Tải bản đầy đủ (.pdf) (448 trang)

Strengthening concrete structures with prestressed CFRP sheets Laboratory and numerical investigations to field application

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (10.67 MB, 448 trang )

Strengthening Concrete Structures
with Prestressed CFRP Sheets:
Laboratory and Numerical Investigations
to Field Application

by

Y ail (Jim m y) Kim

A thesis subm itted to the D epartm ent o f C ivil E ngineering
in conform ity with the requirem ents for the degree o f
D octor o f Philosophy

Q ueen's U niversity
K ingston, O ntario, C anada
S eptem ber 2006
C o p y rig h t0 Y ail J. K im , 2006

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du


Patrimoine de I'edition

395 W ellington Street
Ottawa ON K1A 0N4
Canada

395, rue W ellington
Ottawa ON K1A 0N4
Canada
Your file Votre reference
ISBN: 978-0-494-18522-3
Our file Notre reference
ISBN: 978-0-494-18522-3

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives

Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires

ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i*i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

It a in ’t over till it’s over

i

Yail J. K im , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral


Abstract
M any o f the structures in C anada w ere constructed during the 1950’s and 1960’s and they
are in need o f rehabilitation due to deterioration. T he application o f carbon fibre
reinforced polym er (C FR P) sheets for strengthening dam aged structures is a viable and
prom ising solution. C FR P is an em erging advanced com posite m aterial w ith very high
tensile strength (i.e., 10 tim es stronger than that o f steel). The strengthening effect w hen
using C FR P sheets can be significantly im proved by applying prestress to the sheets. This
thesis presents the application o f prestressed C FR P sheets for concrete structures and
consists o f four m ain categories as follow s:

• C om putational sim ulation:
A nonlinear 3-D finite elem ent analysis (FE A ) is conducted to investigate the behaviour
o f prestressed concrete beam s strengthened w ith prestressed C FR P sheets, including
experim ental validation.

T he flexural behaviour o f the beam s, before

and after

strengthening, is predicted and com pared against experim ental results including the
increase o f load-carrying capacity, failure m ode, ductility, and cracking behaviour. The
m odelling technique is extended to a tw o-w ay flat slab strengthened w ith prestressed
C FR P sheets, including investigations on the load-carrying capacity, num erical crack
grow th, and slab-colum n connection behaviour.

• E xperim ental investigation:
T en reinforced concrete beam s strengthened w ith prestressed C FR P sheets are tested as
part o f the developm ent o f a non-m etallic anchor system . N on-m etallic anchors are


ii

Y ail J. K im , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

n ecessary to avoid corrosion dam age. T he load-carrying capacity o f the strengthened
beam s using the innovative m ethod is up to 3 tim es greater than the unstrengthened beam .
V arious failure m odes are observed depending on the type o f the applied anchor system .
The developed non-m etallic anchor system overcom es brittle and abrupt failures that are
com m only observed in C FR P -strengthened structures.

• T heoretical investigation:
C losed-form solutions for the behaviour o f strengthened concrete beam s are derived, and
they exhibited good agreem ent w ith the experim ental results. Practical nonlinear fracture
m echanics m odels, representing the b ehaviour o f the anchor system that is required to
prestress C FR P sheets, are also developed.

• Site application:
The technology studied in the laboratory is applied to a site application. T he M ain Street
B ridge-overpass No. 4, W innipeg, M B , has been significantly dam aged by frequent
collisions o f heavy trucks. T he innovative strengthening m ethod using prestressed C FR P
sheets is successfully applied. T he load-carrying capacity o f the dam aged bridge is
recovered w ith respect to the undam aged state. N otice that this repair project is the first
N orth A m erican site application using prestressed C FR P sheets.

iii


Y ail J. K im , P .E ng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

Co-authorship
This thesis is part o f the Ph.D . w ork conducted by the author w ho perform ed the
experim ental and analytical investigations, exam ined the research results, and w rote the
entire m anuscripts under the supervision o f Dr. M ark F. G reen and Dr. R. G ordon W ight.
The follow ing m anuscripts have been prepared w ith contribution o f the co-authors.

• Journal contribution

Thesis
Ch.
2

3

4

4

5

6


7

Title
D uctility and C racking
B ehaviour o f Prestressed
C oncrete B eam s S trengthened
w ith P restressed C FR P Sheets
M echanical A nchorages for
A pplication o f P restressed
C arbon F iber R einforced
P olym er Sheets
Flexural S trengthening o f RC
B eam s w ith P restressed CFR P
Sheets: D evelopm ent o f N onm etallic A nchor System s
Flexural Strengthening o f RC
B eam s w ith P restressed C FR P
Sheets: U sing N on-m etallic
A nchor System s
Flexure o f T w o-w ay Slabs
S trengthened w ith P restressed
or N on-prestressed CFR P
Sheets
T w o-w ay Slab-C olum n
C onnections: R etrofit w ith
P restressed or N on-prestressed
C FR P Sheets

F lexural B ehaviour o f
R einforced or Prestressed
C oncrete B eam s S trengthened


Authors
Kim, Y.J.;
Shi, C.; and
G reen, M .F.

