Tải bản đầy đủ (.pdf) (126 trang)

Nghiên cứu cấu trúc và quá trình tinh thể hóa của hạt nano Fe và FeB bằng phương pháp mô hình hóa. (Luận án tiến sĩ)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (649.85 KB, 126 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

NGUYỄN THỊ THẢO

NGHIÊN CỨU CẤU TRÚC VÀ QUÁ TRÌNH TINH
THỂ HÓA CỦA HẠT NANO Fe VÀ FeB BẰNG
PHƯƠNG PHÁP MÔ HÌNH HÓA

LUẬN ÁN TIẾN SĨ VẬT LÝ KỸ THUẬT

HÀ NỘI - 2017


BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

NGUYỄN THỊ THẢO

NGHIÊN CỨU CẤU TRÚC VÀ QUÁ TRÌNH TINH
THỂ HÓA CỦA HẠT NANO Fe VÀ FeB BẰNG
PHƯƠNG PHÁP MÔ HÌNH HÓA

Chuyên ngành: VẬT LÝ KỸ THUẬT
Mã số: 62520401

LUẬN ÁN TIẾN SĨ VẬT LÝ KỸ THUẬT
NGƯỜI HƯỚNG DẪN KHOA HỌC:
1) PGS. TS. LÊ VĂN VINH
2) PGS. TS. LÊ THẾ VINH


HÀ NỘI - 2017


LỜI CAM ĐOAN

Tôi xin cam đoan đây là công trình nghiên cứu của tôi. Tất cả
các số liệu và kết quả nghiên cứu trong luận án là trung thực, chưa
từng được ai công bố trong bất kỳ công trình nghiên cứu nào khác.

Nghiên cứu sinh

Nguyễn Thị Thảo


LỜI CẢM ƠN

Tôi xin bày tỏ lòng biết ơn sâu sắc đến PGS. TS Lê Văn Vinh và
PGS.TS Lê Thế Vinh, những người thầy đã tận tình hướng dẫn, giúp đỡ tôi
hoàn thành luận án.
Xin chân thành cảm ơn sự giúp đỡ và tạo điều kiện làm việc của Bộ môn
Vật lý tin học, Viện Vật lý kỹ thuật Trường Đại học Bách khoa Hà Nội dành
cho tôi trong suốt quá trình nghiên cứu, thực hiện luận án.
Xin cảm ơn Viện Đào tạo Sau Đại học, Trường Đại học Bách khoa Hà
Nội, Trường Đại học Sư phạm Hà nội đã tạo điều kiện cho tôi trong suốt thời
gian làm việc và nghiên cứu.
Cuối cùng, xin bày tỏ lòng biết ơn đến gia đình, những người thân,
những đồng nghiệp đã dành những tình cảm, động viên giúp đỡ tôi vượt qua
những khó khăn để hoàn thành luận án.

Hà Nội, ngày tháng năm 2017


Nguyễn Thị Thảo


MỤC LỤC
DANH MỤC CÁC TỪ VIẾT TẮT VÀ KÝ HIỆU.................................................... 1
DANH MỤC CÁC BẢNG BIỂU .............................................................................. 2
DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ............................................................... 3
MỞ ĐẦU .................................................................................................................... 8
CHƯƠNG I: TỔNG QUAN VỀ THĂNG GIÁNG MẬT ĐỘ ĐỊA PHƯƠNG
VÀ QUÁ TRÌNH TINH THỂ HÓA CỦA VẬT LIỆU Fe VÀ FeB
1.1.

Tổng quan về hệ vật liệu Fe khối và Fe nano, FeB nano ............................... 12

1.1.1 Hệ vật liệu sắt ............................................................................................ 12
1.1.2. Hệ vật liệu nano FeB ................................................................................. 16
1.2.

Thăng giáng mật độ địa phương..................................................................... 18

1.3.

