như vậy có xu hướng
thể hiện dung lượng phối trí bằng hai và liên kết được thực hiện qua nguyên tử S
và N(1) của nhóm hidrazin. Để thực hiện sự phối trí kiểu này cần phải tiêu tốn năng
lượng cho quá trình di chuyển nguyên tử H của nhóm N (2)H sang nguyên tử S.
Năng lượng này được bù trừ bởi năng lượng dư do việc tạo thêm một liên kết và
hiệu ứng đóng vòng.
Tuy nhiên trong một số ít các trường hợp do khó khăn về mặt lập thể,
thiosemicacbazit đóng vai trò như một phối tử một càng và giữ nguyên cấu hình
trans, khi đó liên kết được thực hiện qua nguyên tử S. Ví dụ điển hình về kiểu phối
trí này ta có thể liệt kê là phức thiosemicacbazit của Ag(I), Cu (II), Co(II) [13,16]

1.1.3. Phức chất của kim loại chuyển tiếp với thiosemicacbazon:
Hoá học phức chất của các kim loại chuyển tiếp với các thiosemicacbazon
bắt đầu phát triển mạnh sau khi Domagk nhận thấy hoạt tính kháng khuẩn của một
số thiosemicacbazon [41] Để làm sáng tỏ cơ chế tác dụng ấy của
thiosemicacbazon người ta đã tổng hợp các phức chất của chúng với các kim loại
và tiến hành thử hoạt tính kháng khuẩn của các hợp chất tổng hợp được.
Phức chất của thiosemicacbazon sở dĩ cũng được quan tâm nghiên cứu nhiều
bởi tính đa dạng của các hợp chất cacbonyl. Nó cho phép thay đổi trong một giới
hạn rất rộng bản chất các nhóm chức cũng như cấu tạo hình học thiosemicacbazon.
Cũng như thiosemicacbazit, các thiosemicacbazon có khuynh hướng thể hiện
dung lượng phối trí cực đại.
Nếu phần hợp chất cacbonyl không chứa nguyên tố có khả năng tham gia tạo

phức thì phối tử đóng vai trò như phối tử hai càng giống thiosemicacbazit. Ví dụ:


thiosemicacbazon

của

benzanđehit,

xyclohexanon,

axetophenon,

octanal,

menton…
M

N
N

N

NHR

C

N

H


C

S

S

N

NHR

N

C

SH

NHR

dang thiol

dang thion

phuc chat

Sơ đồ 1.3: Sơ đồ tạo phức của thiosemicacbazon 2 càng (R: H, CH3, C2H5, C6H5….)

Trong công trình nghiên cứu của mình, các tác giả [3,19,30] đã đưa ra cấu tạo
của phức 2 càng giữa Pt(II) với 4-phenyl thiosemicacbazon furaldehit và phức
giữa Pd(II) với 4-phenyl thiosemicacbazon 2-axetyl piridin như sau:

NH
C

C

N

S

N
Pt

H
O

C

NH

O

S
N

S

C

N
Pt


CH3

H

N

N

C

NH

N

C
CH3

N

S
N

C

N

C
NH


Nếu ở phần hợp chất cacbonyl có thêm nguyên tử có khả năng tham gia phối
trí (D) và nguyên tử này được nối với nguyên tử N-hidrazin (N (1)) qua hai hay ba
nguyên tử trung gian thì khi tạo phức phối tử này thường có khuynh hướng thể
hiện như một phối tử ba càng với bộ nguyên tử cho là D, N (1), S. Một số phối tử
loại này là các thiosemicacbazon hay dẫn xuất thiosemicacbazon của
salixylanđehit (H2thsa hay H2phthsa), isatin (H2this hay H2pthis), axetylaxeton
(H2thac hay H2pthac), pyruvic (H2thpy hay H2pthpy)….Trong phức chất của chúng
với các ion kim loại Cu2+, Co2+, Ni2+, Pt2+….phối tử này tạo liên kết với bộ nguyên
tử cho là O, S, N cùng với sự hình thành vòng 5 hoặc 6 cạnh [1,3,6]. Mô hình tạo


phức của các phối tử thiosemicacbazon ba càng và các ví dụ cụ thể đã được các tác
giả [1,3] xác định như sau:
D