Kim, Y.J.;
G reen, M .F.;
and W ight,
R.G.

Kim , Y.J.;
W ight, R.G .;
and G reen.
M .F.

Kim , Y.J.;
W ight, R.G.;
and G reen.
M .F.

Kim, Y.J.;
L ongw orth,
J.M .; W ight,
R .G .; and
G reen. M .F.

Kim, Y.J.;
L ongw orth,
J.M .; W ight,

R .G .; and
G reen. M .F.

Kim , Y.J.;
G reen, M .F.;
and W ight,

iv

Journal

Remarks

A SC E ,
J. Compos.
Constr.

Subm itted
(C C /2006/0227
45)

A SC E ,
J. Eng.
M ech.

Subm itted
(M E /2006/0243
84)

A SC E,

J. Compos.
Constr.

Subm itted
(C C /2006/0227
60)

A SC E,
J. Compos.
Constr.

Subm itted
(C C /2006/0227
62)

A SC E,
J. Compos.
Constr.

Subm itted
(C C /2006/0227
53)

ACI,
Struct. J.

Subm itted
(S -2006-280)

NRC,

Can. J.
Civ. Eng.

A ccepted
(06-168)

Y ail J. K im , P .E ng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

Thesis
Ch.

Title

8

w ith P restressed C FR P Sheets:
A pplication o f Fracture
M echanics A pproach
R epair o f B ridge G irder
D am aged by Im pact L oads
w ith P restressed C FR P Sheets
S trengthening D am aged
B ridge G irder (S tate-of-thePractice)

8


9

F lexural B ehaviour o f an
Im pact-dam aged Prestressed
C oncrete G irder B ridge
S trengthened w ith P restressed
C FR P Sheets

Journal

Authors

Rem arks

R.G.

Kim, Y.J.;
G reen, M .F.;
and F allis, G.J.

Kim, Y.J.;
G reen, M .F.;
Fallis, G.J.;
W ight, R.G .;
and Eden, R.

Kim, Y.J.;
G reen, M .F.;
and W ight,

R.G.

A SC E,
J. B ridge
Eng.
ACI,
Cone. Int.

A ccepted
(B E /2006/0232
36)
A ccepted
(M S 2 0 0 6 1 153)

NRC,
Can. J.
Civ. Eng.

Subm itted
(06-184)

• C onference contribution

Thesis
Ch.

4

4


5

7

8

Title
A nchoring T echniques for
S trengthening R einforced
C oncrete B eam s w ith
Prestressed C FR P Sheets

Authors

Conference

Kim, Y.J.;
B izindavyi, L.;
W ight, R.G.;
and G reen,
M .F

C losed-form Solutions for the
T ransfer o f P restressed CFR P
Sheets

Kim, Y.J.;

S m eared C rack M odels o f
T w o-w ay Slabs S trengthened

w ith P restressed C FR P Sheets

Kim , Y.J.;

Predictions on Flexural
B ehaviour o f R C B eam s:
A pplication o f Fracture
M echanics A pproach
A p plicability o f Steel A nchor
Plates for P restressing
M ultilayered C FR P sheets

Kim, Y.J.;

33rd C anadian Society for
C ivil E ngineering (C SC E)
A nnual C onf., T oronto, ON,
June 2005
3ld Int. Conf. on C onstruction
M aterials (C onM at05),
V ancouver, BC. A ug. 2005

W ight, R.G .,
and G reen,
M .F.
W ight, R .G .;
and G reen,
M .F.

7th Int. Conf. on Short and

M edium Span B ridges,
M ontreal, Q C ., Aug. 2006

W ight, R .G .;
and G reen,
M .F.

Kim, Y.J.;
B izindavyi, L.;
and G reen,
M .F.

v

3 ld Int. Conf. on C onstruction
M aterials (C onM at05),
V ancouver, B C., A ug. 2005

4th Int. Conf. on A dvanced
C om posite M aterials in
B ridges and Structures
(A C M B S-IV ), C algary, AB,
July 2004

Y ail J. K im , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral


Thesis
Ch.

8

9

9

Title
D am aged B ridge G irder
R epaired U sing P ost-tensioned
C FR P Sheets

Authors

Conference

F allis, G.J.;
Eden, R.;

Kim, Y.J.;
B izindavyi, L.;
and G reen,
M .F.