Quá trình tinh thể hóa ..................................................................................... 19

1.3.1. Cách tiếp cận nhiệt động học................................................................... 21
1.3.2. Cách tiếp cận động học ............................................................................ 25
CHƯƠNG II: PHƯƠNG PHÁP MÔ PHỎNG VÀ PHÂN TÍCH CẤU TRÚC
2.1. Xây dựng mô hình động lực học phân tử .......................................................... 31
2.1.1. Thế tương tác ............................................................................................. 31

2.1.2. Mô phỏng vật liệu sắt khối ........................................................................ 32
2.1.3. Mô phỏng vật liệu nano Fe ........................................................................ 33
2.1.4. Mô phỏng vật liệu nano FeB ..................................................................... 34
2.2. Phương pháp phân tích cấu trúc ........................................................................ 35
2.2.1. Hàm phân bố xuyên tâm ............................................................................ 35
2.2.2. Phương pháp phân tích lân cận chung (CNA) ........................................... 37
2.3. Kĩ thuật trực quan hóa................................................................................. .. .. 39
2.4. Mô phỏng thăng giáng mật độ địa phương ....................................................... 40
CHƯƠNG III: THĂNG GIÁNG MẬT ĐỘ ĐỊA PHƯƠNG TRONG VẬT
LIỆU SẮT KHỐI
3.1. Hàm phân bố xuyên tâm .................................................................................... 44
3.2 Nhiệt độ chuyển pha thủy tinh ........................................................................... 45
3.3 Hệ số khuếch tán ................................................................................................ 46
3.4 Thăng giáng mật độ địa phương và động học của vật liệu sắt khối ................... 48


3.4.1. Thăng giáng mật độ địa phương................................................................ 48
3.4.2. Mối liên hệ giữa thăng giáng mật độ địa phương và động học....................52
CHƯƠNG IV: QUÁ TRÌNH TINH THỂ HÓA TRONG VẬT LIỆU NANO
SẮT
4.1. Nhận biết quá trình tinh thể hóa của vật liệu nano Fe
4.1.1. Hàm phân bố xuyên tâm của hạt nano Fe tại các nhiệt độ 300K và 900K . 61
4.1.2. Sự phụ thuộc của thế năng nguyên tử theo thời gian .................................. 63
4.1.3 Sự phụ thuộc của số lượng các nguyên tử tinh thể theo thời gian............... 64
4.2. Quan sát quá trình tinh thể hóa của hạt nano Fe ............................................... 66
4.2.1 Sự biến đổi số lượng các nguyên tử tinh thể trong ba vùng ......................... 66
4.2.2 Sự phân bố không gian của các nguyên tử ................................................... 68
4.3 Cơ chế của quá trình tinh thể hóa trong hạt nano Fe .......................................... 69
4.3.1 Tốc độ phát triển tinh thể.............................................................................. 69
4.3.2 Cơ chế tạo mầm trong quá trình tinh thể hóa ............................................... 71

4.3.3 Thế năng của các loại nguyên tử khác nhau ................................................. 75
4.4 Các dạng thù hình khác nhau của hạt nano Fe ................................................... 78
4.5 Tinh thể hóa hạt nano Fe lỏng ............................................................................ 81
4.5.1 Quá trình làm nguội mẫu lỏng ..................................................................... 81
4.5.2 Ủ tinh thể hóa mẫu lỏng ............................................................................... 87
4.5. 3 Cơ chế tinh thể hóa mẫu nano Fe lỏng ........................................................ 90
CHƯƠNG V: QUÁ TRÌNH TINH THỂ HÓA TRONG VẬT LIỆU NANO FeB
5.1. Nhận biết quá trình tinh thể hóa ........................................................................ 93
5.1.1. Hàm phân bố xuyên tâm ............................................................................. 94
5.1.2. Thế năng nguyên tử và số lượng các nguyên tử tinh thể ............................ 96
5.2. Quan sát quá trình tinh thể hóa trong vật liệu nano FeB ................................... 98
5.3. Cơ chế tinh thể hóa trong vật liệu nano FeB ..................................................... 99
5.4. Đa thù hình trong hạt nano FeB ...................................................................... 105
KẾT LUẬN ............................................................................................................ 109
DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN ................. 111
TÀI LIỆU THAM KHẢO ...................................................................................... 112


DANH MỤC CÁC TỪ VIẾT TẮT VÀ KÝ HIỆU
ĐLHPT

Động lực học phân tử

PBXT

Phân bố xuyên tâm

VĐH

Vô định hình


TGMĐĐP

Thăng giáng mật độ địa phương

CNA

Phân tích lân cận chung

Bcc

Lập phương tâm khối

Ico

Cấu trúc hai mươi mặt

PE

Thế năng

1


DANH MỤC CÁC BẢNG BIỂU
Trang
Bảng 1.1

Các tính chất vật lí của vật liệu sắt


14

Bảng 2.1

Các hệ số thế tương tác đối với hệ Fe và FeB

31

Bảng 3.1

Các đặc trưng chính của các mẫu mô phỏng

52

Bảng 4.1

Các đặc trưng chính của bốn mẫu được ủ nhiệt tại 300 K.