D
M

M

hoÆc

S

N
N

N
NH2


H

a)
H3C

O

H3C

N

C

C
NH2

Cu

N

S

S

N

H

Cl


O

Pt

S

N

a')

Cl

Ni
C

NH2

NH

OH2

O
HC

S

N

N
H


N

C

NH2

NH2

d)

c)

b)

C

S¬ ®å 1.4: M« h×nh t¹o phøc cña thiosemicacbazon 3 cµng vµ c«ng thøc cÊu t¹o
cña phøc chÊt gi÷a thiosemicacbazon vµ mét sè kim lo¹i chuyÓn tiÕp.
a, a') M« h×nh t¹o phøc cña thiosemicacbazon 3 cµng.
b. Phøc vu«ng ph¼ng
Ni(thac).H2O.
c. Phøc vu«ng ph¼ng Pt(Hthsa)Cl.
d. Phøc vu«ng ph¼ng Cu(Hthis)Cl

Các thiosemicacbazon bốn càng được điều chế bằng cách ngưng tụ hai phân
tử thiosemicacbazit với một phân tử hợp chất đicacbonyl.
NH2
N
R


O

H 2N

+
R'

O

S
N

H

R

N

SH

R'

N

SH

- 2 H2 O
NH2


N
NH2

S¬ ®å 1.5: Sù h×nh thµnh thiosemicacbazon 4 cµng

Các phối tử bốn càng loại này có bộ nguyên tử cho là N, N, S, S và cũng
thường có cấu tạo phẳng và do đó chúng chiếm bốn vị trí phối trí trên mặt phẳng
xích đạo của phức chất tạo thành.


Mt cỏch khỏc na tng hp cỏc phc cht cha phi t bn cng trờn c
s thiosemicacbazit l ngng t 2 phõn t hp cht cacbonyl vi mt
thiosemicacbazit khi cú mt ion kim loi - phn ng trờn khuụn. Trong phn ng
loi ny, c hai nhúm NH2 ca thiosemicacbazit u tham gia phn ng ngng t.
Trong mụi trng kim, khi cú mt Ni2+, Cu2+ thiosemicacbazon
salixilandehit cú kh nng ngng t vi salixiandehit theo nit cú nhúm amit
to thnh phi t bn cng H3thsasal m iu kin thng phn ng ngng t
phõn t salixilandehit th hai ny khụng xy ra. Cụng thc chung ca cỏc phc
cht to thnh c mụ t di õy:
O

O

M
HC

N

N
N


CH

C
SR

M = M:

VO2+,

Ni2+,

Cu2+

; R = CH 3, C2H5 , H...

Ngi ta cho rng, sau khi to phc cỏc ion kim loi cú tỏc dng nh
hng, hot hoỏ mt s trung tõm phn ng ca phi t lm cho nú cú kh nng
tham gia phn ng. Trong khi ú trng thỏi t do cỏc trung tõm ny ca phõn t
khỏ tr. Chng hn, di s nh hng ca ion Cu 2+ hoc Hg2+, hai phõn t
thiosemicacbazon iphenyl glyoxan s kt hp vi nhau to thnh mt phi t bn
cng [42] nh mụ t s sau:
C6H5

C6H5

2-

O


O

H2N

N CS NH2
H
MeOH/HCl đặc

S
N
N

N
2+

O
NH2

N
N
H

M

C6H5

C6H5

MCl2/MeOH
(M =Cu, Hg)


N

N
N

S

S

Sơ đồ 1.6: Ion kim loại định hớng cho phản ứng hoá học


Nói chung, trong đa số các trường hợp, phần khung thiosemicacbazon đều
tham gia phối trí qua hai nguyên tử cho là S và N (4) để tạo thành vòng 5 cạnh như
mô hình dưới đây:
M