L ive L oad D istributions on
Im pact D am aged P restressed
C oncrete G irder B ridge


Kim, Y.J.;

A ssessm ent o f C anadian
H ighw ay B ridge D esign C ode
(C H B D C ) for C -shaped
P restressed C oncrete G irder
B ridge: C lause 5.7 L ive L oad

Kim, Y.J.;

G reen, M .F.;
and W ight,
R.G.
G reen, M .F.;
and W ight,
R.G.

vi

4th Int. Conf. on A dvanced
C om posite M aterials in
B ridges and Structures
(A C M B S -IV ), C algary, A B ,
July 2004
7th Int. Conf. on Short and
M edium Span B ridges,
M ontreal, Q C , A ug. 2006
34th C anadian Society for
C ivil E ngineering ( CSCE)

A nnual C onf., C algary, A B ,
M ay 2006

Y ail J. K im , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

Acknowledgem ents
Thank-you to
Issac N ew ton, C hristian O tto M ohr, D u P erron R ene D escartes, L eonhard Euler, T hom as
Y oung, S im on-D enis Poisson, R obert H ooke, G alileo G alilei, Leonardo da V inci,
M ichaelangelo B uonarroti

Dr. M urty K.S. M adugula, Dr. Sungchul L ee, D r. C hangsik M in, D r. T. Ivan C am pbell,
Dr. C olin M acD ougall, Dr. A m ir Fam , Dr. L uke B isby, Dr. L aurent B izindavyi, Dr.
M arie-A nne Erki, Dr. D ave Turcke, Dr. K evin H all, Dr. K eith Pilkey, M r. G arth J. Fallis,
M s. M axine W ilson, M s. F iona Froats, M s. C athy W agar, M r. Jam ie Escoba, M r. D ave
Tryon, M r. Paul T hrasher, M s. D arlene G affney, M s. D anielle G rondin, M r. Leo M anes,
M r. O scar R ielo, M r. D exter G askin

Intelligent Sensing for Innovative Structures N etw orks (ISIS C anada)
N atural Sciences and E ngineering R esearch C ouncil o f C anada (N SER C )
Q ueen's U niversity
The R oyal M ilitary C ollege o f C anada
V ector C onstruction G roup, W innipeg, M anitoba
G raduate students at Q ueen's U niversity
Fam ilies in Seoul, K orea


Special thank-you to Dr. M ark F. G reen and Dr. R. G ordon W ight
Very special thank-you to H abin, Jisu, and Seohoung K im

vii

Y ail J. K im , P.Eng., Ph.D . T hesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

Table o f Contents
A bstract
C o-authorship
A cknow ledgem ents
Table o f C ontents
List o f Tables
List o f Figures
N otation

ii
iv
vii
viii
xiv
xvii
xxiv


Chapter 1. G eneral Introduction

1
1.1. Introduction
1
1.2. T he D efinition o f Problem s
2
1.2.1. T he B e h a v io u r o f S tre n g th e n e d B eam s w ith P re stre sse d C F R P
Sheets
2
1.2.2. A nchorage for P restressing
3
1.2.3. A pplication to T w o-w ay Slabs
4
1.2.4. C onventional A nalysis and D esign
6
1.2.5. R epair o f a D am aged B ridge Superstructure
7
1.3. O bjective o f the Thesis
8
1.4. O utline o f the T hesis
8
1.5. R eferences
10

Part A. Effectiveness o f Strengthened Structures with Prestressed Carbon F ibre
R einforced Polym er (CFRP) Sheets: Laboratory-scale Investigations
C h a p ter 2. D u c tility a n d C ra c k in g B e h a v io u r o f P re s tre s s e d C o n c re te B e a m s
Strengthened w ith P restressed C FR P Sheets
2.1. Synopsis

2.2. Introduction
2.3. R esearch Significance
2.4. Structural D uctility
2.5. E xperim ental P rogram
2.6. A nalytical M odelling
2.6.1. C om putational M odel
2.6.2. N onlinear Iterative A nalytical M odel
2.7. A nalysis o f R esults
2.7.1. Flexural B ehaviour
2.7.2. Structural D uctility
2.7.3. C rack Patterns
2.7.4. L oad-crack R esponse
2.7.5. C ontribution o f T ension in C oncrete
2.8. Sum m ary and C onclusions
2.9. R eferences

viii

15
15
15
17
18
19
20
20
21
23
23
26

28
29
31
32
34

Y ail J. K im , P .E ng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

Chapter 3. M echanical A nchorage for A pplication o f Prestressed C FR P Sheets
3.1.
3.2.
3.3.
3.4.

3.5.

3.6.

3.7.
3.8.

Synopsis
Introduction
R esearch S ignificance
Sim ple T ension T est

3.4.1. E xperim ental W ork
3.4.2. M odel P roposed by K im et al. (2004)
3.4.3. Fracture M echanics M odel
3.4.3.1. L inear E lastic Fracture M echanics (LEFM ) A pproach
3.4.3.2. N o n linear F racture M echanics (N L FM ) A pproach
3.4.3.3. V alidation o f the P roposed M odels
Innovative M echanical A n ch o r System
3.5.1. Strengthening M aterial
3.5.2. A nchorage D etails
3.5.3. L aboratory R esults
3.5.4. C losed-form S olution
3.5.4.1. E lastic B ehaviour o f the C oncrete and A dhesive
3.5.4.2. E lastic B ehaviour o f the A nchorage
3.5.4.3. V alidation o f the Solution
F inite E lem ent A nalysis
3.6.1. T he F E A M odel
3.6.2. V erification o f the Sim ulation
C onclusions and D iscussion
R eferences

48
48
48
51
51
51
52
53
53
55

57
59
59
60
61
63
64
68
70
70
70
72
73
74

C hapter 4. In n o v a tiv e F le x u ral S tren g th en in g o f R ein fo rc ed C o n cre te B eam s w ith
P restressed
4.1.
4.2.
4.3.

