Tải bản đầy đủ (.pdf) (645 trang)

CRC materials science and engineering handbook 4th ed james f shackelford et al CRC 2016

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (10.57 MB, 645 trang )


CRC
MATERIALS
SCIENCE and
ENGINEERING
HANDBOOK
FOURTH EDITION



CRC
MATERIALS
SCIENCE and
ENGINEERING
HANDBOOK
FOURTH EDITION
James F. Shackelford
Young-Hwan Han
Sukyoung Kim
Se-Hun Kwon

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business


CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742


© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20150316
International Standard Book Number-13: 978-1-4822-1656-1 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at

and the CRC Press Web site at



Contents
Preface...................................................................................................................... vii
Authors...................................................................................................................... ix

Section I  Traditional Materials


1

Metals

2

Ceramics

3

Glasses

4

Polymers

5

Composites

6

Semiconductors

Physical Properties....................................................................................................................................... 3
Chemical Properties..................................................................................................................................180
Physical Properties................................................................................................................................... 339
Chemical Properties................................................................................................................................. 378
Physical Properties....................................................................................................................................419
Chemical Properties.................................................................................................................................460

Physical Properties....................................................................................................................................461
Chemical Properties................................................................................................................................. 535
Physical Properties....................................................................................................................................561
Chemical Properties..................................................................................................................................581
Physical Properties................................................................................................................................... 583
Chemical Properties................................................................................................................................. 584

Section II  Advanced Materials

7

Low-Dimensional Carbons and Two-Dimensional Nanomaterials

Physical Properties....................................................................................................................................591
Chemical Properties................................................................................................................................. 595

v


vi

Contents

8

MAX Phases

9

Amorphous Metals


Physical Properties................................................................................................................................... 597
Chemical Properties.................................................................................................................................606
References..................................................................................................................................................607
Physical Properties.................................................................................................................................... 611
References...................................................................................................................................................619

Index���������������������������������������������������������������������������������������������������������������������� 625


Preface
This fourth edition of the CRC Materials Science and Engineering Handbook builds on the previous edition that provided a comprehensive, single-volume source of data on a wide range of ­engineering materials. In this regard, we are indebted to Dr. William Alexander who was a coeditor of each of the first
three editions and Dr. Jun Park who was a coeditor for the second edition. Those previous editions featured data verified through major professional societies in the materials field, such as ASM International
and the American Ceramic Society. The third edition is the basis of Section I (Traditional Materials) of
this fourth edition. While the third edition was organized according to ­categories of properties, this
edition has been organized according to categories of materials: metals, ceramics, glasses, polymers,
composites, and semiconductors. For each of these material types, properties have been sorted according to two broad categories: physical and chemical. The correspondence between these two categories
and the more detailed list of properties found in the third edition is as follows:
Physical Properties:
Structure of Materials
Thermal Properties of Materials
Mechanical Properties of Materials
Electrical Properties of Materials
Optical Properties of Materials
Chemical Properties:
Composition of Materials
Thermodynamic and Kinetic Data
Water Absorption and Corrosion
This edition provides a new Section II (Advanced Materials) corresponding to some of the most
actively studied constituents in contemporary materials research: low-dimensional carbons, twodimensional nanomaterials, MAX phases, and amorphous metals. These tables were generated by

the coeditors from Pusan National University and Yeungnam University in Korea, who also wish to
acknowledge the considerable effort of their students:
Pusan National University:
Ms Zhixin Wan, Graduate School of Convergence Science
Mr Woo-Jae Lee, Graduate School of Convergence Science
Mr Seung-Il Jang, Graduate School of Convergence Science
Ms Eun-Young Yun, Graduate School, School of Materials Science and Engineering
Ms Ha-Jin Lee, Graduate School, School of Materials Science and Engineering
Mr Dong-Kwon Lee, Graduate School, School of Materials Science and Engineering

vii


viii

Preface

Yeungnam University:
Mr Duk-Yeon Kim, Graduate School, School of Materials Science and Engineering
Mr Jae Hui Jeon, Graduate School, School of Materials Science and Engineering
As appropriate for the Advanced Materials section, the sources of the data in the contemporary
research literature are detailed, including extensive reference sections at the end of Chapters 8 and 9. It
is the editors’ hope that the Advanced Materials section will be useful to the research community and
facilitate further development and applications of these materials.
Finally, the editors are grateful to CRC editor Allison Shatkin for her encouragement and support
throughout the production of this new edition. She and the entire CRC team could not have been more
helpful.


