Tải bản đầy đủ (.pdf) (17 trang)

DSpace at VNU: Extremum sea levels in VietNam coast

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.86 MB, 17 trang )

VMU. JOURNAL QF SCIENCE, Nat., Sci., & Tech., T XIX. NọỊ, 2003___________________________________________

EXTKEMƯM SEA LEVELS IN V1ETNAM COAST
Pham Van ỉỉu a n
D epartm ent o f Hydro Meteorology a n d Oceanology
CoIIegc o f Science, V N U
A b s tr a c t : A revievv ()f tho in v e s tig a tio n s on t.hcì sea levol changcỉS in S o uth

rh in a

soa is

presenUỉíl

and

th e

methods o f approxim ate

e a U u la tio n

of

th eoretical tid a l oxtrem cs w crc oxplaineil in (letail.
Tho soa level changes ncar V ietnam coast (ỉuo to global w a rm in g and o lh e r
<ìffccts is evaluated to be from 1 to 3 mm per ycar.
Kor sevon stations vvith

fu ll


sot

o f harm onic constants

(le tcrm in o tl

thc

theoretical extrem o heights o f tiíỉa l level by p re d ictin g h o u rly ti do h e ig h ts in a
2 0 -year ptỉriod. lf,or o th e r ninctecn stations w ith 1 1 harm onic constants o f m ain

tid a l co n stitu e n ls the theoretical astronom ical cxt.rome hìvols wortĩ calculatod
by the ito ra tio n mcìthod. Thtĩ coniparison showeđ a good agrcỉomen! l)c(wcM n l.wo
methods.
The e n ip irica l oxtrem e analysis was carried out for 25 tid e gaugcs along
V ie tn a n ì coast to e v a lu a tc t h r design values <)f sca lcĩvel <)f ( ỉiffo ro n t ra re

fr(?qucncies.
T h o a n a lysis also show ed th a t tho tiđ a l extreines and đcsign le vol valuos ()f 20-

year rc tu rn poriod arc of the samc rango.

'rhc

levcl valuos ()f longer rcĩturn

p e rio d arcì affect.o(J m a in ly hy Hoods and surges.

1. In tro d u c tio n
T h e e x tre m e sea le v e ls a re s tu d y s u b je c t o f m a n v p u rp o s e s . T h e m a x im a l a n d

m in im a l v a lu e s o f sea le v e ls a n d t h e ir o c cu rre n ce p r o b a b ilitie s a re ta k e n in to
a cco n n t in d e s ig n in g h v d ro te c h n ic a l s tru c tu re s .
T h e th e o ry o f e x tre m e a n a ly s is o f s ta tis tic a l m a th e m a tic s is a p p lie d to th e
h v d ro m e te o ro lo g y w it h d iffe r e n t d is tr ib u tio n s o f th e o b s e rv e d s e ric s o f c lim a tic a n d
h y d ro lo g ic a l

p a ra m e te rs

[5 t7 ].

The

m a in

c o n ccp ts

of

th e s e

m e th o d s

w ill

be

p re s e n te d in s e c tio n 2 . 1 .
In th e case t h a t o b s e rve d se ries o f sea le v e l a rc n o t lo n g e n o u g h to a p p ly th e
p ro ce d u re s


of

e x tre m e

a n a ly s is

th e o ry ,

th a t

u s ụ a lly

happen

in

th e

d e sig n

in v e s tig a tio n s in th c Coastal zone a n d e s tu a rie s , one m a y use th e o r e tic a l e x tre m e
v a lu e s o f p u re ly t id a l le ve ls.
In m a n y p r a c tic a l p ro b le m s th e m in im a l th e o re tic a l le v e l is a s s u m e d to be th e
zero d e p th in t id a l seas. T h is le ve l can be c a lc u la te d by s u b tr a c tin g m a x im a l lo w
h e ig h t o f tid e due to a s tro n o m ic a l c o n d itio n s fro m m e a n sea le v e l. III som e c o u n trie s
th is v a lu e is d e te rm in e d b v a n a ly z in g a p re d ic te d se rie s o f tic ỉa l h e ig h ts 1 9 -y o a r

22
ềÍÊề



E x tv e m u m s c a lc v e ls i n

23

long, one choose th e lovvest h e ig h t n m o n g a ll lo w vvatồrs in th e se rie s. III R n s s ia th o
m ỉin m a l th e o r e tic a l le v e l is c le te rm in e d bv k n o w n m e th o d o f V la đ im ir.s k y .
V la d im ir s k y

m e th ơ d

g iv e s

an

a n a lv tic a l

s o lu tio n

of

th e

p ro b le m

w ith

h a rm o n ic c o n s ta n ts o f 8 m a in tid a l c o n s titu e n ts . T h o r r s t tid a l c o n s titu c n ts nre
ta k c n


in t o

a c c o u n t a p p r o x im a te ly .

lỉe c e n tly th e c a lc u la tio n s can be p e ríb rm e d

ra p id ly in c o m p u tr r s , e v a lu a tin g e x tro m e h e ig h ts o f tid e can be c a r r ie d o u t by m ore
íie ta ile d sch e m es a n d th e a c c u ra c y is im p ro v e d by w ith c lr a w in g a n o n - r e s tric te d
n u m b e r o f t id e c o n s titu e n ts ìn to c o n s id e ra tio n [G]. S e ctio n 2.2 vvill e x p la in in d e ta ils
a schom e to im p le m e n t th is m e th o d in p ra c tic e a n d in s e c tio n 3 vvill p re s e n te d th e
n p p lic a tio n re s u lts to o b ta in m a x im a l c h a ra c te ris tic s o f sea le v e l in som e re g io n o f
V ie tn n m c o a s t.
T h e o b s e rv a tio n o f sea le v c l a lo n g V ie tn a m co a st is m a in ly c a r r ie d o u t by a
System o f t id a l g a u g e s o f th e V ie tn a m

H v d ro m e te o ro lo g ic a l S e rv ic e . G e n e ra lly

s p e a k in g u p to novv th e n u m b e r o f tiđ a l gauges th a t b e lo n g s to V ie tn a m w a te rs is
not m a n v a n d th e n u m b e r o f o b s c rv a tio n y e a rs is n o t lo n g e n o u g h . So th e r e is no
niuch d e a l w it h th o b e h a v io r o f sea le v e l in g e n e ra l a n d th e e m p iric a l e a lc u la tic m s ơf
level e x tre m e s in s p e c ia l.
In so m e r a re w o r k s th c r e re p o rte d th e r e s u lts o f a n a ly z in g c h a n g e a b le n e s s o f
sea le v e l a n d th e e s tim a tin g th e tre n đ o f.s e a le v e l ris e in th e base o f a n a ly s is o f
observed s e rie s o f sea le v e l so me y e a rs long. T h e s p e c tru m a n a ly s is [2] s h o w e d th a t
besiđes

th e

s e m ia n n u a l


and

annual

p e rio d s ,

in

th e

a lm o s t

o f t id a l

gauges

o á c illa tio n s o f p e rio d o f G to lO y e a r s and lo n g e r e x is t (íìg u re 1 ).
8


0.(1»

0.0»

0.030

(k*.'ỉ

•>.0'i?

o.c»«



0.024
0 .0 5 6

0.071

txtrb

r4 j,

0.019

Hon 0*1.
0.0*0

Nhon

0.015

n .tX ‘ 2

o.m:

ao:-*

ỉ L

0 t
mo4


0 .0

ii.ođ

\ __
'. 5

p‘«ni>dirtiìntt)

Jỡ

100

rtẠ

0 .0 0 3

S.0

\b

10



F igure 1. S p e c tru m o f sea level a t tid a l gauges H on D a u and Q u y N h o n
T a b le 1 lis ts th e r e s u lts o f e s tim a tio n o f th e sea le v e l ris e by tr e n d a n a ly s is
vv.th m o n th ly m ean le v e l [2 - 4 ]. It is fo llo w e d th a t th e s u m m a ry e ffe c t b y th e g lo b a l
vv.irm in g a n d o s c illa tio n s o f sea bed in re g io n o f V ie tn a m c o a s t causes a r a te o f lc v e l

riíe a b o u t 14-3 m tn p e r y e a r.


