A/ Ph ¬ng tr×nh mò:
1) 5
2x-1
+5
x+1
- 250 = 0
⇒
x =2
2)
43
64
255
−
−
=
x
x
⇒
x =7/5
3)
22
43
93
−
−
=
x
x
4) 2
2x-3
- 3.2
x-2
+ 1 = 0
⇒
x =1 vµ x=2
5)
2442
)
2
5
()
5
2
(
−−
=
xx
⇒
x =1
6)
033.43
24
=+−
xx
⇒
x =0 vµ x=
4
1
7) 5
2x
- 7
x
- 5
2x
.35 + 7
x
.35 = 0
⇒
x =
2
1
−
8)
4
410
2
9
2
2
x
x
+
=
−
⇒
x =3
9)
33,0.2
100
3
2
+=
x
x
x
⇒
x =
13lg
3lg
−
10) 2
x
.5
x
=0,1(10
x-1
)
5
⇒
x =
2
3
11) 3
x
+3
x+1
+3
x+2
=5
x
+5
x+1
+5
x+2
⇒
x =
43
31
log
5
3
12) 2
x
+2
x-1
+2
x-2
=7
x
+7
x-1
+7
x-2
⇒
x =
343
228
log
7
2
13)
161
42.2
++
=
xx
⇒
x =
2
1
14)
10)625()625(
=++−
xx
⇒
x =2 vµ x=-2
15)
xxx
)22()154()154(
=++−
⇒
x =2
16)
2)625()625(
sinsin
=−++
xx
⇒
x=
Π
k
víi:
Zk
∈
17)
093.613.73.5
1112
=+−+−
+−−
xxxx
⇒
x=
5
3
log
3
;x=
5log
3
−
18)
022.92
2212
22
=+−
+++ xxxx
⇒
x=-1;x=2
19)
xxx
6242.33.8
+=+
⇒
x=1 vµ x=3
20) 3
x
+4
x
=5
x
21) 5
x-2
=3-x
22)
132
2
+=
x
x
23) 8
x
-3.4
x
-3.2
x+1
+8=0
24)
xxxxxx
2332
52623
22
−=−
−+−++
25)
033.369
31
22
=+−
−−
xx
⇒
x=?
26) 25
x
-2(3-x)5
x
+2x-7 = 0
27) 9
x
+2(x-2)3
x
+2x-5 = 0
B/ BÊt Ph ¬ng tr×nh mò:
1)
xxx 3413154
)
2
1
()
2
1
(
2
−+−
<
⇒
x =?
2) 2
2x-1
+ 2
2x-3
- 2
2x-5
>2
7-x
+ 2
5-x
- 2
3-x
⇒
x>8/3
3)
8433
1
3
1
>+
+
xx
⇒
0<x<1
4)
62.3.23.34
212
++<++
+
xxxx
xxx
⇒
x =?
5)
1
1
1
)25()25(
+
−
−
−≥+
x
x
x
⇒
x
≥
1
6)
xxxxxx 21212
222
15.34925
+−++−++−
≥+
7)
xxxx
++
+≤
1
42.34
8)
xxxx
433.54
5,0125,0
−>−
−−+
C/ Ph ¬ng tr×nh loga rit:
1) log
2
(2x-5)
2
=2
⇒
x=1,5;x=3,5
2)
)4(log)3(log)542(log
3
3
1
2
3
−=++−
xxx
⇒
x=6
3)
32log8log
2
2
=−
x
x
⇒
x=16, x=0,5
4)
01lg20lg
32
=+−
xx
⇒
x=10, x=
9
10
.
5)
2
2
log4log
4
4
2
=+
x
x
⇒
x=2
6)
09log42log
2
4
=++
x
x
⇒
x=1/4, x=1/
4
2
7) log
2
(x
2
-3) - log
2
(6x-10) + 1 = 0
⇒
x=2
8) log
3
(x
2
-6) = log
3
(x-2) + 1
⇒
x=3
9) log
x
(2x
2
-3x-4) = 2
⇒
x=4
10) log
x+1
(x
2
-3x+1) = 1
⇒
x=4
11) log
2
(9
x
+5.3
x+1
) = 4
⇒
x=.?
12) log
2
(4
x
+1)=log
2
(2
x+3
-6) + x
⇒
x=0
13)
)2(log2)2(log5log)1(log
25
15
5
1
2
5
−−+=++
xxx
⇒
x=
21
/2
14)
016)1(log)1(4)1(log)2(
3
2
3
=−+++++
xxxx
⇒
x=2, x=
81
80
−
.
15)
2
1
)213(log
2
3
=+−−
+
xx
x
⇒
x
2
53
+−
=
vµ x =
2
299
−
16)
x
x
−=− 3)29(log
2
⇒
x=0 vµ x =3
17)
13)23.49(log
1
3
+=−−
+
x
xx
⇒
x=0 vµ x=
1)153(log
3
−+
18
)
2
22
4log6log
2
3.22log4
x
xx
=−
⇒
x= 1/4
19)
2
9
3
32
27
)3(log
2
1
log
2
1
)65(log
−+
−
=+−
x
x
xx
⇒
x=5/3
20)
3
8
2
2
4
)4(log4log2)1(log xxx
++−=++
⇒
x=2 vµ x=
242
−
21)
1
12
2
log
4
12
=
+
+
−
x
x
x
⇒
x=?