Authors

James F. Shackelford earned BS and MS in ceramic engineering from the University of Washington,
Seattle, Washington and a PhD in materials science and engineering from the University of California
(UC), Berkeley, California. Following a postdoctoral fellowship at McMaster University in Canada, he
joined the University of California (UC), Davis, where he is currently distinguished professor emeritus in the Department of Chemical Engineering and Materials Science. For many years, he served as
the associate dean for undergraduate studies in the College of Engineering and later as the director of
the University Honors Program that serves students from a wide spectrum of majors. Dr. Shackelford
also served as associate director for education for the National Science Foundation-funded Center for
Biophotonics Science and Technology and as faculty assistant to the director of the McClellan Nuclear
Research Center of UC Davis. He teaches and conducts research in the structural characterization and
processing of materials, focusing on glasses and biomaterials. His current focus in teaching is using
online technologies. A member of the American Ceramic Society and ASM International, he was
named a Fellow of the American Ceramic Society in 1992 and a Fellow of ASM International in 2011.
Dr. Shackelford received the Outstanding Educator Award of the American Ceramic Society in 1996.
In 2003, he received a Distinguished Teaching Award from the Academic Senate of the University of
California, Davis. In 2012, he received the Outstanding Teaching Award of the College of Engineering at
UC Davis and, in 2014, an Outstanding Service Award from UC Davis Extension. He has published well
over 100 archived papers and books, including Introduction to Materials Science for Engineers now in its
8th edition and which has been translated into Chinese, German, Italian, Japanese, Korean, Portuguese,
and Spanish.
Young-Hwan Han earned BS and MS degrees in metallurgical engineering from the Sung Kyun Kwan
University in Korea and MS and PhD degrees in materials science and engineering from the University
of Nevada, Reno, Nevada. He is currently a foreign professor in the School of Materials Science and
Engineering at Yeungnam University, Korea. For many years, he worked as a postdoctoral research
associate at UC Davis and UC Berkeley. Dr. Han also worked as an invited professor and research professor at Sung Kyun Kwan University, Keimyung University, and Pusan National University in Korea.
He teaches materials science courses and conducts research in the structural characterization and processing of materials, focusing on nanoceramics. He has published over 60 technical papers and translated books into Korean, including Introduction to Materials Science for Engineers, Seventh Edition by
James F. Shackelford.
Sukyoung Kim earned a BS in ceramic engineering from the Inha University, Korea and an MS in
ceramic engineering at the Seoul National University, Korea and at the New York State College of
Ceramics at Alfred University, New York. He earned a PhD in materials science and engineering at the
University of Vermont, Burlington, Vermont in 1990. After graduation, he was a postdoctoral fellow at

the University of Vermont Hospital, where he was involved in the development and characterization of
ix


x

Authors

surface hard coatings on ceramics and wear studies on ceramic hip and knee joint implants. In 1991,
he joined the biomaterials group in the Center for Biomaterials at the University of Toronto, Ontario,
Canada. At that time, he was involved in a project for the development of biodegradable ceramic–
polymer composite materials for orthopedic and dental applications with Dr. Pilliar and Dr. Smith.
In 1994, Dr. Kim joined the faculty of the School of Materials Science and Engineering at Yeungnam
University, Korea. Dr. Kim is a member of several associations/societies such as the American Society
for Biomaterials, Canadian Society for Biomaterials, Korean Society for Biomaterials, Korean Ceramic
Society, Korean Tissue Engineering and Regenerative Medicine Society, and the International Society
for Ceramics in Medicine. In addition, Dr. Kim served as a chairman, organizing the Bioceramics 22
meeting in 2009 in Daegu, Korea. In 2012, he organized the 29th International Korea–Japan Seminar
on Ceramics, also in Daegu, Korea. Currently, he is an international executive committee member of
the International Society of Ceramics in Medicine (ISCM). His research interests include the synthesis
of biodegradable bioceramics and the development of porous ceramics for biodegradable ceramic bone
substitutes, drug delivery, and peptide loading. He is also studying bioceramic coatings on dental and
orthopedic metallic implants for improving osseointegration.
Se-Hun Kwon earned BS, MS, and PhD degrees and served as a postdoctoral associate in materials science and engineering at the Korea Advanced Institute of Science and Technology (KAIST). In
2009, he joined the Pusan National University (PNU), Korea, where he is currently associate professor in the School of Materials Science and Engineering. Dr. Kwon also worked as an adjunct professor of the School of Convergence Science at PNU. He is a member of several societies including the
American Ceramic Society (ACerS), Electrochemical Society (ECS), American Vacuum Society (AVS),
Material Research Society of Korea (MRS-K), the Korean Vacuum Society (KVS), the Korean Institute
of Metals and Materials (KIM), and the Korean Institute of Surface Engineering (KISE). His research
group, “Surface Materials Laboratory,” focuses on the design and synthesis of multifunctional surfaces
and interfacial layers using atomic layer deposition (ALD) techniques and on the fabrication of highly