M
S

N

hoÆc

S

N

N


N
H

NH2

NH2

Tuy nhiên, trong trường hợp tạo thành phức chất hỗn hợp với các phối tử
khác, tuỳ thuộc vào kích thước không gian của phần hợp chất cacbonyl mà
thiosemicacbazon có thể tạo thành các phức chất chứa vòng 4 hoặc 5 cạnh. Trong
công trình nghiên cứu [43], tác giả đã tổng hợp được các phức chất của một số
thiosemicacbazon với các kim loại họ platin như Ru, Os với phản ứng chung là:
[M(bpy)2 X ]
2

[M(PPh)3 X2 ]

+
+

NaClO4

Hthio
Hthio

[M(bpy) (thio)]ClO
2

-HX


[M(PPh) (thio)]
2

-HX; -PPh

4

hoÆc

2

3

Trong đó bpy là bipyridin, PPh3 là triphenylphotphat, X là Cl, Br; Hthio là
thiosemicacbazon salixilandhit, các dẫn xuất của thiosemicacbazon benzandehit.
Tóm lại, trong đa số các trường hợp, các thiosemicacbazon luôn có xu
hướng thể hiện số phối trí cực đại. Tuỳ vào phần hợp chất cacbonyl mà
thiosemicacbazon có thể là phối tử 1 càng, 2 càng, 3 càng hay 4 càng. Trong một
số ít trường hợp, do khó khăn về hoá lập thể, các thiosemicacbazon mới thể hiện
như phối tử một càng [24,25]. Ví dụ như phức chất của Cu (II) với 4-phenyl
thiosemicacbazon 2 benzoylpiridin [24] trong đó phối tử thứ nhất đóng vai trò như
phối tử hai càng còn phối tử thứ hai là phối tử 3 càng được thể hiện cụ thể qua
hình dưới đây:
CH3

I
CH3

N


O

N
Cu

C

S

N
N

II

S
NHR


1.2. GIỚI THIỆU CHUNG VỀ PALADI
1.2.1 Giới thiệu chung:
Paladi được William Hyde Wollaston phát hiện năm 1803. Nguyên tố này
được Wollaston đặt tên năm 1804 theo tên gọi của tiểu hành tinh Pallas, được phát
hiện hai năm trước đó.
Paladi là kim loại thuộc họ platin, một trong số nhưng kim loại quý, màu
xám nhạt, tương đối mềm, nhẹ nhất, dễ nóng chảy nhất và có khả năng phản ứng
nhất trong các kim loại họ platin.
Trong các hợp chất, Pd thể hiện các SOH: +2; +4 trong đó trạng thái +4
(PdO2, K2[PdCl6] có tính oxi hoá mạnh, không bền.
Trong tự nhiên, nguyên tố Pd tồn tại một số đồng vị và tỉ lệ các đồng vị này

như sau:
102

Pd: 0,96%

104

Pd: 10,97%105Pd: 22,21%

106

Pd: 27,3%

108

Pd: 26,93%110Pd: 11,83%

1.2.2. Khả năng tạo phức:
Ion Pd2+ có cấu hình electron 1s22s22p63s23p6 3d104s24p64d8, bền trong môi
trường nước, dung dịch loãng có màu vàng, dung dịch đặc hơn có màu vàng sẫm
đến nâu. Cũng như các ion kim loại nhóm d khác, nó có khả năng tạo phức với hầu
hết các phối tử như Cl-, I-, SCN-, CN-…Các phức chất này phổ biến có số phối trí
bằng 4 với cấu hình vuông phẳng như [PdCl 4]2-, [PdI4]2-….Cấu hình vuông phẳng
còn phổ biến trong các hợp chất của Pd dưới dạng rắn như PdCl 2 [2]. Song trong
một số phức chất ion Pd2+ cũng thể hiện số phối trí 5,6 có nghĩa là có sự tương tác
yếu giữa ion trung tâm với các phối tử trên và dưới mặt phẳng hình vuông. Ví dụ
như ion phức [Pd(ĐMG)2OH] (ĐMG: đimetyl glioxim) có số phối trí 5 với cấu
trúc tháp đáy vuông hình thành khi palađi đimetylglioxim tan trong môi trường
kiềm.