P h a m Van H u an

24

T a b le 1. R a te o f sea le v e l ris e a t some p o in ts a lo n g V ie tn a m c o a s t
Gauge

C o-o rd ina te s

O b s e rv a tio n
y e a rs

T re n d ( m m / y e a r )

H on D au

20°4 0’ N - 106°4 9’ E

1957-1994

2 ,1

C ua Cam

20o4 5 'N -1 0 6 °õ 0 'E

1 9 61 -1 9 92


2,7

Da N an g

16°06,N -1 0 8 °1 3 ,E

1978-1994

1,2

Q u y N ho n

1 3 °4 õ 'N -1 0 9 o13'E

1976-1994

0,9

V u n g Tau

10°20,N -1 0 7 °0 4 ’ E

19 79 -1 9 94

3,2

A f u ll c u m b e rs o m e c a lc u la tio n o f le v e l e x tre m e s vvas p e ríb rm e d in [1 ]. I n th is
re p o rt í ir s t ly lis te d s e rie s o f m o n th ly ave rag e , m a x im a l a n d m in im a l le v e ls fo r a ll
gauges a lo n g V ie tn a m co a st u p to m id d le o f n in e tie th . T h e e x tre m e a n a ly s is was

c a rrie d o u t by an a s y m p to tic G u m b e l fu n c tio n o f p r o b a b ility d is t r ib u t io n o f th e
e x tre m e s .

2. T h e m e th o d o f s t u d y
2 .1 . E x t r e m e s a n a l y s i s i v i t h e m p i r i c a l d a t a
A ssum e

VỊ th e

v a lu e s o f in c ic ỉe n ta l v a r ia b le

A'
V

a t t im e / a n d

x (m) = m in { F ,,F 2 , ...,Vm

.

O ne is o fte n in te r e s t in e s tim a tio n th e p r o b a b ility w it h w h ic h m a x im a l o r

m inim aỉ value exceeds a th resh o ld , Iì{Xim > x} or P{X(m) < x } . If th e observations
on th e h y d ro m e te o ro lo g ic a l p a ra m e te rs a re in d e p e n d e n t a n d d is t r ib u te d iffe r e n tly

due to d istribu tion function F{x) - P{Vị < x ) , th e precise d istrib u tio n of m axim um
an d m in im u m ca n be cxp re ssed :
/ ’ { A '('n) < x } = |/- - ( .v ) f


< x ) = 1 - |1 - /<-(x)|m

and

(1)

The extrem es an alysis theory says that with the enough length of sam ple m ,
the

p rob ab ili ty

distribution

of the

norm alized

m axim um

Y (m)= ( X ' m

bm > 0 c a n be a p p r o x i m a t e d by o n e o f t h e t h r e e íơllovving f o r m s o f a s y m p t o t i c

function
G, ( v) = cxp(-ế y )

(Gumbel íunction)

G: ( v) = cxp(-V 1 k ). y > 0 , k <0


(Frechet íunction)

0*3(v) = c x p |- ( - v ) 1 k K v < 0 . k > 0

(Wcibull function)

(2)


E x t rem u m SCO ie v e ỉs ỉ n

25

a n d s i m i l a r for t h e m i n i m a l v a l u e

//,(>•) = l - c x p ( - i ' v)
/ / : ( v ) = I - C \ p | - ( - v ) 1 A). V < 0 . Ả < 0

(3)

//,(> ’) = i - c x p ( - v 1;*), y > 0. * > 0 .
These d iffe r e n t forms o f a s y m p to tic fu n c tio n s a re d e p e n d e n t to th e shape o f
th e t r a il o f p r o b a b ilìty d is t r ib u t io n F(x) (th e r ig h t sicỉe fo r th e m a x im a a n d th e le ft
s id e fo r th e m in in ia ) . In

p ra c tic c th e s a m p le c o n c ỉitio n s (th e h o m o g e n e ity , th e

incỉe p en đ o n cc a n d th e d im e n s io n ) in ílu e n c e on th e p re c is io n o f th e a p p ro x im a tio n by
th e above a s y m p to tic íu n c tio n s .
A s y m p to tic


e x tre m e

c lis tr ib u tio n s

in c lu d e

th re e

p a ra m e te rs :

k -s h a p e

p a ra m e te r. u m - loca l p a r a m e te r a n d hn - scale p a ra m e te r.
O fte n , in s te a d o f e s tim a tin g th e d is t r ib u tio n o f m a x im a (o r m i n i m a) t one
e xecutes a d iv e rs e p ro b le m : d e te rm in e a d e s ig n v a lu e , i. e. a v a lu e x fnii such as

Othervvise

X

is the qu antile

p

of extrem e distribution. Besides, one converts the

probability of th e design v a lu e Xp to r e tu r n period T = 1/(1 - p ) , w h ere 7 - th e tinie
to b e e x p e c te d t h a t t h r e s h o l d X r is e x c e e d e d fo r t h e f i r s t ti m e , o r t h e a v e r a g e tim e
betvveen tvvo above th r e s h o ld e ve n ts.

U s in g th e a s y m p tọ tic e x tre m c d is t r ib u tio n th e d c s ig n v a lu e s can be e a s ily
e xpresseđ. K o re x a m p le , v v itlì G u m b e l d is tr ib u tio n , one has:
y p

=G\ '(/>) = - log (- log

p )

.

(5)

Consequently, design v a lu e estim ate vvith return period T = ( ! - / ; )
e x tre m e

years of the

variable X m a y b e c a l c u l a t e d k n o v v in g p a r a m e te r s u a n d h :
xr = hyp + u ,

where y

(6 )

is also called f,norm alized design value".

A q u e s tio n o f p r in c ip le in th e a p p lic a tio n o f e x tre m e s a n a ly s is th e o ry is th e
p re c is io n

o f th c a p p r o x im a tio n


(2) 01 * (3),

i.

e. th e

q u e s tio n

on

th e

ra te

of

convergence of precise d is trib u tio n of ex trem es i ,r’ to th e asym ptotic one, in
p ractical

aspect, th e

p recision of design value x p

e s tim a te d

by asym ptotic

d i s t r i b u t i o n i n c o m p a r i s o n vvith ií's rea l v a l u e ( b u t o f t e n u n k n o w n ) x ('"].



26

P h a t n V a tì H u n u
T h e m e th o cls o f e s tim a tio n o f e x tre m e d is t r ib u t io n

a im

a t s e ttle m e n t th e

q u e s tio n on th o i n i t i a l s e rie s , th e r e la t iv e ly s h o r t le n g th o f i n i t i a l s e rie s . T ib o r
K a ra g o a n d R ic h a rd w . K a ts [5 ] e x p la in d iffe r e n t m e th o d s to e s tin ia te th e e x tre m e
p a ra m e te rs a n d d e te r m in e d e s ig n v a lu e s a n d t h e ir e s tim a te a c c u ra c y . S e c tio n 3.3
p re s e n ts th e r e s u lts o b ta in e đ b y a p p ly in g th e s e m e th o d s to se rie s o f a n n u a lly
m a x im a l a n d m in im a l le v e ls o f som e t id a l ga ug cs a lo n g V ie tn a m coast.

