Tải bản đầy đủ (.pdf) (89 trang)

Trắc nghiệm toán 11 chuyên đề dãy số, cấp số cộng cấp số nhân (giải chi tiết)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (8.97 MB, 89 trang )

ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 1


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

DÃY SỐ .......................................................................................................................................................... 3
A – LÝ THUYẾT TÓM TẮT ......................................................................................................................... 3
B – BÀI TẬP ................................................................................................................................................... 3
DẠNG 1: SỐ HẠNG CỦA DÃY SỐ........................................................................................................... 3
DẠNG 2: DÃY SỐ ĐƠN ĐIỆU, DÃY SỐ BỊ CHẶN ................................................................................. 7
C – HƯỚNG DẪN GIẢI................................................................................................................................13
DẠNG 1: SỐ HẠNG CỦA DÃY SỐ..........................................................................................................13
DẠNG 2: DÃY SỐ ĐƠN ĐIỆU, DÃY SỐ BỊ CHẶN ................................................................................20
CẤP SỐ CỘNG .............................................................................................................................................33
A – LÝ THUYẾT TÓM TẮT ........................................................................................................................33
B – BÀI TẬP ..................................................................................................................................................33
DẠNG 1: XÁC ĐỊNH CẤP SỐ CỘNG VÀ CÁC YẾU TỐ CỦA CẤP SỐ CỘNG .................................33
DẠNG 2: TÌM ĐIỀU KIỆN ĐỂ DÃY SỐ LẬP THÀNH CẤP SỐ CỘNG ..............................................39
C– HƯỚNG DẪN GIẢI.................................................................................................................................41
DẠNG 1: XÁC ĐỊNH CẤP SỐ CỘNG VÀ CÁC YẾU TỐ CỦA CẤP SỐ CỘNG .................................41
DẠNG 2: TÌM ĐIỀU KIỆN ĐỂ DÃY SỐ LẬP THÀNH CẤP SỐ CỘNG ..............................................53
CẤP SỐ NHÂN..............................................................................................................................................58
A – LÝ THUYẾT TÓM TẮT ........................................................................................................................58


B – BÀI TẬP ..................................................................................................................................................58
DẠNG 1: XÁC ĐỊNH CẤP SỐ NHÂN VÀ CÁC YẾU TỐ CỦA CẤP SỐ NHÂN ..................................58
DẠNG 2: TÌM ĐIỀU KIỆN ĐỂ DÃY SỐ LẬP THÀNH CẤP SỐ NHÂN...............................................64
C – HƯỚNG DẪN GIẢI................................................................................................................................65
DẠNG 1: XÁC ĐỊNH CẤP SỐ NHÂN VÀ CÁC YẾU TỐ CỦA CẤP SỐ NHÂN ..................................65
DẠNG 2: TÌM ĐIỀU KIỆN ĐỂ DÃY SỐ LẬP THÀNH CẤP SỐ NHÂN...............................................76
ÔN TẬP CHƯƠNG III..................................................................................................................................78
ĐÁP ÁN .........................................................................................................................................................89

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 2


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

DÃY SỐ
A – LÝ THUYẾT TÓM TẮT
1. Phương pháp quy nạp toán học
Để chứng minh mệnh đề chứa biến A(n) là một mệnh đề đúng với mọi giá trị nguyên dương n, ta
thực hiện như sau:
 Bước 1: Kiểm tra mệnh đề đúng với n = 1.
 Bước 2: Giả thiết mệnh đề đúng với số nguyên dương n = k tuỳ ý (k  1), chứng minh rằng mệnh đề
đúng với n = k + 1.
Chú ý: Nếu phải chứng minh mệnh đề A(n) là đúng với với mọi số nguyên dương n  p thì:
+ Ở bước 1, ta phải kiểm tra mệnh đề đúng với n = p;
+ Ở bước 2, ta giả thiết mệnh đề đúng với số nguyên dương bất kì n = k  p và phải chứng minh
mệnh đề đúng với n = k + 1.

2. Dãy số

u : *  
Dạng khai triển: (un) = u1, u2, …, un, …
n  u (n)
3. Dãy số tăng, dãy số giảm
 (un) là dãy số tăng  un+1 > un với  n  N*.
un 1
 1 với n  N* ( un > 0).
un
 (un) là dãy số giảm  un+1 < un với n  N*.
 un+1 – un > 0 với  n  N* 

 un+1 – un< 0 với  n  N* 

un 1
 1 với n  N* (un > 0).
un

4. Dãy số bị chặn
 (un) là dãy số bị chặn trên  M  R: un  M, n  N*.
 (un) là dãy số bị chặn dưới  m  R: un  m, n  N*.
 (un) là dãy số bị chặn  m, M  R: m  un  M, n  N*.

B – BÀI TẬP
DẠNG 1: SỐ HẠNG CỦA DÃY SỐ
Câu 1: Cho dãy số có 4 số hạng đầu là: 1,3,19, 53 . Hãy tìm một quy luật của dãy số trên và viết số
hạng thứ 10 của dãy với quy luật vừa tìm.
A. u10  97
B. u10  71

C. u10  1414
D. u10  971

an 2
(a: hằng số). un 1 là số hạng nào sau đây?
n 1
2
2
a.  n  1
a.  n  1
a.n 2  1
an2
A. un 1 
.
B. un 1 
.
C. un1 
.
D. un1 
.
n2
n 1
n 1
n2
Câu 3: Cho dãy số có các số hạng đầu là: 5;10;15; 20; 25;... Số hạng tổng quát của dãy số này là:
A. un  5(n  1) .
B. un  5n .
C. un  5  n .
D. un  5.n  1 .
Câu 4: Cho dãy số có các số hạng đầu là: 8,15, 22, 29,36,... .Số hạng tổng quát của dãy số này là:

Câu 2: Cho dãy số  un  với un 

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 3


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

A. un  7 n  7 .

B. un  7.n .

C. un  7.n  1 .

D. un : Không viết được dưới dạng công thức.

1 2 3 4
Câu 5: Cho dãy số có các số hạng đầu là: 0; ; ; ; ;... .Số hạng tổng quát của dãy số này là:
2 3 4 5
n2  n
n 1
n
n 1
A. un 
.
B. un 
.

C. un 
.
D. un 
.
n
n 1
n
n 1
Câu 6: Cho dãy số có các số hạng đầu là: 0,1;0, 01;0, 001;0, 0001;... . Số hạng tổng quát của dãy số này
có dạng?
1
1
A. un  0,
00...01
0,
00...01
. C. un  n 1 .
D. un  n 1 .



 . B. un 




10
10
n chöõ soá 0
n1 chöõ soá 0

Câu 7: Cho dãy số có các số hạng đầu là: 1;1; 1;1; 1;... .Số hạng tổng quát của dãy số này có dạng
n 1

A. un  1 .
B. un  1 .
C. un  (1)n .
D. un   1 .
Câu 8: Cho dãy số có các số hạng đầu là: 2;0;2;4;6;... .Số hạng tổng quát của dãy số này có dạng?
A. un  2n .