ordered nanostructures for semiconductors, photovoltaic devices, and nano-devices by utilizing hybrid
bottom-up and top-down fabrication approaches. Dr. Kwon has published over 70 archived papers and
over 20 published patents.


Traditional
Materials

I



1Metals............................................................................................................................................... 3



2Ceramics...................................................................................................................................... 339



3Glasses.......................................................................................................................................... 419



4Polymers...................................................................................................................................... 461



5Composites...................................................................................................................................561




6Semiconductors.......................................................................................................................... 583

Physical Properties  •  Chemical Properties
Physical Properties  •  Chemical Properties
Physical Properties  •  Chemical Properties
Physical Properties  •  Chemical Properties
Physical Properties  •  Chemical Properties
Physical Properties  •  Chemical Properties

1



1
Metals
Physical Properties
TABLE 1.1  Electronic Structure of Selected Elements
At.
No.
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Electronic Configuration
Element
Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen

Oxygen
Fluorine
Neon
Sodium
Magnesium
Aluminum
Silicon
Phosphorus
Sulfur
Chlorine
Argon
Potassium
Calcium
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron
Cobalt
Nickel
Copper

Sym

1s

2s

2p


3s

3p

H
He
Li
Be
B
C
N
O
F
N
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca
Sc
Ti
V
Cr
Mn

Fe
Co
Ni
Cu

1
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

1
2
2
2
2
2
2
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

1
2
3
4
5
6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

1

2
2
2
2
2
2
2
.
.
.
.
.
.
.
.
.
.
.

1
2
3
4
5
6
.
.
.
.
.

.
.
.
.
.
.

3d

4s

1
2
3
5
5
6
7
8
10

1
2
2
2
2
1
2
2
2

2
1

4p

4d

4f

5s

5p

5d

5f

6s

6p

6d

7s

(Continued)

3



4

CRC Materials Science and Engineering Handbook

TABLE 1.1 (Continued)  Electronic Structure of Selected Elements
At.
No.

Electronic Configuration
Element

Sym

1s

2s

2p

3s

3p

3d

4s

4p

4d


30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Zinc
Gallium
Germanium
Arsenic
Selenium
Bromine
Krypton
Rubidium
Strontium
Yttrium
Zirconium

Niobium
Molybdenum
Technetium
Ruthenium
Rhodium
Palladium

Zn
Ga
Ge
As
Se
Br
Kr
Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

10
10
10
10
10

10
10
.
.
.
.
.
.
.
.
.
.

2
2
2
2
2
2
2
.
.
.
.
.
.
.
.
.
.


1
2
3
4
5
6
.
.
.
.
.
.
.
.
.
.

1
2
4
5
6
7
8
10

47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Silver
Cadmium
Indium
Tin

Antimony
Tellurium
Iodine
Xenon
Cesium
Barium
Lanthanum
Cerium
Praseodymium
Neodymium
Promethium
Samarium
Europium
Gadolinium
Terbium
Dysprosium
Holmium
Erbium
Thulium
Ytterbium
Lutetium
Hafnium
Tantalum
Tungsten

Ag
Cd
In
Sn
Sb

Te
I
Xe
Ce
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta
W

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

10
10
10
10
10
10
10
10
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

4f

5s

5p

5d

5f

6s

6p

6d


7s

1
2
2
2
1
1
1
1
1

2
3
4
5
6
7
7
9
10
11
12
13
14
14
14
14
14


1
2
2
2
2
2
2
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


1
2
3
5
5
6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

1

1


1
2
3
4

1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
(Continued)


5


Metals
TABLE 1.1 (Continued)  Electronic Structure of Selected Elements
Electronic Configuration

At.
No.