2. 2.

M e t h o d o f c o ìì i p u ti n f í e x t r e m e v a lu e s o f tid c

T h e t id a l h e ig h t a b ove th e m e a n le v e l m a y be e x p re s s e d by th e fo llo w in g
íb rm u la
zt =

C0S
I

(7)


vvhere f t - th e re d u c e c o e ffic ie n ts de pe n d e d o n lo n g itu d e o f th e r is in g k n o t o f lu n a r
o r b it ; / / t - th e a v e ra g e a m p litu d e s a n d (pt - th e p h a s e o f t id a l c o n s titu e n ts .
D e p e n d in g on th e t i d a l íe a tu re , th e h e ig h t o f tid e m a y a c h ie v e th e e x tre m e s
w h c n lo n g itu d e o f th e r is in g k n o t o f lu n a r o r b it N = 0
(fo r

s e m id iu r n a l

tid e ) .

In

th e s e

c o n d itio n s

(fo r d iu r n a l tid e ) o r N = 1800

(7V = 0 ,1 8 0 °)

th e

phases

o f t id a l

c o n s titu e n ts a re e x p re s s e d th r o u g h a s tro n o m ic a l p a ra m e te rs i n ta b le 2 .
T a b le 2. E x p re s s io n s o f p h a se s a n d re d u c e c o e ffic ie n ts o f t id a l c o n s titu e n ts [ 6 ]
Tidal
constitucnt


Phase,

(p

Rcducc cocfficicnt, /
;V = ()•

N = 180'

ĩ t + 2h - 2s - gMf

0,963

1,038

2t - g

1,000

1,000

2r + 2h - 3 s + p - g V;

0,963

1,037

*>


2/ + 2h

1,317

(),74X

A',

t + h + 90' - g K]

1.113

0.882

0,

1 + H - 2 S - 9 Ơ - g 0)

1,183

0,806

p,

1 - h - 90° - gpt

1,000

1,000




t + h - 3.V + p - 90° - g Qí

1,183

0,806

A/,

4t + 4 h - 4 s - g M'

0,928

1.077

MS,

41 + 2h - 2s - ỊỊ'KÍS'

0.963

1.038

A/.

6/ +

0.894


1.1 IX

•w.

.

- g Ki

6h - 6 s - g Kf

Sa

h ~Sso

1.000

1.000

SSa

2h - Kssa

1.000

1.000


E x tv c tỉiu tti sca lc v c ls iti
III ta b le 2 Ị S un;


27

a v e ra g e zone tim e fro m m ic ln ig h t, lì

a v e ra g e lo n g itu d e o f th e M o o n ;

V

p e rig ro ; fỉ

p-

a v e ra g e lo n g itu d e o f th e

a v e ra g e lo n g itu d e o f lu n a r o r b it

s p e c ia l i n i t i a l p h a s c r c la te d to th o G re e n vvich lo n g itu d e .

T h o e x tre m e

h e ig h ts

o f ticle m a y

be c o m p u te d

fro m

(7) i f th e


v a lu e s o f

a s tro n o m ic a l p a ra m e te rs í. lì. V a n d />, vvhich fo rm a c o m b in a tio n c o rre s p o n d in g to
an e x t I ^ m e c o n d itio n , a re k n o w n . In v e s tig a tin g on e x tre m e s th e íu n c tio n . z ( í . h . s . p )
fro m (7 ), vve o b ta in a s y s ti m o f fo u r e q u a tio n s w it h fo u r u n k n o w n s í . h . s

a n d /?

w hose v a lu e s d e te r m in e th e e x tre m e c o n d itio n o f th e t id a l h c ig h t:

IM

2

sin
Kị SI n4À /4 sin (pSỊ

+ 4 M S Ằ sin


s

i

n

+ 6 M 6 sin


=0

2 M ■>sin (), sin4A/.V4 sin

+

sm (pK 4*

+ 0 | sinv?£> + 4iV/ 4 sin$?A/ +

+ 6.A/, sin

+ .Sí7 sin y>ViJ + 2.V.Ví/ sin

2 A /: sin (pSỊy -f 3 iV , S1I1 (ps% + 2 0 Ị sin (p(ỉ + 3 (/ị sin ^
4A/ 4 sin
4- 2A/.V4 sin

>

(pSỊSị+ 6 A /Ố sin

(8)

- 0
+


- 0

A,r: sin
If

th e

a p p r o x im a te

v a lu e s

o f a s tro n o m ic a l

p a ra m e te rs

c o rre s p o n d in g

to

e x trc m e c o n d itio n ( t \ h \ s é%p f) a r c knovvn, w e m a y Ie a d e q u a tio n s ( 8 ) to a lin e a r
fo rm

by

T a v lo r

e x p a n s io n .


W hcn

a p p ro x im a te

v a lu o s

of

th e

unknovvn

are

s u ffic ie n t ly close to th e €?xact v a h ie s ụ ./? , .V ./>,,) th e c x p a n s io n ca n be r e s tr ic te d
in f ir s t o rd e r ite m s .
VVith (ie s ig n a tio n s o f c o rrc c tio n s to th e a p p r o x im a te v a lu e s o f a s tro n o m ic a l
p a ra m e te rs as fo llo w in g

th o r e s u lt o f th e e x p a n s io n is a s y s te m o f fo u r lin e a r e q u a tio n s vvith d ia g o n a lỉv
s y m m c tr ic c o e ffic ie n t m a tr ix :
/l,v + /1 = 0 ,
vvhcre

(9)


P h a m V an ỉ ỉu an

a\


bị
h í,

Cj

d]

c ,í

í


Cj

zl/

A

/ƯJ
;

A" =

;

zlv

A =


/ ,£
/,

/4
a ) - 4 M 2 cos<
p ' m + 4 S 2 cos (p's + 4 N 2 cos (p's + 4 K 2 cos + K | c o s ^ í + 0 ị COSỰ)'0 +P\ COS{?Ị» + ( í| COSộ?£ +
+16 M S4 cos
+ 1 6 A /4 cos



/?ị = 4jV/2 cos+ ƠJ co s

- 1\ cos ợ?), + Ọj cos + 8 A /S 4 cos ọ 9ms

+

+ 3 6 M ỗ cos
Cị = - 4 A / , COS0>Ú - 6 ^ 2 cos (p'Ni - 2 0 ì cos - 16A-/, CCS «?;,4 - U í S A cos íỡ;,Í4 - 3 6 M 6 cos
í/, = 2 N 2 cos
/j =

2 M 2 sin


+ 2 5 2 sin

+

01 cos

;

(p's + 2 / V 2 s i n

+ K x sin (p'K + 0 ] sin

+ l\ sin

+ 4A* 4 sin ^ ; Í4 + 4M S 4 sin ^
b 2 = 4 A / : C0S(p's1 + 4 jV 2 cosợ?v

(p'K +

+ 2AT2 s i n

+ (>! sin

+

+ 6 M 6 sin
+ 4 /^ c o s ộ \


+ Ả'j c o s p í

+

+ ƠJ cosọ>'0 +!\ cos (p'j. +Qị cos
+ 36 M ố cos

+ 4MV4 cos

c 2 = -4 A /: c o s ọ h

+ Sa cos
- 6 N 2 co s^ v

- 16A /4 cos

-2 ơ |

cos
-3 (P ị C0SỘ?£

- 4MV4 cos
d 2 = 2 iV: cos{?v + (?! cosỌọ ;
/ 2 = 2 A / 2 sin

+ 2/V-, sin


+ ()] sin

+ 2/w 2 sin

+ Áf| sin

sin ự Ị, + Qx sin (pQ 4- 4A / 4 sin
+ 6 A/ 6 sin (pu + .SV/ sin

+ 2M V 4 sin
c 3 = 4 A / 2 c o s (p M
f

+ 16Af 4 cos

+ 9 N : c a s ọ 's

+

+

-f- 2 XVc7 sin

;