76

Trong đó ξC là tỉ lệ của các nguyên tử tinh thể; EN là thế
năng nguyên tử; ECC, ECS là thế năng của nguyên tử tinh thể
lõi và nguyên tử tinh thể bề mặt; Clõi, Zlõi là mật độ và số
phối trí trung bình của lõi hạt nano; gm là độ cao đỉnh thứ
nhất của hàm phân bố xuyên tâm.
Bảng 4.2

Số lượng đám ico (Nic) và số nguyên tử của cụm ico lớn

84


nhất (Nbico) trong mẫu nano và mẫu khối.
Bảng 4.3

Năng lượng trung bình của nguyên tử lỏng (PEli), nguyên

86

tử ico (PEico), nguyên tử tinh thể bcc (PEcry) trên một
nguyên tử (eV/nguyên tử); số lượng nguyên tử lỏng (nli), số
lượng nguyên tử ico (nico) và số lượng nguyên tử tinh thể
bcc (ncry) trong mỗi lớp đới cầu tương ứng.
Bảng 5.1

Các đặc trưng của ba dạng thù hình của hạt nano: ZFe-Fe,
ZFe-B tương ứng là số phối trí trung bình của cặp Fe-Fe và
Fe-B

2

105


DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ
Trang
Hình 1.1

Sự biến đổi của năng lượng tự do hình thành đám tinh thể theo

22


số lượng của các nguyên tử [28]
Hình 1.2

Mật độ kết tủa như là hàm của thời gian ủ đối với dung dịch

24

nhôm rắn chứa 0.18% nguyên tử Sc ở 300oC [28]
Hình 2.1

Mô hình hạt nano Fe

32

Hình 2.2

Mô hình mô tả mẫu hạt nano hỗn hợp: màu đỏ, đen, xanh và xám

33

tương ứng mô tả các nguyên tử CV, CB, AB và AV
Hình 2.3

Hàm phân bố xuyên tâm của mẫu sắt lỏng và vô định hình so

35

sánh với thực nghiệm [81]
Hình 2.4


Cấu trúc bề mặt- lõi của hạt nano

36

Hình 2.5

Sơ đồ mô tả các loại cấu trúc địa phương theo phương pháp

38

CNA[46]
Hình 3.1

Hàm phân bố xuyên tâm của sắt lỏng và vô định hình

43

Hình 3.2

Sự phụ thuộc vào nhiệt độ của thế năng và của tỉ số Wendt–

44

Abraham gmin/gmax
Hình 3.3

Độ dịch chuyển bình phương trung bình <r(n)2> của các hạt

45


Hình 3.4

Sơ đồ mô tả của các thăng giáng mật độ địa phương đối với một

46

hạt được chọn, các đường tròn nét đứt và đặc tương ứng mô tả
hình cầu thể tích VOvà các hạt;a) cấu hình ban đầu; b) z8z7; c)
z7z6; d) z6z7
Hình 3.5

Sự phân bố của các loại LDF khác nhau của các mẫu với các

47

nhiệt độ khác nhau
Hình 3.6

Sự biến đổi của <m(n)> theo thời gian

3

48


Hình 3.7

Sự phụ thuộc của độ <r2(n)> theo <m(n)>


49

Hình 3.8

Sự phụ thuộc nhiệt độ của ln[D(T)/D(2670)].