C FR P Sheets: N on-m etallic A nchor System
Synopsis
Introduction
Prestressed C FR P A pplication
4.3.1. E xisting P restressing M ethods
4.3.2. A nchorage
4.4. E xperim ental P rogram
4.4.1. M aterials
4.4.2. T est S pecim ens

4.4.3. B eam D etails
4.4.4. A nchorage D etails
4.4.4.1. E nd-cap A nchor
4.4.4.2. Jacking A nchor
4.4.4.3. T ransverse A nchors
4.4.4.4. Side Sheets
4.4.4.5. U -w raps
4.5. P restressing O peration
4.6. R eplacem ent o f the Steel A nchors w ith N on-m etallic A nchors
4.6.1. C losed-form solution (K im et al. 2005a)

ix

88
88
88
90
90
91
91
91
92
93
94
94
94
95
95
96
97

99
100

Y ail J. K im , P.Eng., Ph.D . T hesis

Reproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


G eneral

4.6.1.1. T heoretical M odel
4.6.1.2. C orrelation w ith the L aboratory
4.7. B eam T est R esults
4.7.1. L oad-deflection R esponse
4.7.1.1. B eam s w ith N on-anchored U -w raps
4.7.1.2. B eam s w ith M echanically A nchored U -w raps
4.7.1.3. B eam s w ith C F R P -anchored U -w raps
4.7.2. P eelin g -o ff C rack P ropagation
4.7.3. Failure M odes o f T ested B eam s
4.7.3.1. B eam s w ith N on-anchored U -w raps
4.7.3.2. B eam s w ith A nchored U -w raps
4.7.3.3. B ehaviour o f Side Sheets D epending on A nchor-type
4.7.4. Stress R edistribution in the R einforcem ent
4.7.4.1. T he C oncept (K im et al. 2005b)
4.7.4.2. E xperim ental O bservation
4.7.5. T ransverse D eform ation in the A nchored R egion
4.7.6. Strain Profiles and F ailure o f U -w raps
4.7.7. Strain V ariation on the Side Sheets
4.8. Sum m ary and C onclusions
4.9. R eferences


101
106
106
106
108
109
111
111
112
112
113
114
114
114
116
117
117
118
119
120

Chapter 5. Flexure o f T w o-w ay Slabs S trengthened w ith P restressed or N on-prestressed
C FR P Sheets
5.1. Synopsis
5.2. Introduction
5.3. Prestressed C FR P A pplication
5.4. E xperim ental P rogram
5.5. F inite E lem ent A nalysis
5.6. A nalysis o f the Slabs

5.6.1. Flexural B ehaviour and the Effect o f S trengthening
5.6.2. Failure M ode and C rack P atterns
5.6.3. Strains in the R einforcem ent
5.6.4. C rack M outh O pening D isplacem ent
5.6.5. E nergy A bsorption and D uctility
5.7. Sum m ary and C onclusions
5.8. R eferences

138
138
138
141
142
143
144
144
147
149
151
152
153
154

C hapter 6. T w o -w ay S la b -C o lu m n C o n n ectio n : R e tro fit w ith P re s tre sse d o r N o n prestressed
6.1.
6.2.
6.3.
6.4.

C FR P Sheets

Synopsis
Introduction
R esearch Significance
E xperim ental P rogram
6.4.1. M aterials
6.4.2. D escription o f T est Slabs
6.4.3. Strengthening Schem es

x

167
167
167
170
170
170
171
171

Yail J. Kim , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

6.5.
6.6.

6.7.


6.8.
6.9.

6.4.4. P restressing O peration
F inite E lem ent A nalysis
T est R esults and A nalysis
6.6.1. L oad-deflection R esponse
6.6.2. Strain V ariations
6.6.3. F ailure and C rack P atterns
6.6.4. Shear Stress D istribution
P rediction o f P unching S hear L oad
6.7.1. Y ield-line A nalysis
6.7.2. The L lexure/Punching Interaction
6.7.3. T he C ode E quations and the F E A
6.7.4. C orrelation o f the P redictions w ith the E xperim ent
Sum m ary and C onclusions
R eferences

172
173
174
174
175
178
181
182
182
183
184

184
185
186

C h ap ter 7. F le x u r a l B e h a v io u r o f R e in fo rc e d o r P r e s tr e s s e d C o n c re te B e a m s
S tre n g th e n e d w ith P re s tre s s e d C F R P S h e e ts: A p p lic a tio n o f F ra c tu re M e c h a n ic s
A pproach
199
7.1. Synopsis
199
7.2. Introduction
199
7.3. F racture M echanics M odel
201
7.3.1. M aterial M odel o f C oncrete
201
7.3.2. P ractical A pplications o f H illerborg M odel
202
7.3.2.1. R einforced C oncrete B eam (K im et al. 2006)
203
7.3.2.2. P restressed C oncrete B eam
205
7.3.2.3. P restressed C oncrete B eam S trengthened w ith P restressed
C FR P Sheets
207
7.4. E xperim ental P rogram
210
7.5. F inite E lem ent A nalysis M odel
211
7.6. N onlinear Iterative M odel: S trength-based T heory