+ 4 Ơ , c o s tp ý + 9 Q ị c o s (p ọ

+ 4M V 4 cos ^ /5 + 3 6A /Ốcos ạ>X
Ệi ,


J 3 = - 3 W 2 cos (p\^ - 3 ( ^ J cos
/, = - 2 A / : sin^>v/j ” 3^2 s in f v 2 - 20j s i n ^ -3Ợj s i n ^
- 4 A í 4 sin - 2A/.V4 sin
J4

= /v 2 cos

- 6 jW() sin V + ộ j cos

;

;

/ 4 = N z costpl/ + Q \ cosp h a s e o f th e t i đ a l c o n s t it u e n ts c o m p u te d t h r o u g h a p p r o x im a te v a lu e s o f th e
a s tr o n o m ic a l p a r a m e te r s í \ h \ s ' a n d p '


E x t r e m u m s c n lc v c ls i n .
In

29

o r d e r to c o m p u te th o v a lu e s o f a s tro n o m ic a l c o rre s p o n d in g to e x tre m c

concỉition (tt,,h0.s 0, pv) w ith a given accuracy th e ite ratio n m ethod m ay be used. If
any correction am ong [ảí%Ah. A\\ Ap) obtained from solving system (9) exceecỉs in

m a g n itu d e a g iv e n v a lu e \ổ\ th e s o lu tio n w ill re p e a te d a n d th e n in o rd e r to c o m p u te

the coefficients of e q u a tio n s (9) vve will use the p h a ses (p' com puted th r o u g h thc
va lu e s c o rre c te d o f a s tro n o m ic a l p a ra m e te rs :

.v" = .v' + Av', h n = h ' + A h '% p* = p ' + Ap'

/' = /' + A/'

T he loop is repeated until all corrections (At, Ah, Av, Ap) obtained in solution
step k o f system (9) becom e less th a n ổ :

T a b le 3 . V a lu e s o f a s tro n o m ic a l p a ra m e te rs a p p ro x im a te ly c o rre s p o n đ in g e x tre m e
c o n d itio n [ 6 ]
S e m id iu rn a l tid e
M a x im a l leve l
c o n d itio n

t[ = 90” + 0,5 g St

í, '= 180’ + 0 , 5 ^

t-j -

r
t'2 = 270“ + 0 , 5 ^
w

0 .5 (g JCj - g S i)


s1

0,5ị g Kỉ - g M i )

p'

° M z Kị - 3 g Mj + 2 g N ì )

ÒQ
t/}

M in im a l level
c o n d itio n

»
o

A s tro n o m ic a l
p a ra m e te rs

I f i n i t i a l a p p r o x im a te v a lu e s ( í \ h \ s \ / / ) close to re a l v a lu e s (ía , h f), s a , p a ) th e
ite r a tio n r a p id ly c o n v c rg e s . T he se v a lu e s o f a s tro n o m ic a l p a ra m e te rs c o rre s p o n d in g
to e x tre m e c o n d itio n m a y be c a lc u la te th ro u g h fo u r d iu r n a l o r s e m id iu r n a l tid a l
c o n s titu e n ts d e p e n d in g o n tid e fe a tu re . T h e e x tre m e c o n d itio n fo r fo u r s e m iđ iu r n a l
tid a l

c o n s titu e n ts

and


d iu r n a l

c o n s titu e n ts

is

d e te rm in e d

by

th e

íb llo v v in g

e xp re ssio n s:
- F o r s e m id iu r n a l tid e :


- F o r d a u rn a l tid e :

ỌK = (pQ =
w h e re (p = 180° + 2mi -

fo r th e lo w c s t le v e l a n d (Ọ= 360° + 2 7U1 - fo r th e h ig h e s t le v e l.

F ro m th e s c e x p re s s io n s fo llo w th e ío rm u la e fo r c o m p u tin g th e a p p ro x im a te
va lu e s


of

a s tr o n o m ic a l

c c n d itio n s ( ta b le s 3 -6 ).

p a ra m e te rs

\i\h \s\p )

c o rre s p o n d in g

th e

e x tre m e


P ham Van H u an

30

In o rd e r to c o m p u te a p p ro x im a te v a lu e o f a ve ra g e zone tim e / ' th e r e a re tw o
e xp re ssio n s fo r th e lovvest c o n d itio n a n d h ig h e s t c o n đ itio n s e p a ra te ly , s in c e fo r
s e m iđ iu rn a l tid e one day has tw o ' h ig h w a te rs a n d tw o lo w vvaters. T h e ch o ice o f
ío rm u la used in c o n c re te case m u s t be re fe re n c e to th e s ig n o f s u p p le m e n ta ry
c o e ffic ie n ts B a n d c

(ta b le 4). C o e ffic ie n ts tì a n d c

a re c o m p u te d b y following


fo rm u la e :

t ì - 0 cosơị +1\ cosa 2 +Q\
J

COSƠ3

+ K cosa4|
J

c = ƠJ sin ơ| + p I sin a 2 + Q\ sin a 3 + K ] sin ữ A J
= g Mỉ

c, - g o , " 9 0 °; a ì= s.w , - ° ’58 k, - g Ql - 9 0 ^ |

(11 )

« 2 = « 5 , - 0 f5 g JCi - g p> - 9 0 ° , a 4 = 0 , 5 * ^ - g ^ + 9 0 c

T a b le 4 . C o n d itio n s o f th e lo w e s t a n d h ig h e s t le v e l [ 6 ]
C o n d itio n s o f th e lovvest leve l

C o n d itio n s o f th e h ig h e s t leve l
/j

w hen c > 0

t2 w h e n c < 0


w hen B < 0

/2 w h e n

B >0

T a b le 5. V a lu e s o f a s tro n o m ic a l p a ra m e te rs a p p ro x im a te ly c o rre s p o n d in g to
e x trc m e c o n d itio n [ 6 ]
D iu r n a l tid e
A s tro n o m ic a l p a ra m e te rs



C o n d itio n s o f th e low e st
level

- gp, )

C o n d itio n s o f th e
h ig h e s t le v e l
0 , 5 ( ^ , + g P|) + 18(r

/r

0,5 (gKi - g Pi)+ 90"

5'

0,5 (gKí - g o , ) + 90”


p'

0.5(«r , - 3So, + 2 g ữ)) + 90"

T h e choice o f re d u c e c o e ffỉc ie n ts to c o m p u te v a lu e s / / / is d e p e n d e d o n th e tid e
íe a tu re :
1) For s e m id iu m a l

tide, i f { h £ + H G ) ỵ H M < 0,5 then f is chosen fo r iV = 180 ;

2) F o r d iu r n a l tic ỉc , i f [h K + / / ỡ ) / H K1 > 1,5 th e n f

is chosen fo r N = 0*;

3) For mixed tide, if 0,5 < [h K + HQ )ỵ H Kí < 1,5 then we must use th e values
o f a s tro n o m ic a l p a ra m e te rs fo r b o th s e m id iu r n a l tid e (ta b le 3) a n d d iu r n a l tid e

(table 5). YVhen com pute vvith astronomical param eters of diurnal tide choose f for


E x t r c r n u r n s e o l c v c l s ỉ tì

31

;V = 0 , vvhen c o m p u te w it h a s tro n o m ic a l p a ra m e te rs o f s e m id iu r n a l tid e choose /
fo r N

0

a n d N = 180 . T h e h ig h o s t le v e l a n d th e lo w e s t le v e l o b ta in e d by th re e


v a r ia n ts vvill bo a c c e p te d to be th e e xtre m e s.
\V e

also

c o m p u tc

th e

a p p ro x im a te

v a lu e s

of

a s tro n o m ic a l

p a ra m e te rs

c o rre s p o n d in g th e e x tre m e c o n đ itio n s by V la c ỉim ir s k y m e th o d ; t h is m e th o d a p p lie d
fo r 8 tid e c o n s titu e n ts .