50

Hình 3.9

Sự phụ thuộc nhiệt độ của ξ và 

50

Hình 3.10

Sự phân bố không gian của các TGMĐĐP: a) Sự phân bố đồng

51

nhất; b) Sự phân bố không đồng nhất
Hình 3.11

Sự phân bố của các hạt “visiting”

53

Hình 3.12

Sự phân bố của các TGMĐĐP theo các hạt


54

Hình 3.13

Sự phân bố của Mi(n)

55

Hình 3.14

Sự phụ thuộc theo nghịch đảo nhiệt độ tuyệt đối của ln(F) and

56

ln[ (T)/(2670)].
Hình 4.1

Hàm phân bố xuyên tâm của mẫu nano Fe tại nhiệt độ 300 K và

60

900 K
Hình 4.2

Hàm phân bố xuyên tâm của mẫu nano Fe tại nhiệt độ 700 K và

61

800 K

Hình 4.3

Thế năng nguyên tử phụ thuộc theo thời gian

61

Hình 4.4

Thế năng nguyên tử của mẫu tại các nhiệt độ 700 K, 800 K và

62

900 K
Hình 4.5

Sự phụ thuộc thời gian của số lượng các nguyên tử tinh thể

63

Hình 4.6

Số lượng các nguyên tử tinh thể của mẫu tại các nhiệt độ 800 K

65

và 900 K
Hình 4.7

Số lượng các nguyên tử tinh thể trong 3 vùng


66

Hình 4.8

Sự phân bố không gian của các nguyên tử: sự phân bố không

67

gian của các nguyên tử tinh thể.: A) NC=248; B) NC=271; C)
NC=956; D) NC=1311; E) NC=1704. F) sự phân bố không gian
4


của các nguyên tử vô định hình trong mẫu khi NC=1704; trong
đó các hình cầu mầu đỏ và xanh tương ứng với các nguyên tử
tinh thể và nguyên tử vô định hình
Hình 4.9

Sự phụ thuộc thời gian của ln(NC)

69

Hình 4.10

Sự phụ thuộc của Ncs1/2 vào Nc1/3

70

Hình 4.11


Sự phụ thuộc thời gian của NC1(n) và NC(n) ở giai đoạn đầu của

71

quá trình tinh thể hóa
Hình 4.12

Sự phân bố không gian của các nguyên tử tinh thể (quả cầu đỏ)

72

và các nguyên tử vô định hình (quả cầu xanh) ở giai đoạn đầu
của quá trình tinh thể hóa
Hình 4.13

Sự phụ thuộc thời gian của NC1(n) và NC(n) ở giai đoạn khi quá

73

trình tinh thể hóa hoàn thành
Hình 4.14

Sự phân bố không gian các nguyên tử tinh thể (quả cầu đỏ) và

73

các nguyên tử vô định hình (quả cầu xanh) ở giai đoạn khi quá
trình tinh thể hóa hoàn thành
Hình 4.15


Số lượng của các nguyên tử và thế năng trung bình của một

74

nguyên tử trong trường hợp của đám nhỏ NC(n1) = 377(trái) và
đám lớn NC(n1) = 791 (phải).
Hình 4.16

Sự phụ thuộc thời gian của thế năng trung bình của một nguyên

75

tử của các nguyên tử vô định, các nguyên tử tinh thể lõi và các
nguyên tử tinh thể bề mặt (hình trên) và số lượng của các loại
nguyên tử khác nhau (hình dưới).
Hình 4.17

Sự phân bố không gian của các nguyên tử trong các mẫu được ủ

77

nhiệt tại 300K: A) ξC =0; B) ξC =0.2262; C) ξC =0.559; D) ξC
=0.9876.
Hình 4.18

Hàm phân bố xuyên tâm của các mẫu: 1- ξC=0.84; 2- ξC=0.45; 3-

5

79



ξC=0.18; 4- ξC=0.08; 5- ξC=0.05; 6- ξC=0.
Hình 4.19

Hàm phân bố xuyên tâm rút gọn: 1-mẫu mô phỏng với ξC=0.84;

80

2, 3 – mẫu thực nghiệm [97,30] đối với các hạt nano với đường
kính 2.0 nm và 4.5 nm.
Hình 4.20

Sự phụ thuộc của thế năng vào nhiệt độ trong quá trình làm

81

nguội với tốc độ 0.67 K/ps
Hình 4.21

Hàm phân bố xuyên tâm tại 300 K sau quá trình làm nguội với

82

tốc độ 0.67 K/ps.
Hình 4.22

Các cụm cấu trúc trúc ico và bcc trong các mẫu nano Fe và mẫu

83


khối tại các nhiệt độ xác định trong quá trình làm nguội.
Hình 4.23

Minh họa các lớp đới cầu của hạt nano.

85

Hình 4.24

Sự phụ thuộc của thế năng vào thời gian ủ mẫu.

