Tải bản đầy đủ (.pdf) (8 trang)

Chapter 07_Generalized Linear Regression Model

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (99.55 KB, 8 trang )

Advanced Econometrics

Chapter 7: Generalized Linear Regression Model

Chapter 7

GENERALIZED LINEAR REGRESSION MODEL

I.

MODEL:
Our basic model:
with ε ~ N [0, σ 2 I ]

Y = X. + ε

We will now generalize the specification of the error term.
E(ε) = 0, E(εε') = σ 2 Ω = Σ .
n ×n

This allows for one or both of:
1. Heteroskedasticity.
2. Autocorrelation.
The model now is:
(1) Y = X β + ε
n ×k

(2) X is non-stochastic and Rank ( X ) = k .
(3) E(ε) = 0

n ×1



(4) E(εε') = Σ = σ ε2 Ω
n× n

n× n

Heteroskedasticity case:

σ 12 0

0 σ 22
Σ=
 


0
0

0

 0
  

 σ n2 


Nam T. Hoang
University of New England - Australia

1


University of Economics - HCMC - Vietnam


Advanced Econometrics

Chapter 7: Generalized Linear Regression Model

Autocorrelation case:

 1
ρ
1
2
Σ = σε
 

 ρ n −1

ρ1
1


ρ n −2

 ρ n −1 
 ρ n −2 


 


 1 

ρ i = Corr (ε t , ε t −i ) = correlation between errors that are i periods apart.

II. PROPERTIES OF OLS ESTIMATORS:
1.

βˆ = ( X ′X ) −1 X ′Y = ( X ′X ) −1 X ′( Xβ + ε )

βˆ = β + ( X ′X ) −1 X ′ε
E ( βˆ ) = β + ( X ′X ) −1 X ′E (ε ) = β

βˆ is still an unbiased estimator
2.

VarCov( βˆ ) = E [( βˆ − β )( βˆ − β )' ]

= E[( X ′X ) −1 X ′ε )(( X ′X ) −1 X ′ε )' ]
−1
−1
= E [( X ′X ) X ′εε ' X ( X ′X ) ]

= ( X ′X ) −1 X ′E (εε ' ) X ( X ′X ) −1
= ( X ′X ) −1 X ′(σ 2 Ω) X ( X ′X ) −1
≠ σ 2 ( X ′X ) −1

so standard formula for σˆ βˆ no longer holds and σˆ βˆ is a biased estimator of true σˆ βˆ .
→ βˆ ~ N[ , σ 2 ( X ′X ) −1 X ′Ω) X ( X ′X ) −1 ]
so the usual OLS output will be misleading, the std error, t-statistics, etc will be based on


σˆ ε2 ( X ' X ) −1 not on the correct formula.
3.

OLS estimators are no longer best (inefficient).

Nam T. Hoang
University of New England - Australia

2

University of Economics - HCMC - Vietnam


Advanced Econometrics

Chapter 7: Generalized Linear Regression Model

Note: for non-stochastic X, we care about the efficient of βˆ . Because we know if n↑ →
Var( βˆ j ) ↓ → plim βˆ = , βˆ is consistent.
4.

If X is stochastic:
- OLS estimators are still consistent (when E(ε|X) = 0.
- IV estimators are still consistent (when E(ε|X) ≠ 0).
- The usual covariance matrix estimator of VarCov( βˆ ) which is σˆ ε2 ( X ' X ) −1 will be
inconsistent (n →∞) for the true VarCov( βˆ ).
We need to know how to deal with these issues. This will lead us to some generalized
estimator.


ˆ
III. WHITE'S HETEROSCEDASCITY CONSISTENT ESTIMATOR OF VarCov( β ).

(Or Robust estimator of VarCov( βˆ )
If we knew σ2Ω then the estimator of the VarCov( βˆ ) would be:
V = ( X ′X ) −1 X ′(σ 2 Ω) X ( X ′X ) −1
−1

1 1
1
1
=  X ′X   X ′(σ 2 Ω) X  X ′X 
nn
 n
 n

−1

1 1
1
1
=  X ′X   X ′Σ) X  X ′X 
nn
 n
 n


−1

−1


1

If Σ is unknown, we need a consistent estimator of  X ′Σ) X  (Note that the number of
n


unknowns is Σ grows one-for-one with n, but [X ′Σ) X ] is k×k matrix it does not grow
with n).
Let:

Σ* =

1
X ′ΣX
n

Σ* =

1 n n
∑∑σ ij Xk ×1i X1×k′j
n i =1 j =1

Nam T. Hoang
University of New England - Australia

3

University of Economics - HCMC - Vietnam



Advanced Econometrics

Chapter 7: Generalized Linear Regression Model

σ 12 0

0 σ 22

In the case of heteroskedasticity Σ =
 


0
0

0

 0
  

 σ n2 


1 n 2
∑σ i X i X i′
n i =1

Σ* =


White (1980) showed that if:
Σ0 =

1 n 2
∑ ei X i X i′
n i =1

then plim(Σ0) = plim(Σ*)

so we can estimate by OLS and then a consistent estimator of V will be:
−1

11
 1
 1 n

Vˆ =  X ′X   ∑ ei2 X i X i′ X ′X 
nn
  n i =1

 n

−1

−1
−1
Vˆ = n ( X ′X ) Σ 0 ( X ′X )

Vˆ is consistent estimator for V, so White's estimator for VarCov( βˆ ) is:
−1

−1
VarCov ( βˆ ) = ( X ′X ) X ' Σˆ X ( X ′X ) = Vˆ

e12

0
ˆ
where: Σ = 


0

0

0
1
(Note Σ 0 = Σˆ )
n
 
2
 en 

0 
e22 

0

Vˆ is consistent for V = n ( X ′X )−1 σ 2 Ω( X ′X )−1 regardless of the (unknown) form of the

heteroskedasticity (only for heteroskedasticity).

Newey - West produced a corresponding consistent estimator of V when there is
autocorrelation and/or heteroskedasticity.
Note that White's estimator is only for the case of heteroskedasticity and autocorrelation.
White's estimator just modifies the covariance matrix estimator, not βˆ . The t-statistics,
F-statistics, etc will be modified, but only in a manner that is appropriate asymptotically.
So if we have heteroskedasticity or autocorrelation, whether we modify the covariance
matrix estimator or not, the usual t-statistics will be unreliable in finite samples (the
Nam T. Hoang
University of New England - Australia

4

University of Economics - HCMC - Vietnam


Advanced Econometrics

Chapter 7: Generalized Linear Regression Model

white's estimator of VarCov( βˆ ) only useful when n is very large, n → ∞ the Vˆ →
VarCov( βˆ ).
→ βˆ is still inefficient.
→ To obtain efficient estimators, use generalized lest squares - GLS
A good practical solution is to use White's adjustment, then use Wald test, rather than the
F-test for exact linear restrictions. Now let's turn to the estimation of , taking account of
the full process for the error term.

IV. GENERALIZED LEAST SQUARES ESTIMATION (GLS):
OLS estimator will be inefficient in finite samples.
1.


Assume E(εε') = n×Σn is known, positive definite.
→ there exists C j and λ j
n ×1

j = 1,2, ... ,n such that

n ×1

Σ Cj = Cj λj

n× n

n ×1

(characteristic vector C, Eigen-value λ).

n ×1 n ×1

→ before C'ΣC = Λ where C = [C1 C 2  C n ]
n ×1

λ1 0
0 λ
2
Λ=



0 0


0
 0

 

 λn 


Λ1 / 2



=




λ1

0

0


λ2









0

0



0 

0 
 

λn 

C ' ΣC = Λ = ( Λ1 / 2 )' ( Λ1 / 2 )


−1 / 2
C 'ΣC ( Λ−1 / 2 ) = ( Λ−1 / 2 )( Λ1 / 2 )( Λ1 / 2 )( Λ−1 / 2 ) = I
(
Λ
)




H'


H'



HΣ H ' = I



Σ = H −1 IH ' −1 = H −1 H ' −1



Σ = H'H

Nam T. Hoang
University of New England - Australia

H = Λ−1 / 2 C '

5

University of Economics - HCMC - Vietnam


Advanced Econometrics

Our model:

Chapter 7: Generalized Linear Regression Model


Y = Xβ + ε

Pre-multiply by H:

HY = 
HX β + H
ε


Y*



ε*

X*

Y * = X *β + ε *

ε* will satisfy all classical assumption because:
E(ε*ε*') = E[H(εε')H'] = HΣH' = I.
Since transformed model meets classical assumptions, application of OLS to (Y*, X*) data
yields BLUE.