1.3. MỘT SỐ ỨNG DỤNG CỦA THIOSEMICACBAZON VÀ
PHỨC CHẤT CỦA CHÚNG:


Các phức chất của Pd(II) và thiosemicacbazon được quan tâm nhiều không
chỉ do ý nghĩa khoa học mà còn do khả năng tiềm ẩn những ứng dụng to lớn của
nó trong thực tiễn.
Một số thiosemicacbazon được sử dụng làm chất ức chế quá trình ăn mòn
kim loại. Offiong O.E đã nghiên cứu tác dụng chống ăn mòn kim loại của 4-metyl
thiosemicacbazon, 4-phenyl thiosemicacbazon với 2-axetyl piridin đối với thép
nhẹ (98%Fe). Kết quả nghiên cứu cho thấy hiệu quả ức chế cực đại của chất đầu là
74,59% còn chất sau đạt 80,67%. Nói chung, sự ức chế ăn mòn tăng lên theo nồng
độ các thiosemicacbazon [12,20].
Ngoài khả năng tạo phức tốt, các thiosemicacbazit và thiosemicacbazon còn
có nhiều ứng dụng trong lĩnh vực phân tích cũng như xác định hàm lượng của
nhiều kim loại khác nhau. R.Murthy đã sử dụng thiosemicacbazon o-hidroxi
axetophenon trong việc xác định làm lượng Pd bằng phương pháp trắc quang. Với
phương pháp này có thể xác định hàm lượng Pd trong khoảng nồng độ 0,04210,6g/l [28].
Pd(II) cũng được xác định bằng phương pháp chiết - trắc quang dựa trên cơ
sở sự tạo phức của nó với 4-phenyl thiosemicacbazon thiophenanđehit, phức này
có thể chiết vào clorofom trong môi trường axit H 2SO4 sau khi lắc khoảng 10 phút.
Khi đó có thể xác định hàm lượng Pd trong khoảng nồng độ 0,04-6g/l [34] (thoả
mãn định luật Beer). Phương pháp trắc quang cũng được sử dụng để xác định hàm
lượng của Cu(II) và Ni(II) trong dầu ăn và trong dầu của một số loại hạt dựa vào
khả

năng

tạo


phức

của

chúng

với

1-phenyl-1,2-propandion-2-oxim

thiosemicacbazon [29].
Bên cạnh đó, Sivadasan Chettian và các cộng sự đã tổng hợp những chất
xúc tác gồm phức chất của thiosemicacbazon với một số kim loại chuyển tiếp trên
nền polistiren[15]. Đây là những chất xúc tác dị thể được sử dụng trong phản ứng
tạo nhựa epoxy từ cyclohexen và stiren. Các phức chất của Pd với
thiosemicacbazon cũng có thể làm xúc tác khá tốt cho phản ứng nối mạch anken
(phản ứng Heck) [18].


Ngoài các ứng dụng nêu trên, người ta còn đặc biệt quan tâm tới hoạt tính
sinh học của các thiosemicacbazon và phức chất của chúng. Hiện nay người ta có
xu hướng nghiên cứu các phức chất trên cơ sở thiosemicacbazon với mong muốn
tìm kiến được hợp chất có hoạt tính sinh học cao, ít độc hại để sử dụng trong y
dược.
Hoạt tính sinh học của các thiosemicacbazon được phát hiện đầu tiên bởi
Domagk. Khi nghiên cứu các hợp chất thiosemicacbazon ông đã nhận thấy một số
các hợp chất thiosemicacbazon có hoạt tính kháng khuẩn [3]. Sau phát hiện của
Domagk, hàng loạt các công trình nghiên cứu của các tác giả [10,11,17,32] cũng
đưa ra kết quả nghiên cứu của mình về hoạt tính sinh học của thiosemicacbazit,
thiosemicacbazon cũng như phức chất của chúng. Tác giả [35] cho rằng tất cả các