B. un   2   n .

C. un   2  (n  1) .

D. un   2   2  n  1 .

1 1 1 1 1
; ; ; ; ; ….Số hạng tổng quát của dãy số này là?
3 32 33 34 35
1 1
1
1
1
A. un  n 1 .
B. un  n 1 .
C. un  n .
D. un  n 1 .
33
3
3

3
u  5
Câu 10: Cho dãy số  un  với  1
.Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
u

u

n
n
 n 1
(n  1)n
(n  1)n
A. un 
.
B. un  5 
.
2
2
(n  1)n
(n  1)(n  2)
C. un  5 
.
D. un  5 
.
2
2
u1  1
Câu 11: Cho dãy số  un  với 
2 n . Số hạng tổng quát u n của dãy số là số hạng nào

un 1  un   1
dưới đây?

Câu 9: Cho dãy số có các số hạng đầu là:

A. un  1  n .

B. un  1  n .

2n

C. un  1   1 .

D. un  n .

u1  1
Câu 12: Cho dãy số  un  với 
2 n 1 . Số hạng tổng quát u n của dãy số là số hạng nào
u

u


1


 n 1
n
dưới đây?
A. un  2  n .

B. un không xác định.
C. un  1  n .
D. un   n với mọi n .
u1  1
Câu 13: Cho dãy số  un  với 
. Số hạng tổng quát un của dãy số là số hạng nào dưới
2
un 1  un  n
đây?
n  n  1 2n  1
n  n  1 2n  2 
A. un  1 
.
B. un  1 
.
6
6
Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 4


Dãy số, CSC-CSN – ĐS> 11

ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A
C. un  1 

n  n  1 2n  1
.
6


Câu 14: Cho dãy số  un 
đây?
2
A. un  2   n  1 .

D. un  1 

n  n  1 2n  2 
.
6

u1  2
với un 1  un  2n  1 . Số hạng tổng quát un của dãy số là số hạng nào dưới

2

C. un  2   n  1 .

B. un  2  n 2 .

2

D. un  2   n  1 .

u1  2

Câu 15: Cho dãy số  un  với 
1 . Công thức số hạng tổng quát của dãy số này là:
un 1  2  u

n

n 1
n 1
n 1
n
A. un  
.
B. un 
.
C. un  
.
D. un  
.
n
n
n
n 1
1

u1 
Câu 16: Cho dãy số  un  với 
. Công thức số hạng tổng quát của dãy số này là:
2
un 1  un  2
A. un 

1
 2  n  1 .
2


Câu 17: Cho dãy số  un 
n

1
A. un   1 .   .
2
.

1
1
1
 2  n  1 .
C. un   2n .
D. un   2n .
2
2
2
u


1
 1

với 
un . Công thức số hạng tổng quát của dãy số này là:
u

 n 1 2


B. un 

1
B. un   1 .  
2

n 1

.

1
C. un   
2

n 1

.

1
D. un   1 .  
2

n 1

u  2
Câu 18: Cho dãy số  un  với  1
. Công thức số hạng tổng quát của dãy số này :
un 1  2un

A. un  n n 1 .


B. un  2n .

C. un  2n 1 .

D. un  2 .

1

u1 
Câu19 : Cho dãy số  un  với 
. Công thức số hạng tổng quát của dãy số này:
2
un 1  2un
1
1
A. un  2 n 1 .
B. un  n 1 .
C. un  n .
D. un  2n  2 .
2
2
n 2  3n  7
Câu 20: Cho dãy số (un ) được xác định bởi un 
. Viết năm số hạng đầu của dãy;
n 1
11 17 25 47
13 17 25 47
11 14 25 47
11 17 25 47

A. ; ; ; 7;
B. ; ; ; 7;
C. ; ; ; 7;
D. ; ; ;8;
2 3 4
6
2 3 4
6
2 3 4
6
2 3 4
6
Câu 21: Dãy số có bao nhiêu số hạng nhận giá trị nguyên.
A. 2
B. 4
C. 1
D. Không có
u

1

Câu 22: Cho dãy số (un ) xác định bởi:  1
. Viết năm số hạng đầu của dãy;
un  2un 1  3 n  2

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 5



Dãy số, CSC-CSN – ĐS> 11

ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A
A. 1;5;13;28;61

B. 1;5;13;29;61

C. 1;5;17;29;61

D. 1;5;14;29;61

un 1  un2  2vn2
Câu 23: Cho hai dãy số (un ), (vn ) được xác định như sau u1  3, v1  2 và 
với n  2 .
vn 1  2un .vn
Tìm công thức tổng quát của hai dãy (un ) và (vn ) .
n

n

2
2

u

2

1

2


1
n

A. 
2n
1 
vn 
2

1
 2 1
2 2 




 






1
un  2 


C. 
v  1

 n 3 2



 

2n

 

2 1









2 1

2n

 

2 1






2n

2n











2 1

2n





1
un  4 


B. 
v  1 

 n 2 

1
un  2 


D. 
v  1
 n 2 2

2n



2 1

 



2 1



2 1



2n


 




2n 
2 1 






2n

 










2 1

2n


 

2 1

2n

2 1



2n







2 1

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
2n




Trang 6



ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

DẠNG 2: DÃY SỐ ĐƠN ĐIỆU, DÃY SỐ BỊ CHẶN
Câu 1: Xét tính tăng giảm của các dãy số sau: un 
A. Dãy số tăng
C. Dãy số không tăng không giảm

3n 2  2n  1
n 1
B. Dãy số giảm
D. Cả A, B, C đều sai

Câu 2: Xét tính tăng giảm của các dãy số sau: un  n  n 2  1
A. Dãy số tăng
B. Dãy số giảm
C. Dãy số không tăng không giảm
D. Cả A, B, C đều sai
n
3 1
Câu 3: Xét tính tăng giảm của các dãy số sau: un  n
2
A. Dãy số tăng
B. Dãy số giảm
C. Dãy số không tăng không giảm
D. Cả A, B, C đều sai
n

n   1

Câu 4: Xét tính tăng giảm của các dãy số sau: un 
n2
A. Dãy số tăng
B. Dãy số giảm
C. Dãy số không tăng không giảm
D. Cả A, B, C đều sai
2n  13
Câu 5: Xét tính tăng, giảm và bị chặn của dãy số (un ) , biết: un 
3n  2
A. Dãy số tăng, bị chặn
B. Dãy số giảm, bị chặn
C. Dãy số không tăng không giảm, không bị chặn D. Cả A, B, C đều sai
n 2  3n  1
Câu 6: Xét tính tăng, giảm và bị chặn của dãy số (un ) , biết: un 
n 1
A. Dãy số tăng, bị chặn trên
B. Dãy số tăng, bị chặn dưới
C. Dãy số giảm, bị chặn trên
D. Cả A, B, C đều sai
1
Câu 7: Xét tính tăng, giảm và bị chặn của dãy số (un ) , biết: un 
1  n  n2
A. Dãy số tăng, bị chặn trên
B. Dãy số tăng, bị chặn dưới
C. Dãy số giảm, bị chặn
D. Cả A, B, C đều sai
2n
Câu 8: Xét tính tăng, giảm và bị chặn của dãy số (un ) , biết: un 
n!
A. Dãy số tăng, bị chặn trên