22)
2
1
)213(log
2
3
=+−−
+
xx
x
23) log
7
(7
-x
+6)=1+x
⇒
x=?
24)
0222
1loglog1log
55
2
5
=+−
−+
xxx
⇒
x=5
D/ BÊt Ph ¬ng tr×nh loga rit:
1) lg(x+4)+lg(3x+46)>3
⇒
x
≥
6 2)log
4x-3
x
2
>1
⇒
x
( )
∞∈
;3
3)log
x
(x
3
-x
2
-2x)<3
⇒
x
( )
+∞∈
;2
4)
0
64
log
5
1
≥
+
x
x
⇒
x
−−∈
2
3
;2
5)lg
2
x-lgx
3
+2
≥
0
⇒
x
(
] [
)
+∞∪∈
;10010;0
6)1+log
2
(x-1)
≥
log
x-1
4
⇒
x
[
) ( )
+∞∪∈
;32;4/5
7)
0
1)4(log
5
2
≥
−−
−
x
x
⇒
x=5 vµ x
( )
+∞+∈
;24
8)
0
54
)3(log
2
2
2
≥
−−
−
xx
x
⇒
x=4 vµ x
( )
+∞∈
;5
9)
5
1
log2log2
5 x
x
≥−
⇒
x
( )
+∞∈
;1
10)log
x
2.log
2x
2.log
2
4x>1
⇒
x
( ) ( )
22
2;15,0;2
∪∈
−
11)
1
14
224
log
2
16
25
2
>
−−
−
xx
x
⇒
x
( ) ( )
4;31;3
∪−∈
12)
0
3
12
loglog
2
2
1
<
+
−
+
x
x
x
⇒
x
( )
+∞∈
;4
13)log
x
(4+2x)<1
⇒
x
( ) ( ) ( ) ( )
∞∪∪−∪−−∈
;21;00;11;2
14)
316log64log
2
2
≥+
x
x
⇒
x
(
]
4;12;
2
1
3
1
∪
∈
−
15)
2)22(log)12(log
1
2
12
−>−−
+
xx
⇒
x
( )
3log;5log2
22
+−∈
16)
)3(log53loglog
2
4
2
2
1
2
2
−>−+
xxx
⇒
x
( )
16;8
2
1
;0
∪
∈
17)
2)83(log
3
1
−>−
x
x
18 )
1
1
32
log
3
<
−
−
x
x
19)
)243(log1)243(log
2
3
2
9
++>+++
xxxx
⇒
x
−∪
−−∈
1;
3
1
1;
3
7
¤N TèT NGHIÖP N¡M 2008-2009
A/ Ph ¬ng tr×nh mò:
1) 5
2x-1
+5
x+1
- 250 = 0
⇒
x =2
11)3
x
+3
x+1
+3
x+2
=5
x
+5
x+1
+5
x+2
⇒
x =
43
31
log
5
3
2)
43
64
255
−
−
=
x
x
⇒
x =7/5
3)
22
43
93
−
−
=
x
x
4) 2
2x-3
- 3.2
x-2
+ 1 = 0
⇒
x =1 vµ x=2
5)
2442
)
2
5
()
5
2
(
−−
=
xx
⇒
x =1
6)
033.43
24
=+−
xx
⇒
x =0 vµ x=
4
1
7) 5
2x
- 7
x
- 5
2x
.35 + 7
x
.35 = 0
⇒
x =
2
1
−
8)
4
410
2
9
2
2
x
x
+
=
−
⇒
x =3
9)
33,0.2
100
3
2
+=
x
x
x
⇒
x =
13lg
3lg
−
10) 2
x
.5
x
=0,1(10
x-1
)
5
⇒
x =
2
3
23) 8
x
-3.4
x
-3.2
x+1
+8=0
24)
xxxxxx
2332
52623
22
−=−
−+−++
25)
033.369
31
22
=+−
−−
xx
⇒
x=?
26) 25
x
-2(3-x)5
x
+2x-7 = 0
27) 9
x
+2(x-2)3
x
+2x-5 = 0
12)2
x
+2
x-1
+2
x-2
=7
x
+7
x-1
+7
x-2
⇒
x =
343
228
log
7
2
13)
161
42.2
++
=
xx
⇒
x =
2
1
14)
10)625()625(
=++−
xx
⇒
x =2 vµ x=-2
15)
xxx
)22()154()154(
=++−
⇒
x =2
16)
2)625()625(
sinsin
=−++
xx
⇒
x=
Π
k
víi:
Zk
∈
17)
093.613.73.5
1112
=+−+−
+−−
xxxx
⇒
x=
5
3
log
3
;x=
5log
3
−
18)
022.92
2212
22
=+−
+++ xxxx
⇒
x=-1;x=2
19)
xxx
6242.33.8
+=+
⇒
x=1 vµ x=3
20) 3
x
+4
x
=5
x
21) 5
x-2
=3-x
22)
132
2
+=
x
x
B/ BÊt Ph ¬ng tr×nh mò:
1)
xxx 3413154
)
2
1
()
2
1
(
2
−+−
<
⇒
x =?