In V la d im ir s k y

m e th o d th e e x tre m e h e ig h ts o f tid e is

d e te rm in e d by c o n s e q u e n tlv ch o osin g v a lu e s (pK in th e in te r v a l fro m 0° to 3G0°:
H = A'j cosỌị


+ K . co s(2 Ọ K + a A ) +|/ỈJ 4- 7Ỉ, 4- / Ỉ 3Ị
(12 )

/. = Ả' jC 0 s ^ A + K : cos(2w h e re
/í, =y[MỈ +()■' + 2 M , O x c o s r J

;

T h e choice o f re d u c e c o e ffic ie n ts to c o m p u te v a lu e s
above re c o m m e n d a tio n s , i. e. w it h th e s e m id iu r n a l tid c
w it h d iu r n a l tid e
p e río rm e d w ith

f

is chosen fo r

///
/

is also macỉe as th e

is chosen fo r yV ^lX O ,

N = 0 . W ith m ix e d tid e th e c o m p u ta tio n is

f fo r N = 180 a n d /V = 0 a n d th a n th e lovvest a n d h ig h e s t va ỉu e s

in tw o v a r ia n ts w il l be th e e x tre m e lc v e ls .

I f c o m p u te e x tr e m e le v e ls vvith 8 tid e c o n s titu e n ts th e n th e la s t re s u lts are
o b ta in e d d ir e c tly fr o m th e e x p re s sio n s ( 1 2 ). In th e case o th e r c o n s titu e n ts a re ta k e n
in t o th e c o m p u ta tio n s , we m u s t re íe re n c e to v a lu e s

(
a n a ly z in g ( 1 2 ) to c o m p u te th e a s tro n o m ic a l p a ra m e te rs c o rre s p o n d in g e x tre m e
c o n d itio n s í j ụ s \ p a n d u s c th e m as th e a p p ro x im a tio n s to c o m p u te th e c o e ffíc ie n ts
o f e q u a tio n s (9).
T h e c o n d itio n s o f th e lovvest le ve l:


P h a m Van H u a n

32

' = ° - 5 [ ( Ế' : L x

h

=

b>K> L

J= w
p = w , L

+

x


+ s *.

L
2*.

+

+ S

■ ° ’5 t a

í

3 1

L »

" ° ’5^ '

+

)■ « + * « .

~

+gs,

] - 9 0 ’ i


] " 90° ’

]+ t a

)m ax

+ * A f, ] - 9 0 ' ’

w h e re

O, s»n(r, )min-mjx
= a r c l8

M 2 +Qt c o s í r , ) ^ ^ ’

(f :L a n u x = a rc ts

yv2 +£;, cos(r3)min,max'
*

) min. max
II
II

( r 3 ) min. maX

Ồ.

( r 2 ^min. max


) min. max

+

a\ >

) min, max + * 2 ;
>c

(h

g l s ị^ ìU o m ạ x

II

U
\)
= arctg
V 3 /m m . max

sin(r2)miamax
S2 +/> cos(r,)mmm„ ■

) min. max +

a,.

T h e la s t e x tre m e v a lu e s o f tid e vvith a r b it r a r y n u m b e r o f c o n s titu e n ts a re
c ỉe te rm in e d fro m e q ư a tio n (7) u s in g th e v a lu e s o f th e a s tro n o m ic a l p a ra m e te rs
/ơ, h0yS0j po c o rre c te d b y th e ite r a tio n m e th o d .

H ovvever, i t is w o r th to m a k e a n o te t h a t c o m p u ta tio n o f a p p r o x im a te v a lu e s
o f a s tro n o m ic a l p a ra m e te rs t \ h \ s \ p
th a n

V la d im ir s k y

m e th o d

vvhen

by ío rm u la e in ta b le s 3 a n d 5 is m u c h s im p le r
th e

c o m p u ta tio n

in v o lv e

m o re

th a n

8

tid e

c o n s titu e n ts
T h u s th e p ro c e d u re o f c o m p u tin g e x tre m e le v e ls m a y be p e rfo rm e d d u e to tvvo
fo llo w in g schem es:
1 ) R egarciless w h a t is th e n u m b e r o f t id a l c o n s titu e n ts , d u e to íb r m u la e in


ta b le s 3 a n d 6 d e te rm in e th e a p p ro x im a te v a lu e s o f th e a s tro n o m ic a l p a ra m e te rs
c o rre s p o n d ig to e x tre m e c o n d itio n s , th a n c o rre c t th e s e v a lu e s

by th e

ite r a tio n

m e th o d . C o m p u te th e e x tre m e le v e ls by e q u a tio n (7).
2 ) C o m p u te th e

e x tre m e le v e ls w it h

8 tic ia l c o n s titu e n ts

by V la d im ir s k y

m e th o d . I f th e n u m b e r o f c o n s titu e n ts is b ig g e r 8 th e n c o m p u te th e a p p ro x im a te
v a lu e s o f a s tro n o m ic a l p a ra m e te rs o f e x tre m e c o n d itio n

fo r 8 c o n s titu e n ts

V la d im ir s k y

m e th o d . C o m p u te

m e th o d

a n d c o rre c t th e m

by th e


it e r a tio n

by
th e

e x tre m e le ve ls by e q u a tio n (7).
In some cases vvhen s h a llo w w a te r c o n s titu e n ts h a ve su ch a b ig m a g n itu d e
t h a t causes th e

a p p ro x im a te

v a lu e s o f a s tro n o m ic a l

p a ra m e te rs c o m p u te d

by

ío rm u la e in ta b le s 3 a n d 5 o r by V la d im ir s k y m e th o d in s u f fic ie n tly clo se d to re a l
v a lu e s ( ỉ{f %
hư,s a , p u ) to m e e t th e co n ve rg e n ce o f th e ite r a tio n process in s o lu tio n


E x t r c m u m sca ic v c is i i ì

33

System (7). I f a g i von n u m b e r o f it e r a tio n s tc p s (fo r e x a m p le , 8 o r 10 s te p s ) do n o t
p ro v id e th e c o n v e rg e n c e o f th e re s u lts , one m a y use th e m e th o d o f c o n s e q u e n t
a p p ro x im a tio n s .