Element

Sym

1s

2s

2p

3s

3p

3d

4s

4p

4d


4f

5s

5p

5d

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97
98
99
100
101
102
103

Rhenium
Osmium
Iridium
Platinum
Gold
Mercury
Thallium
Lead
Bismuth
Polonium
Asatine
Radon
Francium
Radium
Actinium
Thorium
Protoactinium
Uranium
Neptunium
Plutonium
Americium
Curium

Berkelium
Californium
Einsteinium
Fermium
Mendelevium
Nobelium
Lawrencium

Re
Os
Ir
Pt
Au
Hg
Tl
Pb
Bi
Po
At
Rn
Fr
Ra
Ac
Th
Pa
U
Np
Pu
Am
Cm

Bk
Cf
Es
Fm
Md
No
Lw

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

14
14
14
14
14
14
14
14
14
14
14
14
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

5
6
9
9
10
10
10
10
10
10
10
10
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

5f

6s

6p

6d

7s

2
2

2
3
4
6
7
7
9
10
11

12
13
14
14

1
1
2
2
2
2
2
2
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

1
2
3
4
5
6
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

1
2
1
1

1

1

1

1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2


6

CRC Materials Science and Engineering Handbook
TABLE 1.2  Available Stable Isotopes of the Elements
Element


Mass No.

Natural Abundance (%)

Hydrogen

1
2

99.985
0.015

Helium

3
4

0.00013
≈100.0

Lithium

6
7

7.42
92.58

Beryllium


9

100.0

Boron

10
11

19.78
80.22

Carbon

12
13

98.89
1.11

Nitrogen

14
15

99.63
0.37

Oxygen


16
17
18

99.76
0.04
0.20

Fluorine

19

Neon

20
21
22

Sodium

23

Magnesium

24
25
26

Aluminum


27

Silicon

28
29
30

Phosphorus

31

Sulfur

32
33
34
36

95.0
0.76
4.22
0.014

Chlorine

35
37


75.53
24.47

Argon

36
38
40

0.34
0.06
99.60
(Continued)

100.0
90.92
0.26
8.82
100.0
78.70
10.13
11.17
100.0
92.21
4.70
3.09
100.0


7


Metals
TABLE 1.2 (Continued)  Available Stable Isotopes of the Elements
Element

Mass No.

Natural Abundance (%)

Potassium

39
40a
41

93.1
0.01
6.9

Calcium

40
42
43
44
46
48

96.97
0.64

0.14
2.06
0.003
0.18

Scandium

45

Titanium

46
47
48
49
50

7.93
7.28
73.94
5.51
5.34

Vanadium

50b
51

0.24
99.76


Chromium

50
52
53
54

4.31
83.76
9.55
2.38

Manganese

55

Iron

54
56
57
58

Cobalt

59

Nickel


58
60
61
62
64

67.84
26.23
1.19
3.66
1.08

Copper

63
65

69.09
30.91

Zinc

64
66
67
68
70

48.89
27.81

4.11
18.57
0.62

Gallium

69
71

60.4
39.6
(Continued)

100.0

100.0
5.82
91.66
2.19
0.33
100.0


8

CRC Materials Science and Engineering Handbook
TABLE 1.2 (Continued)  Available Stable Isotopes of the Elements
Element

Mass No.


Natural Abundance (%)

Germanium

70
72
73
74
76

20.52
27.43
7.76
36.54
7.76

Arsenic

75

Selenium

74
76
77
78
80
82


0.87
9.02
7.58
23.52
49.82
9.19

Bromine

79
81

50.54
49.46

Krypton

78
80
82
83
84
86

0.35
2.27
11.56
11.55
56.90
17.37


Rubidium

85
87

72.15
27.85

Strontium

84
86
87
88

0.56
9.86
7.02
82.56

Yttrium

89

Zirconium

90
91
92

94
96

Niobium

93

Molybdenum

92
94
95
96
97
98
100

100.0

100.0
51.46
11.23
17.11
17.40
2.80
100.0
15.84
9.04
15.72
16.53

9.46
23.78
9.63
(Continued)


9

Metals
TABLE 1.2 (Continued)  Available Stable Isotopes of the Elements
Element

Mass No.