B. Dãy số tăng, bị chặn dưới
C. Dãy số giảm, bị chặn trên
D. Cả A, B, C đều sai
1 1
1
Câu 9: Xét tính tăng, giảm và bị chặn của dãy số (un ) , biết: un  1  2  2  ...  2 .
2 3
n
A. Dãy số tăng, bị chặn
B. Dãy số tăng, bị chặn dưới
C. Dãy số giảm, bị chặn trên
D. Cả A, B, C đều sai
2n  1
Câu 10: Xét tính bị chặn của các dãy số sau: un 
n2
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
D. Bị chặn dưới
n
Câu 11: Xét tính bị chặn của các dãy số sau: un  (1)
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
D. Bị chặn dưới
Câu 12: Xét tính bị chặn của các dãy số sau: un  3n  1
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
D. Bị chặn dưới

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 7


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

Câu 13: Xét tính bị chặn của các dãy số sau: un  4  3n  n 2
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
Câu 14: Xét tính bị chặn của các dãy số sau: un 
A. Bị chặn

B. Không bị chặn

Câu 15: Xét tính bị chặn của các dãy số sau: un 

n2  n  1
n2  n  1
C. Bị chặn trên
n 1

n2  1
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
1

1
1

 ... 
Câu 16: Xét tính bị chặn của các dãy số sau: un 
1.3 2.4
n.(n  2)
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
1
1
1
Câu 17: Xét tính bị chặn của các dãy số sau: un 

 ... 
1.3 3.5
 2n  1 2n  1
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
u1  1


Câu 18: Xét tính bị chặn của các dãy số sau: 
un 1  2
, n2
un  u  1

n 1

A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
u1  1

Câu 19: Xét tính tăng giảm của các dãy số sau: 
3
un 1  3 un  1, n  1
A. Tăng
B. Giảm
C. Không tăng, không giảm
D. A, B, C đều sai
u1  2


Câu 20: Xét tính tăng giảm của các dãy số sau: 
un2  1
u

n 1
 n 1

4
A. Tăng
B. Giảm
C. Không tăng, không giảm
D. A, B, C đều sai

D. Bị chặn dưới


D. Bị chặn dưới

D. Bị chặn dưới

D. Bị chặn dưới

D. Bị chặn dưới

D. Bị chặn dưới

Câu 21: dãy số (un ) xác định bởi un  2010  2010  ...  2010 (n dấu căn)Khẳng định nào sau
đây là đúng?
A. Tăng
B. Giảm
C. Không tăng, không giảm
D. A, B, C đều sai
u1  1, u2  2
Câu 22: Cho dãy số (un ) : 
. Khẳng định nào sau đây đúng?
un  3 un 1  3 un 2 , n  3
A. Tăng, bị chặn
B. Giảm, bị chặn
C. Không tăng, không giảm
D. A, B, C đều sai
an  2
Câu 23: Cho dãy số (un ) : un 
, n  1 . Khi a  4 , hãy tìm 5 số hạng đầu của dãy
2n  1
10
14

18
22
A. u1  2, u2  , u3  , u4  , u5 
3
5
7
9
10
14
18
22
B. u1  6, u2  , u3  , u4  , u5 
3
5
7
9
Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 8


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

1
1
18
22
C. u1  6, u2  , u3  , u4  , u5 

3
5
7
9
10
4
8
22
D. u1  6, u2  , u3  , u4  , u5 
3
5
7
9
Câu 24: Tìm a để dãy số đã cho là dãy số tăng.
A. a  2
B. a  2
C. a  4
u  2
Câu 25: Cho dãy số (un ) :  1
Viết 6 số hạng đầu của dãy
un  3un 1  2, n  2, 3..
A. u1  2, u2  5, u3  10, u4  28, u5  82, u6  244
B. u1  2, u2  4, u3  10, u4  18, u5  82, u6  244
C. u1  2, u2  4, u3  10, u4  28, u5  72, u6  244
D. u1  2, u2  4, u3  10, u4  28, u5  82, u6  244

D. a  4

Câu 26: Cho dãy số un  5.2n 1  3n  n  2 , n  1, 2,... Viết 5 số hạng đầu của dãy
A. u1  1, u2  3, u3  12, u4  49, u5  170

B. u1  1, u2  3, u3  12, u4  47, u5  170
C. u1  1, u2  3, u3  24, u4  47, u5  170
D. u1  1, u2  3, u3  12, u4  47, u5  178
Câu 27:
1. Cho dãy số (un ) : un  (1  a) n  (1  a) n ,trong đó a  (0;1) và n là số nguyên dương.
a)Viết công thức truy hồi của dãy số
u1  2
u1  2


A. 
B. 
n
n
n
n




un 1  un  a 1  a   1  a  
un 1  un  2a 1  a   1  a  
u1  2
u1  2


C. 
D. 
n
n

n
n




un 1  2un  a 1  a   1  a  
un 1  un  a 1  a   1  a  
b)Xét tính đơn điệu của dãy số
A. Dãy (un ) là dãy số tăng.
C. Dãy (un ) là dãy số không tăng, không giảm

B. Dãy (un ) là dãy số giảm.
D. A, B, C đều sai.

u1  1

Câu 28: Cho dãy số (un ) được xác định như sau: 
.
1
un  3un 1  2u  2, n  2
n 1

Viết 4 số hạng đầu của dãy và chứng minh rằng un  0, n
3
47
227
3
17
227

A. u1  1, u2  , u3  , u4 
B. u1  1, u2  , u3  , u4 
2
6
34
2
6
34
3
19
227
3
17
2127
C. u1  1, u2  , u3  , u4 
D. u1  1, u2  , u3  , u4 
2
6
34
2
6
34
u0  2011

Câu 29: Cho dãy số (un ) được xác định bởi : 
un2
u

 n 1 u  1 , n  1, 2,...


n
Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 9


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A
a) Khẳng định nào sau đây đúng
A. Dãy (un ) là dãy giảm
C. Dãy (un ) là dãy không tăng, không giảm
b) Tìm phần nguyên của un với 0  n  1006 .
A.  un   2014  n