E ach s h a llo v v w a te r c o n s titu e n t o f b ig m a g n itu d e is decom posed in to a n u m b e r
o f c o n s titu e n ts o f th e s m a lle r m a g n itu d e :
f \ H t Q Q sọì = n — / j / / , COS0V

(13)

n

T h e n u m b c r n is s ta te d d e p e n d in g on th e m a g n itu d e o f t id a l c o n s titu e n ts . T h e
s o lu tio n is p e rfo rm e đ i n som e s te p s , each step in c lu d e a ll th e c a lc u la tio n s to c o rre c t
th e va lu e s o f a s tro n o m ic a l p a ra m e te rs , i. e. íb rm in g a n d s o lv in g s y s te m (9) a n d
ite r a tiv e c a lc u la tio n s as w h e n to c o rre c t th e a s tro n o m ic a l e x tre m e c o n d itio n s a t a
g ive n ste p . F o r s o lv in g in f i r s t s te p a s tro n o m ic a l p a ra m e te rs a re c o m p u te d by th e
fo rm u la e in ta b le s 3 a n d 5 o r by V la d im ir s k y m e th o d ; íu r th e r , th e ir v a lu e s o b ta in e d
in each ste p s a re u se d as i n i t i a l v a lu e s íb r th e n e x t ste p . T h e m a g n itu d e o f shallovv
\v a te r c o n s titu e n ts is in c re a s e d fro m s te p to s tc p to th e f u ll m a g n itu d e (fo r e x a m p le ,
in íì r s t a p p r o x im a tio n s te p th e m a g n itu d e is chosen as

n

f in ổecond s te p -

- f ' H , , in s te p n - / ; / / , .
n

3. The re s u lts o f c o m p u tin g e x tre m e levels in V ie tn a m coast
3.1.

T i d a l t h e o r e t i c a l c x t r e m e s f o r th e g a u g e s w i t h f u l ỉ set o f h a r m o n i c


c o n s t a n ts
F o r th e h y d r o g r a p h ic s ta tio n s vvith tid a l gauges we h a d used a se rie s o f h o u rly
ob serve d le v e ls o f one y e a r d u r a t io n to c o m p u te th e f u ll set o f h a rm o n ic c o n s ta n ts
(30 c o n s titu e n ts o r m o re ). T h e h o u r ly le v e ls w c re p re d ic tc d fo r a p e rio d o f 20 y e a rs
(1 9 8 0 -2 0 0 0 ). T h e lovvest a n d h ig h e s t le v e ls chosen a re p re s e n te d in ta b le 6 .
T a b le 6 . T h e o re tic a l e x tre m e s o f tid e a t «ome s ta tio n s a lo n g V ie tn a m coast

S ta tio n

C o -o rd in a te s

M ean sea leve l
(cm)

T h e o re tic a l e x tre m e s (cm )
L o w e st

H ig h e s t

Mon D au

2 0 ° 4 0 'N -1 0 6 °4 9 ’ E

185

-10

397

Cua G ia n h


17°42’N - 106°28'E

107

-1 6

201

Da N a n g

16 °0 6 ’N -1 0 8 ° 13' E

93

11

175

Q uv N h o n

13o4 5 'N -1 0 9 o13'E

160

74

248

N ha T ra n g


^ “ lõ ^ N - lO ^ ir õ E

121

8

227

V ung Tau

10°20’N -1 0 7 ° 0 4 ’E

258

-2 6

412

Rach G ia

l0 ° 0 0 ’N - 1 0 5 o0 õ 'E

5

-4 8

90



P h a rn Van H u an

34

3.2. T i d a l t h c o r c t i c a l extrerncs coĩìiputcci by i te r a t i o n m e t h o d
F o r th e s ta tio n s w it h no s y s te m a tic o b s e rv a tio n on sea le v e ls w e had used
se rie s o f h o u r ly o b se rve d le v e ls o f c ỉu ra tio n o f some cỉays to c o m p u te h a rm o n ic
c o n s ta n ts o f m a in tid a l c o n s titu e n ts (by D a rw in m e th o d o r by th e le a s t sq uares
m e th o d ). T h a n , fro m th e se r e s tr ic te d h a rm o n ic c o n s ta n ts we used th e ite r a tio n
m e th o d p re s e n te d in s e c tio n 2 to g e t th e e x tre m e c h a ra c te ris tic s o f th e tid a l leve ls.
T h e re s u lts a re w r it t e n in ta b le 7. In th is ta b le a re also v v ritte n th e th e o re tic a l
e x tre m e s o f tid e c o m p u te d fo r a p e rio d o f 2 0 y e a rs to co m p a re . I t is shovved th a t fo r
th e case o f r e s tr ic te d h a rm o n ic c o n s ta n ts ( 1 1

c o n s titu e n ts ) th e r e s u lts by tw o

c o m p u ta tio n s a re th e sam e.
T a b le 7. R e s u lts o f c o m p u tin g e xtrem es o f tid e fo r some s ta tio n s by ite r a tio n m ethod

S ta tio n

Ite ra tio n m ethod

M e a n sea
le v e l (cm)

Lo w e st
C ua O ng

H ig h e s t


P re d ic te d 2 0 ye a r
p e rio d
Low est

H ig h e s t

ề2aế

470

2150

0

472

204

-10

454

-7

454

K ie n A n

98


-1 4

215

-1 4

214

D ong X u y e n

91

-1 4

206

-1 3

204

D in h C u

58

-4 7

176

-4 6


174

133

57

214

58

214

P hu Le

41

-9 7

171

-9 7

169

N hu Tan

83

3


166

4

166

6

-1 0 8

126

-1 0 7

125

M u i Da

81

-6 4

207

-6 4

206

Vam Lau


30

-1 1 9

92

-1 1 7

107

Co To

K in h K h e

Ba L a t

3.3. R e s u l t s o f c o m p u t i n g d c s ig n lcv els f r o m o b s e r v e d d a t a
In th is s e c tio n vve use se rie s o f th e y e a rly m in im a l a n d m a x im a l le ve ls a t
s ta tio n s to e v a lu a te th e d e s ig n le v e ls vvith d iffe r e n t r e tu r n p e rio d s . In each y e a r one
lo w e s t le v e l (o r one h ig h e s t le v e l) vvas chosen to e s ta b lis h th e s a m p le se rie s.
T h e a u th o r o f [ 1 ] has b u ilt th e e m p iric a l d is t r ib u tio n c u rv e s b y g ra p h ic a l
m e th o d fo r 24 s ta tio n s a lo n g V ie tn a m coast. T h e re s u lts o f th e in v e s tig a tio n shovveđ
a

good

a g re e m e n t

betvveen


th e

e m p iric a l

d is t r ib u tio n

c u rv e s

and

th e

íì r s t

a s y m p to tic d is t r ib u t io n íu n c tio n (G u ín b e l íu n c tio n ). F ro m t h a t th e r e c o m p u te d th e
le v e l e x tre m e s vvith r a r e fre q u e n c ie s .
T a b le 8 p re s e n ts a n e x a m p le th a t we p e rfo rm e d by u s in g d if fe r e n t m e th o d s o f
e v a lu a tio n fo r d is t r ib u tio n p a ra m e te rs p re s e n te đ in [5 ].