Natural Abundance (%)

Ruthenium

96
98
99
100
101
102
104

5.51
1.87
12.72
12.62

17.07
31.61
18.60

Rhodium

103

Palladium

102
104
105
106
108
110

0.96
10.97
22.23
27.33
26.71
11.81

Silver

107
109

51.82

48.18

Cadmium

106
108
110
111
112
113
114
116

1.22
0.88
12.39
12.75
24.07
12.26
28.86
7.58

Indium

113
115c

4.28
95.72


Tin

112
114
115
116
117
118
119
120
122
124

0.96
0.66
0.35
14.30
7.61
24.03
8.58
32.85
4.72
5.94

Antimony

121
123

57.25

42.75

Tellurium

120
122
123
124

100.0

0.09
2.46
0.87
4.61
(Continued)


10

CRC Materials Science and Engineering Handbook
TABLE 1.2 (Continued)  Available Stable Isotopes of the Elements
Element

Mass No.
125
126
128
130


Natural Abundance (%)
6.99
18.71
31.79
34.48

Iodine

127

100.0

Xenon

124
126
128
129
130
131
132
134
136

Cesium

133

Barium


130
132
134
135
136
137
138

0.101
0.097
2.42
6.59
7.81
11.30
71.66

Lanthanum

138
139

0.09
99.91

Cerium

136
138
140
142d


0.193
0.250
88.48
11.07

Praseodymium

141

Neodymium

142
143
144
146
148
150

27.11
12.17
23.85
17.22
5.73
5.62

Samarium

144
147e

148f
149g
150
152
154

3.09
14.97
11.24
13.83
7.44
26.72
22.71
(Continued)

0.096
0.090
1.92
26.44
4.08
21.18
26.89
10.44
8.87
100.0

100.0


11


Metals
TABLE 1.2 (Continued)  Available Stable Isotopes of the Elements
Element

Mass No.

Natural Abundance (%)

Europium

151
153

47.82
52.18

Gadolinium

152h
154
155
156
157
158
160

0.20
2.15
14.73

20.47
15.68
24.87
21.90

Terbium

159

Dysprosium

156i
158
160
161
162
163
164

Holmium

165

Erbium

162
164
166
167
168

170
186

Thulium

169

Ytterbium

168
170
171
172
173
174
176

0.135
3.03
14.31
21.82
16.13
31.84
12.73

Lutetium

175
176j


97.40
2.60

Hafnium

174k
176
177
178
179
180

0.18
5.20
18.50
27.14
13.75
35.24
(Continued)

100.0
0.052
0.090
2.29
18.88
25.53
24.97
28.18
100.0
0.136

1.56
33.41
22.94
27.07
14.88
1.59
100.0


12

CRC Materials Science and Engineering Handbook
TABLE 1.2 (Continued)  Available Stable Isotopes of the Elements
Element

Mass No.

Natural Abundance (%)

Tantalum

180
181

0.012
99.988

Tungsten

180

182
183
184
186

0.14
26.41
14.40
30.64
28.41

Rhenium

185
187l

37.07
62.93

Osmium

184
187
188
190
192

0.018
1.64
13.3

26.4
41.0

Iridium

191
193

37.3
62.7

Platinum

190m
192
194
195
196
198

0.013
0.78
32.9
33.8
25.3
7.2

Gold

197


100.0

Mercury

196
198
199
200
201
202
204

0.146
10.02
16.84
23.13
13.22
29.80
6.85

Thallium

203
205

29.50
70.50

Lead


204
206
207
208

1.48
23.6
22.6
52.3

Bismuth

209

100.0

Thorium

232nr

100.0
(Continued)


13

Metals
TABLE 1.2 (Continued)  Available Stable Isotopes of the Elements
Element


Mass No.

Uranium

Natural Abundance (%)

234or
235pr
238qr

0.0006
0.72
99.27

Source: Wang, Y. (Ed.), Handbook of Radioactive Nuclides, The Chemical
Rubber Co., Cleveland, 1969, p. 25.
a Half-life = 1.3 × 109 year.
b Half-life  >1015 year.
c Half-life = 5 × 1014 year.
d Half-life = 5 × 1014 year.
e Half-life = 1.06 × 1011 year.
f Half-life = 1.2 × 1013 year.
g Half-life = 4 × 1014 year.
h Half-life = 1.1 × 1014 year.
i Half-life = 2 × 1014 year.
j Half-life = 2.2 × 1010 year.
k Half-life = 4.3 × 1015 year.
l Half-life = 4 × 1010 year.
m Half-life = 6 × 1011 year.

n Half-life = 1.4 × 1010 year.
o Half-life = 2.5 × 105 year.
p Half-life = 7.1 × 108 year.
q Half-life = 4.5 × 109 year.
r Naturally occurring.