B.  un   2011  n

Dãy số, CSC-CSN – ĐS> 11

B. Dãy (un ) là dãy tăng
D. A, B, C đều sai
C.  un   2013  n

D.  un   2012  n

u  2, u2  6
Câu 30: Cho dãy số (un ) được xác định bởi:  1
un  2  un  2un 1 , n  1, 2,...
a) Gọi a, b là hai nghiệm của phương trình x 2  2 x  1  0 . Chứng minh rằng: un  a n  b n

b) Chứng minh rằng: un21  un  2un  (1)n 1 .8 .
n 1

n2
C. Tăng, chặn dưới

Câu 31: Xét tính tăng giảm và bị chặn của dãy số sau: (un ) : un 
A. Tăng, bị chặn

B. Giảm, bị chặn

D. Giảm, chặn trên

Câu 32: Xét tính tăng giảm và bị chặn của dãy số sau: (un ) : un  n3  2n  1
A. Tăng, bị chặn
B. Giảm, bị chặn
C. Tăng, chặn dưới
D. Giảm, chặn trên
u1  2

Câu 33: Xét tính tăng giảm và bị chặn của dãy số sau: (un ) : 
un  1
un 1  2 , n  2
A. Tăng, bị chặn

C. Tăng, chặn dưới
D. Giảm, chặn trên
u1  2, u2  3
Câu 34: Xét tính tăng giảm và bị chặn của các dãy số sau: 
.
un 1  un  un 1 , n  2
A. Tăng, bị chặn
B. Giảm, bị chặn

C. Tăng, chặn dưới
D. Giảm, chặn trên
 x0  1

Câu 35: Cho dãy số ( xn ) : 
. Xét dãy số yn  xn 1  xn . Khẳng định nào
2n n 1
x

 n (n  1)2  xi , n  2,3,...
i 1

đúng về dãy ( yn )
A. Tăng, bị chặn
B. Giảm, bị chặn
C. Tăng, chặn dưới
D. Giảm, chặn trên
n
Câu 36: Cho dãy số Un  với Un 
.Khẳng định nào sau đây là đúng?
n 1
1 2 3 5 5
A. Năm số hạng đầu của dãy là : ; ; ; ; .
2 3 4 5 6
1 2 3 4 5
B. 5 số số hạng đầu của dãy là : ; ; ; ;
2 3 4 5 6 .
C. Là dãy số tăng.
D. Bị chặn trên bởi số 1.
1

Câu 37: Cho dãy số  un  với un  2
.Khẳng định nào sau đây là sai?
n n
1 1 1 1 1
A. Năm số hạng đầu của dãy là: ; ; ; ; ;
2 6 12 20 30
B. Là dãy số tăng.
B. Giảm, bị chặn

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 10


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A
C. Bị chặn trên bởi số M 

Dãy số, CSC-CSN – ĐS> 11

1
.
2

D. Không bị chặn.
1
.Khẳng định nào sau đây là sai?
n
1 1 1 1
A. Năm số hạng đầu của dãy là : 1; ; ; ;
2 3 4 5 .

B. Bị chặn trên bởi số M  1 .
C. Bị chặn trên bởi số M  0 .
D. Là dãy số giảm và bị chặn dưới bởi số m M  1 .
Câu 39: Cho dãy số  un  với un  a.3n ( a : hằng số).Khẳng định nào sau đây là sai?

Câu 38: Cho dãy số  un  với un 

A. Dãy số có un 1  a.3n 1 .
C. Với a  0 thì dãy số tăng

B. Hiệu số un 1  un  3.a .
D. Với a  0 thì dãy số giảm.

Câu 40: Cho dãy số  un  với un 
A. Dãy số có un 1 

a 1
.
n2  1

C. Là dãy số tăng.
Câu 41: Cho dãy số  un 
A. un1 

a 1
.
(n  1)2

a 1
. Khẳng định nào sau đây là đúng?

n2

B. Dãy số có : un 1 

a 1

 n  1

2

.

D. Là dãy số tăng.
a 1
với un  2 ( a : hằng số). Khẳng định nào sau đây là sai?
n
2n  1
B. Hiệu un 1  un  1  a  .
.
2
 n  1 n 2

C. Hiệu un 1  un   a  1 .

2n  1

 n  1

2


n2

.

D. Dãy số tăng khi a  1 .

an 2
( a : hằng số). Kết quả nào sau đây là sai?
n 1
2
a.  n 2  3n  1
a.  n  1
A. un 1 
.
B. un 1  un 
.
n2
(n  2)(n  1)
C. Là dãy số luôn tăng với mọi a .
D. Là dãy số tăng với a  0 .
k
Câu 43: Cho dãy số  un  với un  n ( k : hằng số). Khẳng định nào sau đây là sai?
3
k
k
A. Số hạng thứ 5 của dãy số là 5 .
B. Số hạng thứ n của dãy số là n 1 .
3
3
C. Là dãy số giảm khi k  0 .

D. Là dãy số tăng khi k  0 .
(1)n1
Câu 44: Cho dãy số  un  với un 
. Khẳng định nào sau đây là sai?
n 1
1
1
A. Số hạng thứ 9 của dãy số là .
B. Số hạng thứ 10 của dãy số là
10
11
C. Đây là một dãy số giảm.
D. Bị chặn trên bởi số M  1 .
*
Câu 45: Cho dãy số  un  có un  n  1 với n  N . Khẳng định nào sau đây là sai?
Câu 42: Cho dãy số  un  với un 

A. 5 số hạng đầu của dãy là: 0;1; 2; 3; 5 .
C. Là dãy số tăng.

.

B. Số hạng un 1  n .
D. Bị chặn dưới bởi số 0 .

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 11



ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

Câu 45: Cho dãy số  un  có un   n 2  n  1 . Khẳng định nào sau đây là đúng?
A. 5 số hạng đầu của dãy là: 1;1;5; 5; 11; 19 .
B. un 1  n 2  n  2 .
C. un 1  un  1 .
D. Là một dãy số giảm.
Câu 46: Cho dãy số  un  với un 
A. un 1 

1
. Khẳng định nào sau đây là sai?
n 1
2

1

.
1
C. Đây là một dãy số tăng.

 n  1

2

B. un  un 1 .
D. Bị chặn dưới.



. Khẳng định nào sau đây là sai?
n 1

A. Số hạng thứ n  1 của dãy: un 1  sin
B. Dãy số bị chặn.
n2
C. Đây là một dãy số tăng.
D. Dãy số không tăng không giảm.

Câu 47: Cho dãy số  un  với un  sin

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 12


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

C – HƯỚNG DẪN GIẢI
DẠNG 1: SỐ HẠNG CỦA DÃY SỐ
Câu 1: Cho dãy số có 4 số hạng đầu là: 1,3,19, 53 . Hãy tìm một quy luật của dãy số trên và viết số
hạng thứ 10 của dãy với quy luật vừa tìm.
A. u10  97
B. u10  71
C. u10  1414
D. u10  971
Hướng dẫn giải:

Chọn A.
Xét dãy (un ) có dạng: un  an3  bn 2  cn  d
 a  b  c  d  1
8a  4b  2c  d  3

Ta có hệ: 
27a  9b  3c  d  19
64a  16b  4c  d  53
Giải hệ trên ta tìm được: a  1, b  0, c  3, d  1
 un  n3  3n  1 là một quy luật.
Số hạng thứ 10: u10  971 .

an 2
(a: hằng số). un 1 là số hạng nào sau đây?
n 1
2
a.  n  1
a.n 2  1
an2
B. un 1 
.
C. un1 
.
D. un1 
.
n 1
n 1
n2

Câu 2: Cho dãy số  un  với un 

2

a.  n  1
A. un 1 
.
n2
Hướng dẫn giải:
Chọn A.
2

2

a.  n  1
a  n  1
Ta có un 1 

.
 n  1  1  n  2 2
Câu 3: Cho dãy số có các số hạng đầu là: 5;10;15; 20; 25;... Số hạng tổng quát của dãy số này là:
A. un  5(n  1) .
B. un  5n .
C. un  5  n .
D. un  5.n  1 .
Hướng dẫn giải:
Chọn B.
Ta có:
5  5.1
10  5.2
15  5.3
20  5.4

25  5.5
Suy ra số hạng tổng quát un  5n .
Câu 4: Cho dãy số có các số hạng đầu là: 8,15, 22, 29,36,... .Số hạng tổng quát của dãy số này là:
A. un  7 n  7 .
B. un  7.n .
C. un  7.n  1 .
Hướng dẫn giải:
Chọn C.
Ta có:
8  7.1  1

D. un : Không viết được dưới dạng công thức.

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 13


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

15  7.2  1
22  7.3  1
29  7.4  1
36  7.5  1
Suy ra số hạng tổng quát un  7n  1 .

1 2 3 4
Câu 5: Cho dãy số có các số hạng đầu là: 0; ; ; ; ;... .Số hạng tổng quát của dãy số này là:

2 3 4 5
n2  n
n 1
n
n 1
A. un 
.
B. un 
.
C. un 
.
D. un 
.
n
n 1
n
n 1
Hướng dẫn giải:
Chọn B.
Ta có:
0
0
0 1
1
1

2 11
2
2


3 2 1
3
3

4 3 1
4
4

5 4 1
n
Suy ra un 
.
n 1
Câu 6: Cho dãy số có các số hạng đầu là: 0,1;0, 01;0, 001;0, 0001;... . Số hạng tổng quát của dãy số này
có dạng?
1
1
A. un  0,
00...01
0,
00...01
. C. un  n 1 .
D. un  n 1 .



 . B. un 





10
10
n chöõ soá 0
n1 chöõ soá 0
Hướng dẫn giải:
Chọn A.
Ta có:
Số hạng thứ 1 có 1 chữ số 0
Số hạng thứ 2 có 2 chữ số 0
Số hạng thứ 3 có 3 chữ số 0
…………………………….
Suy ra un có n chữ số 0 .
Câu 7: Cho dãy số có các số hạng đầu là: 1;1; 1;1; 1;... .Số hạng tổng quát của dãy số này có dạng
n 1

A. un  1 .
B. un  1 .
C. un  (1)n .
D. un   1 .
Hướng dẫn giải:
Chọn C.
Ta có:
1
2
3
4
5
n
Các số hạng đầu của dãy là  1 ;  1 ;  1 ;  1 ;  1 ;...  un   1 .

Câu 8: Cho dãy số có các số hạng đầu là: 2;0;2;4;6;... .Số hạng tổng quát của dãy số này có dạng?
A. un  2n .

B. un   2   n .

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 14


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

C. un   2  (n  1) .
D. un   2   2  n  1 .
Hướng dẫn giải:
Chọn D.
Dãy số là dãy số cách đều có khoảng cách là 2 và số hạng đầu tiên là  2  nên un   2   2.  n  1 .
1 1 1 1 1
; ; ; ; ; ….Số hạng tổng quát của dãy số này là?
3 32 33 34 35
1
1
1
B. un  n 1 .
C. un  n .
D. un  n 1 .
3
3

3

Câu 9: Cho dãy số có các số hạng đầu là:

1 1
.
3 3n 1
Hướng dẫn giải:
Chọn C.
1 1 1 1 1
1
5 số hạng đầu là ; 2 ; 3 ; 4 ; 5 ;... nên un  n .
3
31 3 3 3 3

A. un 

u  5
Câu 10: Cho dãy số  un  với  1
.Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
un 1  un  n

(n  1)n
.
2
(n  1)n
C. un  5 
.
2
Hướng dẫn giải:

Chọn B.

(n  1)n
.
2
(n  1)(n  2)
D. un  5 
.
2

A. un 

B. un  5 

n  n  1
.
2
u1  1
với 
2 n . Số hạng tổng quát u n của dãy số là số hạng nào
un 1  un   1

Ta có un  5  1  2  3  ...  n  1  5 
Câu 11: Cho dãy số  un 

dưới đây?
2n
A. un  1  n .
B. un  1  n .
C. un  1   1 .

D. un  n .
Hướng dẫn giải:
Chọn D.
2n
Ta có: un1  un   1  un  1  u2  2; u3  3; u4  4;... Dễ dàng dự đoán được un  n .
Thật vậy, ta chứng minh được un  n  * bằng phương pháp quy nạp như sau:
+ Với n  1  u1  1 . Vậy  * đúng với n  1
+ Giả sử  * đúng với mọi n  k  k  *  , ta có: uk  k . Ta đi chứng minh  * cũng đúng với
n  k  1 , tức là: uk 1  k  1
2k

+ Thật vậy, từ hệ thức xác định dãy số  un  ta có: uk 1  uk   1  k  1 . Vậy  * đúng với mọi

n  * .
u1  1
Câu 12: Cho dãy số  un  với 
2 n 1 . Số hạng tổng quát u n của dãy số là số hạng nào
un 1  un   1
dưới đây?
A. un  2  n .
B. un không xác định.
C. un  1  n .
D. un   n với mọi n .
Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 15


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A


Dãy số, CSC-CSN – ĐS> 11

Hướng dẫn giải:
Chọn A.
Ta có: u2  0; u3  1; u4  2 ,.. Dễ dàng dự đoán được un  2  n .
u1  1
Câu 13: Cho dãy số  un  với 
. Số hạng tổng quát un của dãy số là số hạng nào dưới
2
un 1  un  n
đây?
n  n  1 2n  1
n  n  1 2n  2 
A. un  1 
.
B. un  1 
.
6
6
n  n  1 2n  1
n  n  1 2n  2 
C. un  1 
.
D. un  1 
.
6
6
Hướng dẫn giải:
Chọn C.
u1  1