212
7.7. A nalysis o f Flexural R esponse
213
7.7.1. E ffect o f the S ize-dependent P aram eter
213
7.7.2. S tress-strain R elation o f C oncrete in B ending
214
7.7.3. C om parison o f B eam s in Flexure
216
7.7.4. C hange o f the N eutral A xis
217
7.8. Sum m ary and C onclusions
218
7.9. R eferences
219

P art B. Innovative Strengthening Application to Site
Chapter 8. R epair o f B ridge G irder D am aged by Im pact Loads w ith P restressed C FRP
Sheets
8.1. Synopsis
8.2. Introduction
8.3. D esign and R epair o f the D am aged B ridge
8.3.1. D escription o f the D am aged B ridge

xi

229
229
229
231

231

Yail J. K im , P.Eng., Ph.D . Thesis

Reproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

8.4.

8.5.
8.6.

8.7.
8.8.
8.9.

8.3.2. D esign o f the R epair
F easibility o f the R epair D esign (K im et al. 2004)
8.4.1. L aboratory W ork
8.4.1.1. E xperim ental Program
8.4.1.2. E xperim ental R esults
8.4.2. T heoretical Investigation
8.4.2.1. C losed-form Solutions
Site A pplication
Finite E lem ent A nalysis
8.4.1. P reprocessing o f the M odel
8.4.2. P ostprocessing o f the M odel
A ssessm ent on E ffectiveness o f the R epair

Sum m ary and C onclusions
R eferences

232
235
235
235
236
239
239
245
246
246
248
249
251
252

Chapter 9. F le x u ral B eh av io u r o f an Im p ac t-d am ag e d P re stre sse d C o n cre te G ird e r
B ridge S trengthened w ith P restressed C FR P Sheets
270
9.1. Synopsis
270
9.2. Introduction
270
9.3. R eview o f E xisting FEA for F ull-scale B ridge M odelling
272
9.4. B ackground o f R esearch (K im et al. 2006a)
274
9.5. C alibration o f the FEA m odel (K im et al. 2006b)

275
9.5.1. The Sim ulated B ridge
275
9.5.2. F E A M odelling T echnique
276
9.5.3. C alibration o f the F E A M odel
276
9.6. F ull-scale M odelling o f the M ain Street B ridge (K im et al. 2006b)
277
9.7. The C oncept o f the L ive L oad D istribution F actor
277
9.7.1. The B ending M o m en t-b ase d A pproach
277
9.7.2. T he D eflection-based A pproach
278
9.8. M ethodology to C alculate the Live L oad D istribution
278
9.8.1. T he A A S H T O L R FD A pproach
278
9.8.1.1. E xterior G irder
279
9.8.1.2. Interior G irder
279
9.8.2. T he C H B D C approach (K im et al. 2006a)
280
9.8.2.1. D eterm ination o f L ive L oad D istribution
281
9.9. P aram etric Study (K im et al. 2006a)
282
9.9.1. Span L ength

282
9.9.2. The E ffect o f N um ber o f D aily Traffic
283
9.10. Flexural R esponse o f the M ain S treet B ridge
284
9.10.1. D eflection
284
9.10.2. Strain
285
9.11. A nalysis o f L ive L oad D istributions
285
9.11.1. C om parison o f Live L oad D istribution F actors
285
9.11.1.1. C om parison to A A S H T O LR FD
286
9.11.1.2. C om parison o f the U ndam aged, D am aged, and R epaired
States
286

xii

Y ail J. K im , P .E ng., Ph.D. Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

9.11.2.


D istribution o f Live L oad M om ent
9.11.2.1. C om parison to A A S H T O LR FD and C H B D C
9 .1 1 .2 .2 . C o m p a riso n a m o n g th e U n d a m a g e d , D a m a g e d ,
R epaired C ases
9.12. L oad-carrying C apacity
9.13. Sum m ary and C onclusions
9.14. R eferences

Chapter 10. C onclusions and R ecom m endations

287
287
and
288
289
291
292
314
314
314
318

10.1. Introduction
10.2. Sum m ary and C onclusion o f the Thesis
10.3. R ecom m endations for F uture R esearch

Appendices

321


A ppendix
A ppendix
A ppendix
A ppendix
A ppendix

322
324
337
365
413

A. M aterial P roperties
B. Innovative F lexural S trengthening for RC B eam s
C. R ep air o f B ridge G irder D am aged by Im pact Loads
D. M odelling Properties for F E A
E. P erm ission to P ublish Form s

xiii

Y ail J. Kim , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


G eneral

List o f Tables
T able 1.1. Sum m ary o f specim ens investigated in the thesis


13

Table 2.1. M aterial properties

38

Table 2.2. D escription o f the investigated beam s

38

Table 2.3. Sum m ary o f significant values in flexure

39

Table 2.4. C om parison o f D uctility Indices

40

Table 3.1. M aterial property

78

T able 3.2. Sum m ary o f laboratory results (im m ediate loss)