2)2
2x-1
+ 2
2x-3
- 2
2x-5
>2
7-x
+ 2
5-x
- 2
3-x
⇒
x>8/3
3)
8433
1
3
1
>+
+
xx
⇒
0<x<1
4)
62.3.23.34
212
++<++
+
xxxx
xxx
5)
1
1
1
)25()25(
+
−
−
−≥+
x
x
x
⇒
x
≥
1
6)
xxxxxx 21212
222
15.34925
+−++−++−
≥+
7)
xxxx
++
+≤
1
42.34
8)
xxxx
433.54
5,0125,0
−>−
−−+
C/ Ph ¬ng tr×nh loga rit:
1) log
2
(2x-5)
2
=2
⇒
x=1,5;x=3,5
2)
)4(log)3(log)542(log
3
3
1
2
3
−=++−
xxx
⇒
x=6
3)
32log8log
2
2
=−
x
x
⇒
x=16, x=0,5
4)
01lg20lg
32
=+−
xx
⇒
x=10, x=
9
10
.
5)
2
2
log4log
4
4
2
=+
x
x
⇒
x=2
09log42log
2
4
=++
x
x
⇒
x=1/4,x=1/
4
2
7)log
2
(x
2
-3) - log
2
(6x-10) + 1 = 0
⇒
x=2
8) log
3
(x
2
-6) = log
3
(x-2) + 1
⇒
x=3
9) log
x
(2x
2
-3x-4) = 2
⇒
x=4
10)
2
1
)213(log
2
3
=+−−
+
xx
x
11) log
2
(9
x
+5.3
x+1
) = 4
12) log
2
(4
x
+1)=log
2
(2
x+3
-6) + x
⇒
x=0
20)
0222
1loglog1log
55
2
5
=+−
−+
xxx
⇒
x=5
13)
)2(log2)2(log5log)1(log
25
15
5
1
2
5
−−+=++
xxx
⇒
x=
21
/2
14)
016)1(log)1(4)1(log)2(
3
2
3
=−+++++
xxxx
⇒
x=2, x=
81
80
−
.
15)
2
1
)213(log
2
3
=+−−
+
xx
x
⇒
x
2
53
+−
=
vµ x =
2
299
−
16)
x
x
−=− 3)29(log
2
⇒
x=0 vµ x =3
17)
13)23.49(log
1
3
+=−−
+
x
xx
⇒
x=0 vµ x=
1)153(log
3
−+
18
)
2
22
4log6log
2
3.22log4
x
xx
=−
⇒
x= 1/4
19)
3
8
2
2
4
)4(log4log2)1(log xxx
++−=++
⇒
x=2 vµ x=
242
−
D/ BÊt Ph ¬ng tr×nh loga rit:
1) lg(x+4)+lg(3x+46)>3
⇒
x
≥
6 2)log
4x-3
x
2
>1
⇒
x
( )
∞∈
;3
3)log
x
(x
3
-x
2
-2x)<3
⇒
x
( )
+∞∈
;2
4)
0
64
log
5
1
≥
+
x
x
⇒
x
−−∈
2
3
;2
5)lg
2
x-lgx
3
+2
≥
0
⇒
x
(
] [
)
+∞∪∈
;10010;0
6)1+log
2
(x-1)
≥
log
x-1
4
⇒
x
[
) ( )
+∞∪∈
;32;4/5
7)
0
1)4(log
5
2
≥
−−
−
x
x
⇒
x=5 vµ x
( )
+∞+∈
;24
8)
0
54
)3(log
2
2
2
≥
−−
−
xx
x
⇒
x=4 vµ x
( )
+∞∈
;5
9)
5
1
log2log2
5 x
x
≥−
⇒
x
( )
+∞∈
;1
10)log
x
2.log
2x
2.log
2
4x>1
⇒
x
( ) ( )
22
2;15,0;2
∪∈
−
11)
1
14
224
log
2
16
25
2
>
−−
−
xx
x
⇒
x
( ) ( )
4;31;3
∪−∈
12)
0
3
12
loglog
2
2
1
<
+
−
+
x
x
x
⇒
x
( )
+∞∈
;4
13)
316log64log
2
2
≥+
x
x
⇒
x
(
]
4;12;
2
1
3
1
∪
∈
−
14)log
x
(4+2x)<1
⇒
x
( ) ( ) ( ) ( )
∞∪∪−∪−−∈
;21;00;11;2
15)
2)22(log)12(log
1
2
12
−>−−
+
xx
⇒
x
( )
3log;5log2
22
+−∈
16)
)3(log53loglog
2
4
2
2
1
2
2
−>−+
xxx
⇒
x
( )
16;8
2
1
;0
∪
∈
17)
2)83(log
3
1
−>−
x
x
18 )
1
1
32
log
3
<
−
−
x
x