βˆGLS = ( X * ' X * ) −1 X * ' Y *
= (X '
H ' H X ) −1 X ' 
H ' HY





Σ −1

Σ −1

βˆGLS = ( X ' Σ −1 X ) −1 X ' Σ −1Y

Moreover:

[

]

[

VarCov ( βˆGLS ) = ( X * ' X * ) −1 X * ' E (ε *ε * ' ) X * ( X * ' X * ) −1

]

= ( X * ' X * ) − 1 = ( X ' Σ −1 X ) −1

VarCov( βˆGLS ) = ( X ' Σ −1 X ) −1



βˆGLS ~ N [β , ( X ' Σ −1 X )]


Note that: βˆGLS is BLUE of βˆ → E ( βˆGLS ) = β
GLS estimator is just OLS, applied to the transformed model → satisfy all assumptions.
Gauss - Markov theorem can be applied
→ βˆGLS is BLUE of βˆ .
→ βˆOLS must be inefficient in this case.
→ Var ( βˆ j GLS ) ≤ Var ( βˆ j OLS ) .

Nam T. Hoang
University of New England - Australia

6

University of Economics - HCMC - Vietnam


Advanced Econometrics

Chapter 7: Generalized Linear Regression Model

Example:

σ 12 0

0 σ 22
Σ =
known
 


0

0

1 / σ 12
0

0
1 / σ 22
→ Σ −1 = 
 


0
 0

0

 0
  

 σ n2 


1 / σ 12
0

0
1 / σ 22
→H =
 



0
 0

H'H = Σ-1

1 / σ 12
0

0
1 / σ 22

HY =
 


0
 0
1 / σ 1

1/ σ 2
*
X = HX = 
 

1 / σ n

0 

0 



 

 1 / σ n2 


0 


0 


 

 1 / σ n2 

0  Y1  Y1 / σ 12 



0  Y2  Y2 / σ 22 
=Y*
=
      

  
 1 / σ n2  Yn  Yn / σ n2 





X 12 / σ 1
X 22 / σ 2

X n2 / σ n

 X 1k / σ 1 

 X 2k / σ 2 

 

 X nk / σ n 

Transformed model has each observations divided by σi:

 1
 Yi 
  = β1 
σi
σi 

X
X 

 + β 2  i 2  +  + β k  ik
 σi
 σi 



  εi 
 +  
 σi 

Apply OLS to this transformed equation → "Weighted Least Squares":
Let:

βˆ = GSL estimator.

εˆ = Y * − X * βˆGLS

σˆ =

εˆ' εˆ
n−k

Then to test: H0: R = q (F Wald test).
[ Rβˆ − q ]' [ R ( X * ' X * ) −1 R ' ]−1 [ Rβˆ − q ]
Fnr− k =

Nam T. Hoang
University of New England - Australia

r ~F
if H0 is true.
( r ,n − k )

σˆ 2


7

University of Economics - HCMC - Vietnam


Advanced Econometrics

Chapter 7: Generalized Linear Regression Model

[εˆc′εˆc − εˆ' εˆ ]
r
n −k

and F

=

εˆ' εˆ

r

(n − k )

where: εˆc = Y * − X * βˆc GLS

βˆc GLS = βˆGLS − ( X ' Σ −1 X ) −1 R ' [ R ( X ' Σ −1 X ) −1 R' ]−1 ( RβˆGLS − q)
is the "constrained" GLS estimator of .
2.

Feasible GLS estimation:

In practice, of course, Σ is usually unknown, and so βˆ cannot be constructed, it is not
feasible. The obvious solution is to estimate Σ, using some Σˆ then construct:

βˆGLS = ( X ' Σˆ −1 X ) −1 X ' Σˆ −1Y
A practical issue: Σ is an (n×n), it has n(n+1)/2 distinct parameters, allowing for
symmetry. But we only have "n" observations → need to constraint Σ. Typically Σ =

Σ(θ) where θ contain a small number of parameters.
Ex: Heteroskedasticity var(εi) = σ2(θ1+θ2Zi).

0
θ1 + θ 2 z1
 0
θ1 + θ 2 z n
Σ=




0
 0



0







 θ1 + θ 2 z n 


0

just 2 parameters to be estimated to form Σˆ .
Serial correlation:

 1

ρ
Σ= 1
 
 n −1
ρ

ρ
1


ρ

n −2

 ρ n−1 

 ρ n −2 
= Σ( ρ )


 

 1 

only one parameter to be estimated.



If Σˆ is consistent for Σ then will be asymptotically efficient for .
Of course to apply we want to know the form of Σ → construct tests.

Nam T. Hoang
University of New England - Australia

8

University of Economics - HCMC - Vietnam



×