2
u2  u1  1
n  n  1 2n  1
2

Ta có: u3  u2  22
. Cộng hai vế ta được un  1  12  22  ...   n  1  1 
6
...

un  un 1   n  1 2

Câu 14: Cho dãy số  un 

u1  2
với un 1  un  2n  1 . Số hạng tổng quát un của dãy số là số hạng nào dưới

đây?
2
2
2
A. un  2   n  1 .
B. un  2  n 2 .
C. un  2   n  1 .
D. un  2   n  1 .
Hướng dẫn giải:
Chọn A.
u1  2
u  u  1

1
 2
2
Ta có: u3  u2  3
. Cộng hai vế ta được un  2  1  3  5  ...   2n  3  2   n  1
...

un  un 1  2n  3
u1  2

Câu 15: Cho dãy số  un  với 
1 . Công thức số hạng tổng quát của dãy số này là:
u


2

n

1

un

n 1
n 1
n 1
n
A. un  
.
B. un 

.
C. un  
.
D. un  
.
n
n
n
n 1
Hướng dẫn giải:
Chọn C.
3
4
5
n 1
Ta có: u1   ; u2   ; u3   ;... Dễ dàng dự đoán được un  
.
2
3
4
n
1

u1 
Câu 16: Cho dãy số  un  với 
. Công thức số hạng tổng quát của dãy số này là:
2
un 1  un  2
Mua file Word liên hệ: 0978064165 - Email:
Facebook: />

Trang 16


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

1
1
1
1
 2  n  1 .
B. un   2  n  1 .
C. un   2n .
D. un   2n .
2
2
2
2
Hướng dẫn giải:
Chọn B.
1

u1  2

u2  u1  2
1
1

Ta có: u3  u2  2 . Cộng hai vế ta được un   2  2...  2   2  n  1 .

2
2
...

un  un 1  2

u1  1

Câu 17: Cho dãy số  un  với 
un . Công thức số hạng tổng quát của dãy số này là:
un 1  2

A. un 

n

1
A. un   1 .   .
2
.
Hướng dẫn giải:
Chọn D.

Ta

có:

1
B. un   1 .  
2


u1  1

u2  u1
2


u2
.
u3 
2

...

un  un 1
2


n 1

.

Nhân

1
C. un   
2

hai


u .u .u ...u
1
1
u1.u2 .u3 ...un   1 . 1 2 3 n 1  un   1 . n 1   1 .  
2.2.2...2
2
2




n 1

1
D. un   1 .  
2

.

vế

ta

n 1

được

n 1

n 1 lan


u  2
Câu 18: Cho dãy số  un  với  1
. Công thức số hạng tổng quát của dãy số này :
un 1  2un
A. un  n n 1 .
B. un  2n .
C. un  2n 1 .
D. un  2 .
Hướng dẫn giải:
Chọn B.
u1  2
u  2u
1
 2
Ta có: u3  2u2 . Nhân hai vế ta được u1.u2 .u3 ...un  2.2n 1.u1.u2 ...un 1  un  2n
...

un  2un 1

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 17


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Câu19 : Cho dãy số  un 
A. un  2 n 1 .


Dãy số, CSC-CSN – ĐS> 11

1

u1 
với 
. Công thức số hạng tổng quát của dãy số này:
2
un 1  2un
1
1
B. un  n 1 .
C. un  n .
D. un  2n  2 .
2
2

Hướng dẫn giải:
Chọn D.
1

u1  2

u2  2u1
1

Ta có: u3  2u2 . Nhân hai vế ta được u1.u2 .u3 ...un  .2n 1.u1.u2 ...un 1  un  2n 2
2
...


un  2un 1

n 2  3n  7
Câu 20: Cho dãy số (un ) được xác định bởi un 
. Viết năm số hạng đầu của dãy;
n 1
11 17 25 47
13 17 25 47
11 14 25 47
11 17 25 47
A. ; ; ; 7;
B. ; ; ; 7;
C. ; ; ; 7;
D. ; ; ;8;
2 3 4
6
2 3 4
6
2 3 4
6
2 3 4
6

Hướng dẫn giải:
Chọn A.
Ta có năm số hạng đầu của dãy
12  3.1  7 11
17
25
47

u1 
 , u2  , u3  , u4  7, u5 
11
2
3
4
6
Câu 21: Dãy số có bao nhiêu số hạng nhận giá trị nguyên.
A. 2
B. 4
C. 1
D. Không có
Hướng dẫn giải:
Chọn C.
5
5
Ta có: un  n  2 
, do đó un nguyên khi và chỉ khi
nguyên hay n  1 là ước của 5. Điều đó
n 1
n 1
xảy ra khi n  1  5  n  4
Vậy dãy số có duy nhất một số hạng nguyên là u4  7 .
u  1
Câu 22: Cho dãy số (un ) xác định bởi:  1
. Viết năm số hạng đầu của dãy;
un  2un 1  3 n  2
A. 1;5;13;28;61
B. 1;5;13;29;61
C. 1;5;17;29;61

D. 1;5;14;29;61

Hướng dẫn giải:
Chọn B.
Ta có 5 số hạng đầu của dãy là:
u1  1; u2  2u1  3  5 ; u3  2u2  3  13; u4  2u3  3  29
u5  2u4  3  61 .

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 18


Dãy số, CSC-CSN – ĐS> 11

ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

un 1  un2  2vn2
Câu 23: Cho hai dãy số (un ), (vn ) được xác định như sau u1  3, v1  2 và 
với n  2 .
vn 1  2un .vn
Tìm công thức tổng quát của hai dãy (un ) và (vn ) .
n



 







1
un  2 


C. 
v  1
 n 3 2

 



2n



 

2 1










2n

2 1

2n

 

2 1


1
un  4 


B. 
v  1 
 n 2 

1
un  2 


D. 
v  1
 n 2 2

n


2
2

u

2

1

2

1
n

A. 
2n
1 
vn 
2

1
 2 1
2 2 















2n

2n

2 1




2n



2 1

 



2 1




2 1



2n

 




2n 
2 1 






2n

 











2 1

2n

 

2 1

2n

2 1



2n







2 1

2n





Hướng dẫn giải:
Chọn D.
Chứng minh un  2vn 





2 1

2n

(2)



Ta có: un  2vn  un21  2vn21  2 2un 1vn 1  un 1  2vn 1

 Ta có: u1  2v1  3  2 2 
 Giả sử uk  2vk 





2 1






2 1



2

2

nên (2) đúng với n  1

2k

, ta có:



uk 1  2vk 1  uk  2vk

2

 



2 1

2k 1


Vậy (2) đúng với n  1 .
Theo kết quả bài trên và đề bài ta có: un  2vn 
n

  
   
  





 