thiosemicacbazon của dẫn xuất thế ở vị trí para của benzanđehit đều có khả năng
diệt vi trùng lao. Trong đó p-axetaminobenzandehit thiosemicacbazon (thiacetonTB1) được xem là thuốc chứa bệnh lao hiệu nghiệm nhất hiện nay:
H3C

C

NH

CH N

NH C

O

S

NH2

(TB1)

Ngoài TB1, các thiosemicacbazon của pyridin-3, 4-etylsunfobenzandehit
(TB3) và piridin-4 cũng đang được sử dụng trong y học chữa bệnh lao.
Thiosemicacbazon istatin được dùng để chữa bệnh cúm, đậu mùa và làm thuốc sát
trùng. Thiosemicacbazon của monoguanyl hidrazon có khả năng diệt khuẩn gam
dương….Phức chất của thiosemicacbazit với các muối clorua của mangan, niken,
coban đặc biệt là kẽm được dùng làm thuốc chống thương hàn, kiết lị, các bệnh
đường ruột và diệt nấm [1]. Phức chất của Cu(II) với thiosemicacbazit có khả năng
ức chế sự phát triển của tế bào ung thư [28].
Các tác giả [11,17] đã nghiên cứu và đưa ra kết luận cả phối tử và phức
chất Pd(II) với 2-benzoylpyridin 4-phenyl thiosemicacbazon và Pd(II), Pt(II) với

pyridin 2-cacbaldehit thiosemicacbazon đều có khả năng chống lại các dòng tế bào
ung thư như MCF-7, TK-10, UACC-60, trong số các phức chất đó thì phức của


Pd(II) với 2-benzoylpyridin 4-phenyl thiosemicacbazon có giá trị GI50 (nồng độ
ức chế tế bào phát triển một nửa) thấp nhất trong 3 dòng được chọn nghiên cứu.
Ở Việt Nam, các hướng nghiên cứu gần đây cũng tập trung nhiều vào việc
thử hoạt tính sinh học của các thiosemicacbazon và phức chất của chúng với kim
loại chuyển tiếp như Cu, Mo, Ni,…Tác giả [1] đã tổng hợp và thăm dò hoạt tính
sinh học của thiosemicacbazit, thiosemicacbazon salixylandehit (H2thsa),
thiosemicacbazon istatin (H2this) và phức chất của chúng. Kết quả đều cho thấy
khả năng ức chế sự phát triển khối u của cả 2 phức chất Cu(Hthis)Cl và
Mo(Hthis)Cl đem thử, nó giúp làm giảm mật độ tế bào ung thư, giảm tổng số tế
bào, từ đó làm giảm chỉ số phát triển u. Khả năng ức chế tế bào ung thư Sarcomar
TG180 trên chuột trắng Swiss của Cu(Hthis)Cl là 43,99% và của Mo(Hthis)Cl là
36,8%.
Tiếp sau đó, các tác giả [3,6] đã tổng hợp các phối tử và phức chất của một
số ion kim loại như Pt(II), Co(II), Ni(II), Cu(II) với một số thiosemicacbazon và
dẫn xuất thiosemicacbazon. Kết quả cho thấy các phức chất của Pd(II) với 4phenyl thiosemicacbazon istatin, 4-phenyl thiosemicacbazon salixylandehit,
thiosemicacbazon