35

E xt rem u m sca ỉcvcỉs in

The

a n a ly z in g

p ro c e d u re


vvas c a rrie d

out

fo r

a ll

th e

s ta tio n s

w ith

th e

o b s c rv a tio n o f 15 to 35 y e a rs lo n g . F o r each s ta tio n th e d o s ig n le v e ls w e re c o m p u te d
by 9 e s tim a tin g m e th o d s . K u r th e r , 9 v a lu e s vvcre a v e ra g c d (ta b le 9).
T a b le H. E x a m p le o f e x tre m c s a n a ly s is fo r s ta tio n H on D a u bv d iffe r e n t m ethocls
a) V a lu e s o f desigĩì le v e ls (m a x im u m )
H e ig h t (cn i) re la te d to r e tu r n p e rio d
A n a ly s is m e th o d s
2 0 ye a rs

50 ye a rs

1 0 0 y e a rs

T w o p a ra m e te rs m e th o d s (G u m b e l):

M e th o d o f m o m e n ts (tk e o re tic a l)
- M e th o d o f m o m e n ts (e m p iric a l)
- M e th o d o f q u a n tile s
l.in e a r u n b ia s e d e s tim a te s
- M e th o ci o f p ro b a b ilitv
w e ig h te d
- M a x im u m lik e lỉh o o d m e th o d
T h re e p a ra m e te rs m e th o ds (J p n k in s o n ):
M e th o d o f q u a n tile s
- M e th o d o f p ro b a b ility - w e ig h te d
- M a x im u m lik e lih o o d m e th o d

406
409
412
411
418
410

426
424
435
424

428
432
436
435
448
434


404
414
404

413
424
413

419
434
419

A v e ra g e o f a ll m ethods:

410

422

431

419
499

b) C h a ra c te ris tic s o f e m p iric a l sa m p le

N
1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Scries mcmbcr
Prohabililv
Nonnali/cd
Sorled
-1,3G9
0,020
347
349
0018
-1,112
350
-0,916
0,076
351

0,104
-0,815
351
0 133
-0,703
353
0 161
-0,603
354
-0,510
0,189
0,217
362
-0,423
36õ
-0,339
0,246
365
-0,258
0,274
366
-0,180
0,302
367
0,330
-0,102
367
0,359
-0,025
0,387

368
0,052
369
0,129 . 0,415
0,207
371
0,443
371
0,286
0,472
372
0,367
0,500

Peiiod

N

1,020
1,050
1,082
1,117
1,153
1,192
1,233
1,278
1 326
1 377
1 433
1,494

1,559
1,631
1,710
1,797
1 893
2.000

19
20
21

(ycunỉ)

99
•m
éw

23
24
25
26
27
28
29
30
31
32
33
34
35


Serỉcs mcmbcr
Probablỉỉlv 1’criod
(>cars)
Sortcd Nonnali/id
377
0.449
0,028
2,120
0,534
0,507
2,255
378
379
0,623
0,Õ8Õ
2 408
0,715
379
2,581
0.G13
380
0,811
0,641
2,788
380
0,913
0,G70
3,026
3,309

382
1,022
0,698
1,139
382
0,726
3 651
4,071
384
1,266
0,754
386
0,783
1,406
4,600
390
0,811
5,287
1,562
391
0,839
1,741
6 216
395
1,950
0,867
7,540
398
0,896
2,200

9,582
2,536
400
0,924
13,140
400
3,015
0.952
20,901
421
3923
0,980
51,062


36

P h a rn V an H u an
T a b le 9. R e su lts o f e x tre m e leve l a n a ly s is (a ve ra g e o f a ll m e th o d s )
D e s ig n levels (cm ) re la te d to r e tu r n p e rio d
S ta tio n

N um ber of
o b s e rv a tio n
y e a rs

2 0 ve a rs

H ig h e s t
C ua O n g


Õ0 y e a rs

Lovvest

1 0 0 y e a rs

H ig h e s t

Lovvest

H ig h e s t

Lovvest

491
481
464
452
422
192
319
230

-1 4
-2 5
-2 7
7
-1 4
-1 8 8

-1 7 0
-1 4 7

499
491
473
460
431
203
347
248

_22

250
421
281

-202

_2

480
467
452
440
410
178

-1 7 9


H oang Tan
Lach Sung

32
35
31
33
35
33
26
25

284
207

-1 6 3
-1 3 6

C ua H o i
H on N gu
H o Do

32
25
27

221

393

237

-1 8 2
-7
-1 3 2

238
409
262

-1 9 4
-21
-1 3 8

C am
N huong
C u a G ia n h
D o n g H oi
C ua V ie t
Da N ang
H oi A n
Q uy N hon
Phu Q uy
V u n g Tau

32

242

-9 8


272

-1 0 4

300

-1 0 8

31
33
17
15
18
16
14
15
15
15

163
192
313
287
350
290
324
434
150
202

151
152
126

-1 4 8
-1 4 4
-1
9

186
217
357

-3 4
27
64
-4 6
-3 2 5
-1 6 1

323
401
299
331
440
168
207

-1 5 3
-1 5 2

-5
3
-3 8
20
58
-5 5
-3 3 7
-1 6 8

-6 1
-2 5 3
-6 1

168
157
136

-6 4
-2 6 4
r,l

204
236
396
349
441
306
335
445
182

2 10
181
161
144

-1 5 7
-1 5 8
-7
-3
-4 1
15
53
-6 1
-3 4 5
-1 7 3
-6 7
-9 7 2

Co T o
H on G ai
C u a C am
H on D au
Ba L a t

V a m K in h
C ho L a ch
Ca M a u
Phu A n
R ach G ia


16
16
16

-1 4
-1 4
17
-6

-3 2
-3 7
-1
-20
-1 9 4
-1 7 6
-1 5 5
-3 1
-1 4 2

-66

4. Rem arks and conclusions
F o r th e s ta tio n s w it h r e s tr ic te d se t o f h a rm o n ic c o n s ta n ts (less th a n 1 1 tid e
c o n s titu e n ts )

e v a lu a tin g

th e o re tic a l e x tre m e

h e ig h ts o f tid e


b y th e

m e th o d o f

p r e d ic tin g 2 0 -y e a r s e rie s o f h o u r lv le v e l a n d by th e ite r a tio n m e th o c i g iv e s close to
each o th e r r e s u lts (see ta b le 7).
N o te t h a t p r e d ic tin g tid e in 2 0 -y e a r p e rio d ta k e s g re a t C om puter tim e , w h ile
th e

ite r a tio n

m e th o d

allovvs

m o re

ra p id

c a lc u la tio n .

T h e re fo re

in

p ra c tic a l

in v e s tig a tio n a t th e re g io n vvhere no gauges set u p we sh o u lcỉ f u l f i l m c a s u re h o u r ly
le v e ls in som e d a y s to d e riv e th e h a rm o n ic c o n s ta n ts o f m a in tid e c o n s titu e n ts .

Than

vvith th e

ite r a tio n

m e th o d a p p lie d , we c a n c o m p u te

e x tre m e s , vvhich h a ve a c c r ta in p r a c tic a l u s e íu ln e s s .

th e

tid e

th e o r e tic a l


37

E x t r c m n m scn lc v c ls in

T h e re s u lts o f a n a lv s is sho w e d th a t t.he d iffe re n c e b e tw e e n e x tre m e le v e ls in
2 0 -y e a r d u r a tio n a n d th e d e s ig n le v e ls o f 2 0 -y e a r r e tu r n p e rio d is n o t b ig g e r th a n

th e n n a ly s is e r r o r in th e case o f re s tr ic te d le n g th o f used s a m p le s .
The

th e o r e tic a l e x tre m e s

o f tid c


ha ve

th e sense o f e x tre m e

le v e ls .