87

Hình 4.25

Sự phụ thuộc của tỉ phần nguyên tử lỏng, nguyên tử ico và
nguyên tử tinh thể bcc vào thời gian ủ mẫu.

89

Hình 4.26

Trực quan hóa sự tiến triển của các nguyên tử tinh thể theo thời

91

gian ủ mẫu.
Hình 5.1


Hàm phân bố xuyên tâm của mẫu Fe98B2 với nhiệt độ 300 K (1)

93

và (2) và 900 K (3) và (4); tương ứng với các giai đoạn đầu và
cuối của quá trình ủ nhiệt
Hình 5.2

Hàm phân bố xuyên tâm của mẫu Fe96B4(3), (4) và Fe85B15 (1),

94

(2) tại 900 K tương ứng với các giai đoạn đầu và cuối của quá
trình ủ nhiệt
Hình 5.3

Sự phụ thuộc thời gian của thế năng nguyên tử của mẫu Fe98B2

95

tại 300 K
Hình 5.4

Sự phụ thuộc thời gian của số lượng các nguyên tử tinh thể và
thế năng nguyên tử đối với các mẫu Fe98B2 và Fe96B4 được ủ

6

96



nhiệt ở 900 K.
Hình 5.5

Sự sắp xếp các nguyên tử tinh thể trong mẫu Fe96B4 tại: (A) bước

97

chạy n1, NCr=178; (B) bước chạy n1 + 5×105, NCr=278; (C)
bước chạy n1 + 106, NCr=424
Hình 5.6

Sự sắp xếp của các nguyên tử của mẫu Fe96B4 tại 900 K ở cuối

97

của quá trình tinh thể hóa: A) các nguyên tử vô định hình; B) các
nguyên tử vô định hình biên; C) các nguyên tử tinh thể.
Hình 5.7

Sự phụ thuộc thời gian của năng lượng trung bình của các loại

100

nguyên tử khác nhau của mẫu Fe96B4
Hình 5.8

Sự phụ thuộc thời gian của tỉ lệ của các nguyên tử B ở vùng biên

101


tinh thể
Hình 5.9

Thời gian sống của các nguyên tử tinh thể được ghị nhận trong 3

102

× 106 bước chạy
Hình 5.10

Phân bố không gian của các nguyên tử tinh thể của mẫu Fe96B4

103

ghi nhận được trong các khoảng thời gian khác nhau của quá
trình ủ nhiệt. A) giai đoạn đầu của sự tạo thành mầm, B) mầm
tạo thành gần nhau và đám tinh thể nhỏ xuất hiện, C) đám tinh
thể mới tạo thành và phát triển
Hình 5.11

MEPA của các nguyên tử khác loại đối với mẫu tinh thể (A);

104

mẫu vô định hình và mẫu hỗn hợp (B).
Hình 5.12

Hàm phân bố xuyên tâm cặp Fe-Fe của các thù hình khác nhau


7

104


MỞ ĐẦU
1. Lý do chọn đề tài

Vật liệu nano đã và đang được tập trung nghiên cứu rộng rãi và được ứng dụng
trong nhiều lĩnh vực bởi các tính chất khác biệt của chúng so với vật liệu khối. Các
hạt nano có thể được tạo thành ở trạng thái tinh thể hoặc trạng thái vô định hình
(VĐH) bằng các phương pháp chế tạo phù hợp. Các hạt nano VĐH có thể được chia
thành 2 phần: phần lõi với các đặc trưng cấu trúc gần với cấu trúc của vật liệu khối
VĐH; phần bề mặt với các đặc trưng gần với cấu trúc xốp. Do có cấu trúc đặc biệt
nên các hạt nano VĐH có nhiều ứng dụng trong các lĩnh vực khác nhau của khoa
học và công nghệ. Với cùng một kích thước, các hạt nano VĐH Fe2O3 có hoạt tính
mạnh hơn so với tinh thể Fe2O3. Trạng thái VĐH thì không bền nhiệt và các hạt
nano VĐH có thể bị tinh thể hóa khi ủ nhiệt. Sự tinh thể hóa của các hạt nano VĐH
được quan tâm nghiên cứu bởi các nhà khoa học trong cả hai lĩnh vực nghiên cứu
cơ bản và nghiên cứu ứng dụng. Kết quả chỉ ra rằng nhiệt độ chuyển pha thủy tinh
và nhiệt độ tinh thể hóa của các hạt nano VĐH thì phụ thuộc kích thước hạt nano.
Nhóm các vật liệu nano Fe và các hợp kim của chúng được đặc biệt quan tâm
bởi rất nhiều lý do. Đó là một trong những vật liệu từ tính thông dụng nhất. Nó có
thể được sử dụng trong các lõi biến áp điện và các phương tiện lưu giữ từ tính cũng
như chất xúc tác. Nhiều công trình nghiên cứu mô phỏng vi cấu trúc và quá trình
tinh thể hóa của vật liệu nano đã được thực hiện. Tuy nhiên cơ chế mức nguyên tử
của quá trình tinh thể hóa trong hạt nano vẫn chưa được làm sáng tỏ. Do vậy, trong
luận án này chúng tôi đã nghiên cứu về vi cấu trúc cũng như tìm ra cơ chế của quá
trình tinh thể hóa xảy ra đối với các vật liệu nano nói chung và vật liệu nano Fe,
FeB nói riêng.