78

T able 3.3. M easured short-term loss (up to 56 days) o f applied prestress

79


T able 4.1. M aterial property

123

T able 4.2. Sum m ary o f prestress variations

123

T able 4.3. Stress redistribution o f the beam s

124

T able 5.1. D etails o f the slabs

158

Table 5.2. Sum m ary o f flexural beh av io u r o f the slabs

158

T able 5.3. Sum m ary o f energy absorption and ductility index {jig)

159

Table 6.1 M aterial property

190

Table 6.2. D escription o f test slabs


190

Table 6.3. Sum m ary o f prestressing operation

190

Table 6.4. Sum m ary o f punching shear behaviour o f each slab

191

Table 7.1. M aterial properties

221

Table 7.2. Sum m ary o f flexural responses

221

Table 8.1. D esign properties o f the M ain Street B ridge exterior g ird er

256

Table 8.2. Sum m ary o f the m om ents applied to the external girder under the extrem e

xiv

Y ail J. K im , P.Eng., Ph.D . Thesis

Reproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.



G eneral

loading based on A A S H T O L R FD at critical section

256

T able 8.3. S um m ary o f ap p lied m om ents o btained from the F E A u n d e r the extrem e
loading at critical section

256

Table 8.4. F ailure loads and m odes o f the specim ens (K im et al. 2004)

257

Table 8.5. C om parison o f net deflection o f the exterior girder at critical section under the
extrem e loading

257

Table 8.6. T he operating rating factors at critical section o f the external girder under the
extrem e loading

257

Table 9.1. D esign properties for calculating live load distribution (K im et al. 2006a)

295


Table 9.2. Sum m ary o f live load effects based on C H B D C (K im et al. 2006a)

295

Table 9.3. C om parison o f live load distribution factors (undam aged state only)

295

Table 9.4. C om parison o f live load distribution factors in the M ain Street B ridge

296

Table 9.5. The load com binations at critical section in the undam aged state

296

Table 9.6. Sum m ary o f the load com binations at critical section in the dam aged state 297
Table 9.7. Sum m ary o f the load com binations at critical section in the repaired state

298

Table A .l M aterial properties o f Wabo® M B race CF 160

322

Table A .2 M aterial properties o f Wabo® M B race CF 130

322

T able A.3 M aterial properties o f Wabo® M B race Saturant


323

T able C .l. T he m ultiple presence factor (A A SH T O LR FD Cl. 3.6.1.1.2)

353

Table C.2. Sum m ary o f L ive load D istribution Factors for the exterior girder

353

Table C.3. The m ultiple presence factor (C H B D C T able 3.8.4.2)

353

Table C.4. Sum m ary o f L ive load effects based on C H B D C

353

T able C.5. Sum m ary o f the F E A in the undam aged state

354

xv

Y ail J. Kim , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.



G eneral

Table C.6. Sum m ary o f the F E A in the dam aged state

355

T able C . l . Sum m ary o f the FEA in the repaired state

356

Table C.8. T he load com binations at critical section in the undam aged state

357

Table C.9. Sum m ary o f the load com binations at critical section in the dam aged state 358
Table C.10. Sum m ary o f the load com binations at critical section in the repaired state 359
Table D .l. SO LID 45 elem ent output definitions

372

Table D.2. SOL1D45 m iscellaneous elem ent output

373

T able D.3. SO LID 45 item and sequence num bers for the E T A B L E and E SO L

374

Table D.4. SO LID 65 concrete m aterial data


380

Table D.5. SO LID 65 elem ent output definitions

382

Table D.6. SOL1D65 m iscellaneous elem ent output

383

T able D.7. E lem ent status table

383

Table D.8. SOL1D65 item and sequence num bers for the E TA B LE and E SO L

384

Table D.9. SF1ELL63 elem ent output definitions

393

Table D .10. SFIELL63 m iscellaneous elem ent output

394

T able D .l 1. SH ELL63 item and sequence num bers for the E T A B L E and E SO L

395


Table D .12. L1NK8 elem ent output definitions

400

Table D .13. L IN K 8 item and sequence num bers for the E T A B L E and E S O L

401

T able D . l 4. C oncrete m aterial table

402

xvi

Y ail J. K im , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

List of Figures
Fig. 2.1. D etails o f test specim ens

41

Fig. 2.2. M odelling properties

41


Fig. 2.3. B rie f flow chart o f the iterative m odel

42

Fig. 2.4. F lexural behaviour o f tested beam s

43

Fig. 2.5 P aram etric study results at m id-span

44

Fig. 2.6. C om parison o f typical crack patterns betw een the laboratory and the FEA