2n

n

2
2

2
u

2

1


2

1
n

Do đó ta suy ra 
2n
 2 2v  2  1  2  1
n

2n
2n 

1
un  2  2  1  2  1 



Hay 
.
n
2
2n 
1

v 
2  1  2 1 
 n 2 2 







2 1

2n



Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 19


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

DẠNG 2: DÃY SỐ ĐƠN ĐIỆU, DÃY SỐ BỊ CHẶN
Câu 1: Xét tính tăng giảm của các dãy số sau: un 
A. Dãy số tăng
C. Dãy số không tăng không giảm

3n 2  2n  1
n 1
B. Dãy số giảm
D. Cả A, B, C đều sai

Hướng dẫn giải:

Chọn A.
Ta có: un 1  un 

5n 2  10n  2
 0 nên dãy (un ) là dãy tăng
 n  1 n  2 

Câu 2: Xét tính tăng giảm của các dãy số sau: un  n  n 2  1
A. Dãy số tăng
B. Dãy số giảm
C. Dãy số không tăng không giảm
D. Cả A, B, C đều sai
Hướng dẫn giải:
1
1
Ta có: un 1  un 

0
2
2
n

n

1
 n  1   n  1  1
Chọn B.
Nên dãy (un ) giảm.
Câu 3: Xét tính tăng giảm của các dãy số sau: un 
A. Dãy số tăng

C. Dãy số không tăng không giảm

3n  1
2n
B. Dãy số giảm
D. Cả A, B, C đều sai

Hướng dẫn giải:
Chọn A.

3n  1
 0  dãy (un ) tăng.
2n1
n
n   1
Câu 4: Xét tính tăng giảm của các dãy số sau: un 
n2
A. Dãy số tăng
B. Dãy số giảm
C. Dãy số không tăng không giảm
D. Cả A, B, C đều sai
Hướng dẫn giải:
Chọn C.
u  u1
1
2
Ta có: u1  0; u2  ; u3    2
 Dãy số không tăng không giảm.
2
9

u3  u2
Ta có: un1  un  un1  un 

2n  13
3n  2
B. Dãy số giảm, bị chặn
D. Cả A, B, C đều sai

Câu 5: Xét tính tăng, giảm và bị chặn của dãy số (un ) , biết: un 
A. Dãy số tăng, bị chặn
C. Dãy số không tăng không giảm, không bị chặn
Hướng dẫn giải:
Chọn A.

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 20


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

2n  11 2n  13
34


 0 với mọi n  1 .
3n  1 3n  2 (3n  1)(3n  2)
Suy ra un 1  un n  1  dãy (un ) là dãy tăng.

2
35
2
 11  un 
n  1
Mặt khác: un  
3 3(3n  2)
3
Vậy dãy (un ) là dãy bị chặn.
Ta có: un1  un 

n 2  3n  1
n 1
B. Dãy số tăng, bị chặn dưới
D. Cả A, B, C đều sai

Câu 6: Xét tính tăng, giảm và bị chặn của dãy số (un ) , biết: un 
A. Dãy số tăng, bị chặn trên
C. Dãy số giảm, bị chặn trên
Hướng dẫn giải:
Chọn B.

(n  1)2  3(n  1)  1 n 2  3n  1

n2
n 1
2
2
n  5n  5 n  3n  1



n2
n 1
2
(n  5n  5)(n  1)  (n 2  3n  1)(n  2)

(n  1)(n  2)
2
n  3n  3

 0 n  1
(n  1)(n  2)
 un 1  un n  1  dãy (un ) là dãy số tăng.

Ta có: un1  un 

n 2  2n  1
un 
 n  1  2  dãy (un ) bị chặn dưới.
n 1
Câu 7: Xét tính tăng, giảm và bị chặn của dãy số (un ) , biết: un 
A. Dãy số tăng, bị chặn trên
C. Dãy số giảm, bị chặn
Hướng dẫn giải:
Chọn C.
Ta có: un  0 n  1

1

1  n  n2

B. Dãy số tăng, bị chặn dưới
D. Cả A, B, C đều sai

un 1
n2  n  1
n2  n  1


 1 n   *
un
n 2  3n  3
(n  1) 2  (n  1)  1
 un 1  un   1  dãy (un ) là dãy số giảm.
Mặt khác: 0  un  1  dãy (un ) là dãy bị chặn.

2n
n!
B. Dãy số tăng, bị chặn dưới
D. Cả A, B, C đều sai

Câu 8: Xét tính tăng, giảm và bị chặn của dãy số (un ) , biết: un 
A. Dãy số tăng, bị chặn trên
C. Dãy số giảm, bị chặn trên
Hướng dẫn giải:
Chọn C.

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 21



ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

un 1
2n 1 2n
2 n 1 n !
2

: 
. n 
 1 n  1
un
(n  1)! n ! (n  1)! 2
n 1
Mà un  0 n  un 1  un n  1  dãy (un ) là dãy số giảm.
Vì 0  un  u1  2 n  1  dãy (un ) là dãy bị chặn.
Ta có:

1 1
1
 2  ...  2 .
2
2 3
n
B. Dãy số tăng, bị chặn dưới
D. Cả A, B, C đều sai

Câu 9: Xét tính tăng, giảm và bị chặn của dãy số (un ) , biết: un  1 

A. Dãy số tăng, bị chặn
C. Dãy số giảm, bị chặn trên
Hướng dẫn giải:
Chọn A.

1
 0  dãy (un ) là dãy số tăng.
(n  1)2
1
1
1
1

 ... 
 2
Do un  1 
1.2 2.3
(n  1)n
n
 1  un  3 n  1  dãy (un ) là dãy bị chặn.
Ta có: un1  un 

2n  1
n2
C. Bị chặn trên

D. Bị chặn dưới

Câu 11: Xét tính bị chặn của các dãy số sau: un  (1)n
A. Bị chặn

B. Không bị chặn
C. Bị chặn trên

D. Bị chặn dưới

Câu 10: Xét tính bị chặn của các dãy số sau: un 
A. Bị chặn

B. Không bị chặn

Hướng dẫn giải:
Chọn A.
Ta có 0  un  2 n nên dãy (un ) bị chặn

Hướng dẫn giải:
Chọn A.
Ta có: 1  un  1  (un ) là dãy bị chặn
Câu 12: Xét tính bị chặn của các dãy số sau: un  3n  1
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
Hướng dẫn giải:
Ta có: un  2 n  (un ) bị chặn dưới; dãy (un ) không bị chặn trên.
Câu 13: Xét tính bị chặn của các dãy số sau: un  4  3n  n 2
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên

D. Bị chặn dưới


D. Bị chặn dưới

Hướng dẫn giải:
Chọn C.
25
3
25
Ta có: un 
 (n  ) 2 
 (un ) bị chặn trên; dãy (un ) không bị chặn dưới.
4
2
4
n2  n  1
Câu 14: Xét tính bị chặn của các dãy số sau: un  2
n  n 1