TABLE 1.3  Periodic Table of the Elements
1
2
IA
1
H IIA
3
4
Li Be
11 12
Na Mg
19 20
K Ca
37 38
Rb Sr
55 56
Cs Ba
87 88
Fr Ra

3

4


5

6

7

IIIB
21
Sc
39
Y

IVB
22
Ti
40
Zr
72
Hf

VB
23
V
41
Nb
73
Ta

VIB
24

Cr
42
Mo
74
W

VIIB
25
Mn
43
Tc
75
Re

57
La
89
Ac

58
Ce
90
Th

59
Pr
91
Pa

60

Nd
92
U

61
Pm
93
Np

8

----26
Fe
44
Ru
76
Os

62
Sm
94
Pu

9

VIII
27
Co
45
Rh

77
Ir

63
Eu
95
Am

10

----28
Ni
46
Pd
78
Pt

64
Gd
96
Cm

11

IB
29
Cu
47
Ag
79

Au

65
Tb
97
Bk

12

13

14

15

16

17

IIB
30
Zn
48
Cd
80
Hg

IIIA
5
B

13
Al
31
Ga
49
In
81
Tl

IVA
6
C
14
Si
32
Ge
50
Sn
82
Pb

VA
7
N
15
P
33
As
51
Sb

83
Bi

VIA
8
O
16
S
34
Se
52
Te
84
Po

VIIA
9
F
17
Cl
35
Br
53
I
85
At

66
Dy
98

Cf

67
Ho
99
Es

68
Er
100
Fm

69
Tm
101
Md

70
Yb
102
No

71
Lu
103
Lw

18
VIIA
2

He
10
Ne
18
Ar
36
Kr
54
Xe
86
Rn


14

CRC Materials Science and Engineering Handbook

TABLE 1.4  Periodic Table of Elements in Metallic Materials
1
IA
3
Li
11
Na
19
K
37
Rb
55
Cs

87
Fr

2
IIA
4
Be
12
Mg
20
Ca
38
Sr
56
Ba
88
Ra

3

4

5

6

IIIB
21
Sc
39

Y

IVB
22
Ti
40
Zr
72
Hf

VB
23
V
41
Nb
73
Ta

VIB
24
Cr
42
Mo
74
W

57
La
89
Ac


58
Ce
90
Th

59
Pr
91
Pa

60
Nd
92
U

7

VIIB
25
Mn
43
Tc
75
Re

61
Pm
93
Np


8

9

----- VIII
26
27
Fe
Co
44
45
Ru
Rh
76
77
Os
Ir

62
Sm
94
Pu

63
Eu
95
Am

10


11

----- IB
28
29
Ni Cu
46
47
Pd Ag
78
79
Pt
Au

64
Gd
96
Cm

65
Tb
97
Bk

12

IIB
30
Zn

48
Cd
80
Hg

66
Dy
98
Cf

13

14

IIIA
5
B
13
Al
31
Ga
49
In
81
Tl

IVA

VA


50
Sn
82
Pb

51
Sb
83
Bi

67
Ho
99
Es

68
Er
100
Fm

15

69
Tm
101
Md

16
VIA


70
Yb
102
No

17

18
VIIA

VIIA

71
Lu
103
Lw

TABLE 1.5  Periodic Table of Elements in Superconducting Metals
1
IA

2

3

4

5

6


7

8

9

10

11

12

IIA
4
Be

13
IIIA

IIIB

57
La

IVB
22
Ti
40
Zr


90
Th

VB
23
V
41
Nb
73
Ta

91
Pa

VIB

VIIB

-----

42
Mo
74
W

43
Tc
75
Re


44
Ru
76
Os

VIII

77
Ir

----- IB

IIB
30
Zn
48
Cd
80
Hg

13
Al
31
Ga
49
In

14


15

IVA

VA

50
Sn
82
Pb

51
Sb

16

17

VIA

VIIA

18
VIIA


×