2. Mục đích, đối tượng và phạm vi nghiên cứu

Đối tượng nghiên cứu là các vật liệu kim loại Fe khối và các vật liệu nano Fe
và FeB. Nội dung nghiên cứu của luận án tập trung chủ yếu vào các vấn đề sau: 1)
Động học cũng như cấu trúc của vật liệu sắt khối ở trạng thái lỏng và trạng thái vô
định hình thông qua các thăng giáng mật độ địa phương; 2) Quá trình tinh thể hóa
8


của vật liệu nano Fe và ảnh hưởng của kích thước hạt nano lên quá trình tinh thể
hóa; 3) Quá trình tinh thể hóa của vật liệu nano FeB và ảnh hưởng của nồng độ
nguyên tử B pha tạp lên quá trình tinh thể hóa này. Luận án chỉ ra diễn biến của quá
trình tinh thể hóa trong các hạt nano Fe và FeB.
3. Phương pháp nghiên cứu

Phương pháp mô phỏng động lực học phân tử và phương pháp phân tích cấu
trúc vi mô được sử dụng để xây dựng, phân tích và tính toán các đặc trưng cấu trúc,
tính chất của các mô hình vật liệu.
4. Ý nghĩa khoa học và thực tiễn của đề tài

Kết quả mà luận án đã đạt được bao gồm các nghiên cứu về đặc trưng vi cấu
trúc cũng như động học của vật liệu Fe lỏng và vô định hình, cung cấp thông tin về
cơ chế khuếch tán thông qua việc xác định thăng giáng mật độ địa phương của mô
hình. Nhận biết, trực quan hóa và cơ chế của quá trình tinh thể hóa xảy ra trong các
mẫu vật liệu nano Fe và FeB. Các thù hình khác nhau của vật liệu nano Fe được xây
dựng và phân tích thông qua việc so sánh cấu trúc địa phương của lõi và bề mặt.
Ảnh hưởng của nồng độ nguyên tử B pha tạp lên quá trình tinh thể hóa của vật liệu
nano FeB.
5. Những đóng góp mới của luận án


Luận án đã đưa ra được cơ chế khuếch tán của vật liệu Fe lỏng thông qua hai
loại thăng giáng mật độ địa phương. Ở vùng nhiệt độ cao, cả hai loại thăng giáng
đều tác động tới sự khuếch tán, cơ chế khuếch tán giống trong chất lỏng. Ở vùng
nhiệt độ thấp, khuếch tán chủ yếu bởi thăng giáng loại II mà xảy ra ở các vùng sai
hỏng cấu trúc. Cơ chế khuếch tán tương tự trong tinh thể. Sự không đồng nhất động
học tăng khi giảm nhiệt độ do sự tồn tại của các vùng các hạt linh động và vùng các
hạt không linh động.
Luận án làm rõ cơ chế tinh thể hóa xảy ra trong vật liệu nano Fe và FeB. Ban
đầu các mầm tinh thể nhỏ mọc tại các vị trí khác nhau ngẫu nhiên trong hạt nano.
Chúng mọc ở trong lõi với tần suất lớn hơn ở bề mặt của hạt nano. Các mầm này là
9


Luận án đầy đủ ở file: Luận án full











×