45

Fig. 2.7. L oad-crack w idth response

46

Fig. 2.8. L oad-crack depth response o f each beam

47

Fig. 2.9. C ontribution o f tension in concrete after cracking

47

Fig. 3.1. T ypical tension test specim en


80

Fig. 3.2. L oad-displacem ent response o f the tension anchor

80

Fig. 3.3. T heoretical m odels

81

Fig. 3.4. Typical com parison betw een the laboratory and the theory (Eqs. 1 and 2)

81

Fig. 3.5. P aram etric study on the plate anchor system

82

Fig. 3.6. D etails o f the developed anchor system

83

Fig. 3.7. S hort-term prestress losses in the C FR P sheet

83

Fig. 3.8. Strain distributions on the anchor plates (J-3)

84


Fig. 3.9. D eveloped theoretical m odel

85

Fig. 3.10. T ypical com parison o f the prestress in the C FR P sheet

86

Fig. 3.11. C om parison o f the theoretical m odel vs. laboratory

86

Fig. 3.12. C onstructed 3-D FEA m odel

87

Fig. 3.13. C om parison betw een the experim ental and FEA strains

87

xvii

Y ail J. Kim , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

Fig. 4.1. T est specim ens


125

Fig. 4.2. A nchorage details

126

Fig. 4.3. P restressing operation (K im et al. 2005b)

126

Fig. 4.4. Shear stress concentration n ear the c u t-o ff point o f C FR P sheets

127

Fig. 4.5. Strain variations along the beam during prestressing C FR P sheets (J-3)

127

Fig. 4.6. Typical prestress loss in the C FR P

128

sheets after anchor-set (J-5)

Fig. 4.7. S train variations on the anchor plate

128

Fig. 4.8. R em oval o f steel anchor (K im et al. 2005a)


129

Fig. 4.9. T ypical variations o f prestress before and after the cut (J-3)

129

Fig. 4.10. Schem atic o f the theoretical m odel

130

Fig. 4.11. T ypical com parison b etw een the theoretical m odel and the laboratory after
rem oval o f the steel anchors (K im et al. 2005a)

130

Fig. 4.12. L oad-deflection response o f each beam

131

Fig. 4.13. Schem atics o f initiation o f cracks

132

Fig. 4.14. F ailure m odes o f each tested beam

133

Fig. 4.15. C om parison o f the side sheet failure


134

Fig. 4.16. L oad-strain response in rebar (strengthened vs. unstrengthened) (K im et al.
2005b)

134

Fig. 4.17. L oad-strain response o f tested beam s at m id-span

135

Fig. 4.18. L oad-transverse deflection response

136

Fig. 4.19. Strain profile w ith possible failure m ode o f U -w raps

136

Fig. 4.20. Strain variation on the side sheets

137

Fig. 5.1. S chem atics o f the tested slab

160

xviii

Y ail J. K im , P.Eng., Ph.D . Thesis


Reproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


G eneral

Fig. 5.2. C onstructed FEA slab m odel (cut-aw ay view to show the reinforcem ent)

160

Fig. 5.3. L oad-deflection response o f each slab

161

Fig. 5.4. D eflection p ro fd e o f the slabs

162

Fig. 5.5. T ypical cracking patterns and failure m odes o f the tested slabs

163

Fig. 5.6. C om parison o f the initial cracks

164

Fig. 5.7. T ypical num erical crack propagation o f a slab w ith prestressed C FR Ps

164


Fig. 5.8. Strain variation in the reinforcem ent

165

Fig. 5.9. N orm alized load vs. C M O D

166

Fig. 6.1. T ypical experim ental set-up and instrum entation

192

Fig. 6.2. D etails o f the anchorage system

192

Fig. 6.3. Tim e vs. prestress variation in C FR P

193

Fig. 6.4. L oad-deflection curve at m id-span

193

Fig. 6.5. L oad-strain response near colum n

194

Fig. 6.6. Strain profdes in reb ar along the loading span


195

Fig. 6.7. T ypical failure m ode o f tested slabs

196

Fig. 6.8. F orm ation and inclination o f punching shear cracks

196

Fig. 6.9. C om parison o f com putational crack patterns

197

Fig. 6.10. Shear stress profile along the loading span

198

Fig. 6.11. C om parison o f the predictions w ith the laboratory

198

Fig. 7.1. The concept o f proposed fracture m echanics m odel by H illerborg (1990) and
M arkeset and H illerborg (1995)

222

Fig. 7.2. Typical beam details including test set-up

222


Fig. 7.3. N onlinear iterative m odel

223

xix

Y ail J. K im , P .E ng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

Fig. 7.4. B rie f flow -chart o f the nonlinear iterative m odel

223

Fig. 7.5. E ffect o f the size-dependent p aram eter on load-strain response

224

Fig. 7.6. S tress-strain response com parison o f concrete in bending to uniaxial loading 225
Fig. 7.7. C om prehensive com parison o f load-strain response

226

Fig. 7.8 C om prehensive com parison o f m om ent-curvature response

227


Fig. 7.9 C hange o f the neutral axis

228

Fig. 8.1. S chem atic o f the M ain Street B ridge (N o.4 overpass)