điaxetylmonoxim,

4-phenyl

thiosemicacbazon

điaxetylmonoxim có độc tính khá mạnh đối với nấm và vi khuẩn. Các phức chất
của Pt(II) với 4-phenyl thiosemicacbazon istatin, thiosemicacbazon furaldehit có
khả năng ức chế sự phát triển của tế bào ung thư gan, ung thư màng tim, ung thư

màng tử cung; phức chất của Pt(II) với 4-metyl thiosemicacbazon istatin, 4-metyl
thiosemicacbazon furaldehit đều có khả năng ức chế tế bào ung thư màng tim và
ung thư biểu mô ở người.
Đặc biệt tác giả [7] đã tổng hợp và nghiên cứu hoạt tính sinh học của phức
chất giữa Co(II), Ni(II), Cu(II) với các thiosemicacbazon trong đó phần đóng góp
của hợp chất cacbonyl có nguồn gốc tự nhiên như octanal, campho, xitronenlal,
mentonua. Trong số các phối tử và phức chất nghiên cứu hoạt tính sinh học thì
phức của Cu(II) với các phối tử thiosemicacbazon xitronenlal và thiosemicacbazon
menton đều có khả năng ức chế trên cả hai dòng tế bào ung thư gan và phổi.

1.4. CÁC PHƯƠNG PHÁP NGHIÊN CỨU PHỨC CHẤT:


1.4.1 Phương pháp phổ hấp thụ hồng ngoại:
Khi hấp thụ những bức xạ trong vùng hồng ngoại, năng lượng phân tử tăng
lên 8-40kJ/mol. Đây chính là khoảng năng lượng tương ứng với tần số của dao
động biến dạng và dao động quay của các liên kết trong hợp chất cộng hoá trị. Sự
hấp thụ xảy ra khi tần số của bức xạ của tia tới bằng với tần số dao động riêng của
một liên kết nào đó trong phân tử. Tần số dao động riêng của các liên kết trong
phân tử được tính theo công thức:
ν=

1
2Π C

k
µ

Trong đó:
mm


1 2
µ: khối lượng rút gọn, µ = (m + m )
1
2

k: hằng số lực tương tác, phụ thuộc bản chất liên kết
c: tốc độ ánh sáng, c= 3.108m/s
ν: tần số dao động riêng của liên kết
Như vậy mỗi một liên kết có một tần số dao động riêng xác định, phụ thuộc
vào bản chất các nguyên tố tham gia liên kết mà môi trường mà liên kết đó tồn tại.
Khi tham gia tạo liên kết phối trí với các ion kim loại thì các dải hấp thụ của nhóm
đang xét sẽ bị dịch chuyển vị trí hay thay đổi về cường độ. Từ sự dịch chuyển về
vị trí hay thay đổi về cường độ ta sẽ thu được một số thông tin về mô hình tạo
phức của phối tử đã cho.
Phổ hấp thụ hồng ngoại đã sớm được sử dụng trong việc nghiên cứu các
thiosemicacbazon cũng như phức chất của chúng với các kim loại chuyển tiếp.
Tuy nhiên, do cấu tạo phức tạp của các hợp chất thiosemicacbazon mà các tính
toán lý thuyết để đưa ra các quy kết cụ thể còn gặp rất nhiều khó khăn. Chính vì
vậy, việc quy kết các dải hấp thụ trong phân tử và trong phức chất của chúng còn
chủ yếu dựa vào phương pháp gần đúng dao động nhóm. Hiện nay vẫn chưa hoàn
toàn thống nhất về sự quy kết các dải hấp thụ trong phổ của các thiosemicacbazit


và các thiosemicacbazon. Trong tài liệu [1] đã quy kết các dải hấp thụ chính trong
bảng sau:
νi
ν1
ν2
ν3

ν4
ν5
ν6
ν7

B¶ng c¸c d¶i hÊp thô chÝnh trong phæ IR cña thiosemicacbazit
Quy kÕt
Quy kÕt
cm−1
νi
cm−1
3380
3350
3290
3210
1600
1650
1628