For

e x a m p le , in ta b le 6 , th e lovvest le v e l a t H on D a u in p e rio d 20 y e a rs is “ 10 c m , th e
h ig h e s t is 397 c m . D ue to r e s u lts o f e v a iu a tin g e x tre m e s fro m e m p ir ic a l d a ta th e
d e s ig n le v e ls fo r r e t u r n p e rio d 20 y e a rs are - 6 và 410 cm re s p e c tiv e lv (ta b le 9). F o r
th e r c t u r n p c rio d 50 y c a rs u n d 100 y c a rs th c p a ir s o f v a lu c s a r c ( 14; 422) a n d ( 20;
431) re s p e c tiv e lv . O b v io u s lv th e lo w c s t le v e ls d if fe r no m u c h , c o n s is t o f a b o u t lO cm .
A t th e sa m e tim e th e h ig h e s t le v e ls d iffe r fro m each o th e r u p to 30 cm , th is re íle c ts
th o in A u e n c e o f ílo o d s a n d vvind su rg e s. H o w e v e r, ta k in g in to a c c o u n t th e la rg e
d is p e rs io n o f th e e s tim a te s by d iffe r e n t m e th o d s , th is d iffe re n c e cỉoes n o t exceed th e
e r r o r o f e s tim a tio n . F o r e x a m p le , fo r s ta tio n H o n D a u , in [ 1 ] th e e s tim a tio n by
g r a p h ic a l m e th o cỉ give s re s u lts : fo r r e tu r n p e rio d 20 y e a rs : (-1 1 ; 4 3 5), 50 y e a rs :
(- 19; 4 5 1 ), 100 y e a rs : ( “ 25; 462). W ith th e m e th o d o f a v c ra g in g 9 v a r ia n ts t h a t we
d id , th e p a irs o f v a lu e s a re : fo r r e t u r n p e rio d 20 y e a rs : ( - 6 ; 410), 50 y e a rs : (-1 4 ;
422), 100 y e a rs : ( - 2 0 ; 4 3 1) (ta b le 9). T h e d iffe re n c e s b y novv a c h ie v e 20 to 30 cm.
T h e d iffe re n c e b e tw e e n v a r ia n ts o f e s tim a tio n m ay be m o re s u b s ta n tia l vvith th e
s h o r te r s e rie s . T h e re íb re , th e e s tim a tio n o f d e s ig n le v e ls b y d iffe r e n t m e th o d and
a v e ra g in g re s u lts is th e b e s t w ay to p ro v id e re a l d e s ig n le v e ls in th e ca sc o f s h o rt
se rie s.
F ro m th e a b ove a n a ly s is fo llo w s t h a t th e o b ta in e d h e re d e s ig n le v e ls h a v e th e
d if fe r e n t r e lia b ilit y . F o r th e s ta tio n s w ith o b s e rv a tio n m o re th a n 30 y e a rs th e
d e s ig n le v e ls in ta b le 9 c a n be c o n s id e re d as s a tis ía c to ry .


R o ío r e n c e s
1.

N g u y ê n T a i H o i, R e p o rt on t id a l c h a ra c te ris tic s (S u b . A 5 ), D e s ig n vva te r le v e ls
(S u b . A 1 3 ), M arinc H ydrom eteorological C entre , V ie tn a m V A P ro je c t, H a n o i,
1995.

ì.

N g u y ề n N gọc T h ụ y , P h ạ m V ă n H u ấ n , B ù i D in h Khước, N g h iê n cứ u sự b iế n
th iê n và tư ơ ng q u a n c ủ a mực nưóc các tr ạ m cỉọc bò V iệ t N a m v à k h ả n ă n g k h ỏ i
p h ụ c các c h u ỗ i m ục nưóc ờ m ộ t số tr ạ m q u a n trắ c , Dáo cáo thực hiện chuyên

dể,

Đ ề t à i cấp n h à nưốc K T - 0 3 -0 3 , 1995.
I.

N g u y ễ n N gọc T h ụ y , v ề xu t h ế nưỏc b iể n d â n g ở V iệ t N a m ,

T ạ p c h í K hoa học Kỹ

th u ậ t b iê n , số 1 , H à N ộ i, 1993.
B ù i Đ ìn h Khước, Xác đ ịn h th ê m về x u th ê mực nưóc b iể n tạ i m ộ t sô đ iể m ve n bờ
b iể n V iệ t N a m , Báo cáo thực hiện chuyên để, Đổ t à i cấ p n h à nước K T -0 3 -0 3 ,
1993.


38
5.


P h a m V a n Ị ỉ ti a n
T ib o r K a ra g o , R ic h a rd

vv.

K a ts , E xtrem es a n d d e ssig n v a lu e s in c lim a to lo g ỵ ,

W C A P -1 4 , W M O /T D - N o 386, W o r ld M e te o ro lo g ic a l O r g a n iz a tio n , 1990.
1

ílcpccbinKHH



H

A n a m tm m ecK u e

Mưmoỏbi

pacuem a

K oneỗaĩiuủ

vpoeHỉi

MopH,

rHJ3pOMCTCoH3jI3T., JIcHHHrpa.a, 1961

7

P yK oeoờcm eo

no

pacuem v

ĩu d p 0Ji0ỉuuecK ux

xapaKm epucm uK

(h u

uccAedoeattuù

u

U3MCKCIHUÙ fí ỗ e p e ĩO d h ĩx 30ỈỈCIX u 3 c m \a p u e (i. H a y ic a , M o c K B a , 1 9 7 3

TAP CHỈ KHOA HQC ĐHQGHN, KHTN & CN, T XIX, Nọ 1, 2003________

M ự c NƯỚC

cực

TRỊ ở VÙNG B I E N v i ệ t n a m
Phạm V ăn H uân

Khoa K h í tượng T h ủ y văn & H ải d ư ơ n g học

Đại học Khoa học T ự nhiên , Đ H Q G Hà Nội
G iớ i th iệ u tổ n g q u a n n h ữ n g k ế t quả n g h iê n cứ u về b iế n th iê n mực nưốc b iể n ở
b iể n Đ ô n g v à t r ì n h b à y c h i t iế t v ề các phư ơ ng p h á p t í n h to á n g ầ n đ ú n g các cực t r ị
th u ỷ t r iề u ỉý th u y ế t.
B iế n th iê n m ực nước b iể n gần bò V iệ t N a m do sự n ó n g lê n to à n cầ u và các
h iệ u ứ ng k h á c dược ưỏc lư ợ ng b ằ n g k h o ả n g từ 1 đến 3 m m m ộ t n ă m .
V ớ i b ả y tr ạ m h ả i v ă n có bộ h ằ n g sô* đ iể u hoà t h ủ y t r iề u đ ầ y đ ủ đã xác đ ịn h
được các độ cao mực t r iề u cực t r ị b ằ n g cách tí n h các độ cao m ực t r iề u từ n g g iò tro n g
ch u k ỳ 20 n ă m . V ó i 19 tr ạ m k h á c có 1 1 h ằ n g s ố đ iề u h o à c ủ a các p h â n t r iề u c h ín h ,
các m ực nước cực t r ị th iê n v ă n lý th u y ế t dược ưỏc lư ợ n g b ằ n g p hư ơ ng p h á p lặ p . So
s á n h cho th ấ y h a i phư ơ ng p h á p cho k ỏ t q uả k h á p h ù hợp.
P hép p h â n tíc h cực t r ị th ự c n g h iệ m được th ự c h iệ n c h o 25 t r ạ m m ực nước (lọc
bò V iệ t N a m đế ưóc lư ơ ng các t r ị số m ực nưỏc t h iế t k ế ứ ng v ỏ i các tà n x u ấ t h iế m
khác nhau.
P h â n tíc h so s á n h c h ỉ ra rằ n g các cực t r ị th ủ y t r iề u và m ực nước t h i ế t ke ch u
k ỳ lậ p lạ i 20 n ă m có dộ lớn n h ư n h a u . C òn n h ữ n g t r ị sô* m ự c nước t h iế t kê với ch u k ỷ
lặ p lạ i d à i hơ n bị ả n h hương c h ủ yế u bơi h iệ n tư ợ ng lủ v à nước d â n g .



×