258

Fig. 8.2. C ross-sectional view o f the dam aged girder (Fallis et al. 2004)

258

Fig. 8.3. D am aged bridge girder

259

Fig. 8.4. D etailed anchor system for prestressing C FR P sheets

259

Fig. 8.5. Typical tension test specim en (K im et al. 2004)

260

Fig. 8.6. T ypical failure o f the specim ens (K im et al. 2004)

261

Fig. 8.7. T ypical strain variations on the C FR P sheet (A - l) (K im et al. 2004)


262

Fig. 8.8. Typical load-strain curves at m id-span (A - l) (K im et al. 2004)

262

Fig. 8.9. D evelopm ent o f T heoretical M odels (K im et al. 2004)

263

Fig. 8.10. C onstructed finite elem ent analysis m odel for the anchor test

263

Fig. 8.11. C om parison o f the tension test results (K im et al. 2004)

264

Fig. 8.12. Site applications

265

Fig. 8.13. C onstructed FEA m odel

267

Fig. 8.14. N et increase o f deflection u n d er the extrem e loading

268


Fig. 8.15. N et increase o f strain in steel strands under the extrem e loading

269

Fig. 9.1. V arious FEA m odelling techniques (K im et al. 2006b)

299

Fig. 9.2. S chem atic o f the M ain Street B ridge (K im et al. 2006b)

299

xx

Y ail J. K im , P .E ng., Ph.D . Thesis

Reproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

Fig. 9.3. S chem atic o f the internal reinforcem ent

300

Fig. 9.4. L oading configuration on the bridge

301


Fig. 9.5. S im ulated double T -beam bridge for calibration o f the FEA technique

302

Fig. 9.6. C alibration o f the FEA w ith the experim ental data (K im et al. 2006b)

303

Fig. 9.7. C onstructed full-scale F E A m odel o f the M ain Street B ridge

303

Fig. 9.8. The effect o f loading span on live load distributions on the exterior and interior
girders (K im et al. 2006a)

303

Fig. 9.9. The effect o f daily traffic volum e on live load distributions on the exterior and
in terio r girders (K im et al. 2006a)

304

Fig. 9.10. L ongitudinal deflection along the exterior girder

305

Fig. 9.11. T ransverse deflection across the critical section

306


Fig. 9.12. N et deflection increase o f each loading case across the critical section

307

Fig. 9.13. D eflection contour on the bridge under various loadings (K im et al. 2006a) 308
Fig. 9.14. C om prehensive com parison o f the dam aged exterior girder u n d er the extrem e
loading

308

Fig. 9.15. C om parison o f strains in the prestressing strands located at 153 m m from the
bottom o f the exterior girder

309

Fig. 9.16. N et strain increase along the exterior girder

310

Fig. 9.17. L ive load distribution across the bridge at critical section

311

Fig. 9.18. C om parison o f the live load distribution am ong the undam aged, dam aged, and
repaired states (LR FD )

312

Fig. 9.19. C om parison o f the live load distribution am ong the undam aged, dam aged, and
repaired states (C H B D C )


313

xxi

Y ail J. K im , P .E ng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


G eneral

Fig. B .l. D etailed steel anchorage

324

Fig. B.2. T ypical test procedure

325

Fig. B.3. D etailed instrum entation for testing

326

Fig. B .4. Strain variations on the C FR P sheets during prestressing

328

Fig. B .5. Strain variations on the C FR P sheets during beam testing


329

Fig. B.6. Strain variations before and after cutting the prestressed C FR P sheets

331

Fig. B.7. P reparation o f the test

332

Fig. B.8. F ailure m odes o f tested beam s

334

Fig. B.9. T he finite elem ent analysis for the end-cap anchor

336

Fig. C. 1. T he M ain Street B ridge

360

Fig. C.2. D ead loads on the exterior g ird er

360

Fig. C.3. M om ent induced by the prestress effect

361


Fig. C.4. L ive loads p er lane to induce the m axim um m om ents in the g ird er

362

Fig. C.5. L oading com binations for live load distribution factor

363

Fig. C.6. The m axim um m om ent based on C H B D C (2000)

364

Fig. D .L C onstitutive behaviour o f m aterial m odelling

365

Fig. D.2. Solid 45 3-D structural solid elem ent

366

Fig. D.3. SO LID 45 stress output

371

Fig. D.4. S olid 65 3-D reinforced concrete solid

376

Fig. D.5. Solid 65 stress output


381

Fig. D.6. Shell 63 elastic shell

387

Fig. D.7. SH E L L 63 stress output

393

Fig. D.8. L IN K 8 3-D spar

397

xxii

Y ail J. K im , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


G eneral

Fig. D.9. L IN K 8 3-D spar output

399

Fig. D .10. 3-D F ailure surface in principal stress space

406


Fig. D .l 1. A profile o f the failure surface

408

Fig. D .12. F ailure surface in principal stress space

411

xxiii

Y ail J. K im , P.Eng., Ph.D . Thesis

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without permission.


×