νas(N4H2)
νas(N1H2)
νs(N4H2)
νs(N1H2)
ν(NH)
δ(HN4H)
δ(HN1H)

ν8
ν9
ν10

ν11
ν12
ν13
ν14

1545
1490
1420
1320
1295
1018
810

ν(CN4)
δ(HNC,HNN)
νas(CNN)
νs(CNN)
δas(NNH)
δas(HN4C)
ν(CS)

Trong các tài liệu khác nhau [1,3,5,19] đều có chung nhận xét dải hấp thụ
đặc trưng cho dao động hoá trị của nhóm C=S thay đổi trong một khoảng rộng từ
750-900cm-1 và dải này có xu hướng giảm cường độ và dịch chuyển về phía tần số
thấp hơn khi tham gia tạo phức. Trong quá trình tạo phức, nếu xảy ra sự thiol hoá
thì dải hấp thụ đặc trưng cho dao động của nhóm CNN thường dịch chuyển về
phía có tần số cao hơn và xuất hiện trong khoảng từ 1300 đến 1400-1500cm -1
trong phức chất của thiosemicacbazon salixylandehit, isatin, axetyl axeton với các
kim loại như Cu2+, Ni2+, Co3+,…Nhóm NH2 đóng góp cùng với νC=C tạo thành dải
hấp thụ ở 1590-1620cm-1 và dải này thường thay đổi không đáng kế nếu nhóm

NH2 không tham gia tạo phức.

1.4.2. Phương pháp phổ cộng hưởng từ proton và cộng hưởng từ
cacbon 13:
Phương pháp phổ cộng hưởng từ hạt nhân là một trong những phương pháp
hiện đại được ứng dụng để xác định cấu trúc của các hợp chất hữu cơ.
Một hạt nhân có spin I khác không khi được đặt trong một từ trường thì nó
có thể chiếm (2I+1) mức năng lượng khác nhau. Sự chênh lệch giữa các mức năng
lượng ấy phụ thuộc vào cường độ từ trường xung quanh hạt nhân đó. Từ trường
này là từ trường ngoài cộng với từ trường ngược chiều gây ra bởi sự chuyển động
của lớp vỏ điện tử xung quanh hạt nhân. Như vậy, hiệu mức năng lượng của hạt
nhân từ không những phụ thuộc vào từ trường ngoài mà còn phụ thuộc vào chính


lớp vỏ điện tử xung quanh hạt nhân đó. Điều này dẫn tới các hạt nhân khác nhau
đặt trong từ trường ngoài sẽ cần các năng lượng khác nhau để thay đổi mức năng
lượng của mình.
Trong phương pháp cộng hưởng từ hạt nhân, năng lượng kích thích các hạt
nhân gây ra bởi một từ trường biến đổi có tần số tương đương với tần số sóng vô
tuyến. Bằng cách thay đổi tần số của từ trường kích thích ta sẽ thu được các tín
hiệu cộng hưởng của các hạt nhân từ khác nhau trong phân tử và có thể xác định
một cách cụ thể cấu trúc của hợp chất hoá học.
Các phân tử thiosemicacbazon và phức chất của chúng đều không có nhiều
proton nên việc quy kết các pic trong phổ 1H-NMR tương đối dễ dàng. Thông
thường, proton có mặt trong các nhóm OH, NH-hidrazin, NH-amit, CH=N và SH;
đôi lúc có thêm proton của các nhóm NH 2, CH3, C6H5, CH2. Trong phổ cộng
hưởng từ proton của NH-hidrazin cho tín hiệu cộng hưởng ở khoảng 11,5ppm,
proton ở liên kết đôi CH=N ở vùng gần 8,3ppm và proton của OH ở khoảng
10ppm [3,25,26].
Ngoài ra phương pháp cộng hưởng 13C cũng bổ trợ cho việc nghiên cứu cấu tạo

của phối tử và phức chất vì số lượng các nguyên tử C trong chúng cũng không
nhiều.



×