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 22


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A
A. Bị chặn

B. Không bị chặn

Dãy số, CSC-CSN – ĐS> 11

C. Bị chặn trên


D. Bị chặn dưới

Hướng dẫn giải:
Chọn A.
Ta có: 1  un  2 n  (un ) bị chặn
Câu 15: Xét tính bị chặn của các dãy số sau: un 
A. Bị chặn
B. Không bị chặn
Hướng dẫn giải:
Chọn A.
Ta có: 0  un  2 n  (un ) bị chặn
Câu 16: Xét tính bị chặn của các dãy số sau: un 
A. Bị chặn

B. Không bị chặn

n 1
n2  1
C. Bị chặn trên

1
1
1

 ... 
1.3 2.4
n.(n  2)
C. Bị chặn trên


D. Bị chặn dưới

D. Bị chặn dưới

Hướng dẫn giải:
Chọn A.
1
1
1
1

 ... 
 1
1
Ta có: 0  un 
1.2 2.3
n.(n  1)
n 1
Dãy (un ) bị chặn.
1
1
1
Câu 17: Xét tính bị chặn của các dãy số sau: un 

 ... 
1.3 3.5
 2n  1 2n  1
A. Bị chặn
B. Không bị chặn
C. Bị chặn trên

D. Bị chặn dưới
Hướng dẫn giải:
Chọn A.
n
Ta có: un 
 0  un  1 , dãy (un ) bị chặn.
2n  1
u1  1


Câu 18: Xét tính bị chặn của các dãy số sau: 
un 1  2
u

, n2
n

un 1  1

A. Bị chặn
B. Không bị chặn
C. Bị chặn trên
D. Bị chặn dưới
Hướng dẫn giải:
Chọn A.
Bằng quy nạp ta chứng minh được 1  un  2 nên dãy (un ) bị chặn.
u1  1

Câu 19: Xét tính tăng giảm của các dãy số sau: 
3

un 1  3 un  1, n  1
A. Tăng
B. Giảm
C. Không tăng, không giảm
D. A, B, C đều sai
Hướng dẫn giải:
Chọn A.
Ta có: un 1  3 un3  1  un 1  3 un3  un n  dãy số tăng

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 23


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11

u1  2


Câu 20: Xét tính tăng giảm của các dãy số sau: 
un2  1
u

n 1
 n 1

4
A. Tăng

B. Giảm
C. Không tăng, không giảm
D. A, B, C đều sai
Hướng dẫn giải:
Chọn B.
u 2  4un  1
Ta có: un1  un  n
4
Bằng quy nạp ta chứng minh được 2  3  un  2 n
 un 1  un  0 . Dãy (un ) giảm.
Câu 21: dãy số (un ) xác định bởi un  2010  2010  ...  2010 (n dấu căn)Khẳng định nào sau
đây là đúng?
A. Tăng
B. Giảm
C. Không tăng, không giảm
D. A, B, C đều sai
Hướng dẫn giải:
Chọn A.
Ta có un21  2010  un  un 1  un  un21  un 1  2010

1  8041
n
2
Suy ra un 1  un  0  dãy (un ) là dãy tăng.
Bằng quy nạp ta chứng minh được un 

u1  1, u2  2
Câu 22: Cho dãy số (un ) : 
. Khẳng định nào sau đây đúng?
un  3 un 1  3 un 2 , n  3

A. Tăng, bị chặn
B. Giảm, bị chặn
C. Không tăng, không giảm
D. A, B, C đều sai
Hướng dẫn giải:
Chọn A.
Chứng minh bằng quy nạp : uk 1  3 uk  3 uk  2  3 uk 1  3 uk 2  uk
Ta chứng minh: 0  un  3 .
an  2
, n  1 . Khi a  4 , hãy tìm 5 số hạng đầu của dãy
2n  1
10
14
18
22
A. u1  2, u2  , u3  , u4  , u5 
3
5
7
9
10
14
18
22
B. u1  6, u2  , u3  , u4  , u5 
3
5
7
9
1

1
18
22
C. u1  6, u2  , u3  , u4  , u5 
3
5
7
9
10
4
8
22
D. u1  6, u2  , u3  , u4  , u5 
3
5
7
9
Hướng dẫn giải:
Chọn B.

Câu 23: Cho dãy số (un ) : un 

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 24


ST&BS: Th.S Đặng Việt Đông Trường THPT Nho Quan A

Dãy số, CSC-CSN – ĐS> 11


4n  2
. Ta có: 5 số hạng đầu của dãy là
2n  1
10
14
18
22
u1  6, u2  , u3  , u4  , u5 
.
3
5
7
9
Câu 24: Tìm a để dãy số đã cho là dãy số tăng.
A. a  2
B. a  2
C. a  4

Với a  4 ta có: un 

D. a  4

Hướng dẫn giải:
Chọn D.
Ta có dãy số (un ) tăng khi và chỉ khi:
a  4
un1  un 
 0, n   *   a  4  0  a  4 .
(2n  1)(2n  1)

u  2
Câu 25: Cho dãy số (un ) :  1
Viết 6 số hạng đầu của dãy
un  3un 1  2, n  2, 3..
A. u1  2, u2  5, u3  10, u4  28, u5  82, u6  244
B. u1  2, u2  4, u3  10, u4  18, u5  82, u6  244
C. u1  2, u2  4, u3  10, u4  28, u5  72, u6  244
D. u1  2, u2  4, u3  10, u4  28, u5  82, u6  244
Hướng dẫn giải:
Chọn D.
Ta có: u1  2, u2  4, u3  10, u4  28, u5  82, u6  244
Câu 26: Cho dãy số un  5.2n 1  3n  n  2 , n  1, 2,... Viết 5 số hạng đầu của dãy
A. u1  1, u2  3, u3  12, u4  49, u5  170
B. u1  1, u2  3, u3  12, u4  47, u5  170
C. u1  1, u2  3, u3  24, u4  47, u5  170
D. u1  1, u2  3, u3  12, u4  47, u5  178
Hướng dẫn giải:
Chọn C.
Ta có: u1  1, u2  3, u3  12, u4  47, u5  170
Câu 27:
1. Cho dãy số (un ) : un  (1  a) n  (1  a) n ,trong đó a  (0;1) và n là số nguyên dương.
a)Viết công thức truy hồi của dãy số
u1  2
u1  2


A. 
B. 
n
n

n
n




un 1  un  a 1  a   1  a  
un 1  un  2a 1  a   1  a  
u1  2
u1  2


C. 
D.
n
n
n
n





un 1  2un  a 1  a   1  a  
un 1  un  a 1  a   1  a  
b)Xét tính đơn điệu của dãy số
A. Dãy (un ) là dãy số tăng.
C. Dãy (un ) là dãy số không tăng, không giảm
Hướng dẫn giải:


B. Dãy (un ) là dãy số giảm.
D. A, B, C đều sai.

Mua file Word liên hệ: 0978064165 - Email:
Facebook: />
Trang 25


×