Tải bản đầy đủ (.pdf) (13 trang)

DSpace at VNU: A three-dimentional simulation of the tidally modulated plume in the rever entrance region

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.99 MB, 13 trang )

VNU JOURNAL OF SCIENCE. Nat . S c i. & Tech . T XIX. N01. 2003

A T H R E E - D I M E N T I O N A L S IM Ư L A T IO N O F T H E T I D A L L Y
M O D Ư L A T E D P L Ư M E IN T H E RIVKR E N T R A N C E R E G I O N
N g u y ê n Minh H u a n
D e p a r tm e n t o f H y d r o -M e te o r o lo g y a n d O c e a n o g r a p h y
C o llcg e o f S c ie n c e , V N U

A s t r a c t . A three dim cntionaỉ mathcmatical model ùH presented to computc the
ivatcr levcl, velocity and salinity distributions in stratified Coastal Lvaters a n d
tid a lly m o d u la te d p lu m c o f th c rivcr en tra n cc region T h e m o d c ỉ sy s tc m c o n s is ts
of hydrodynamìc, transport and turbulence closure modcls In the hydrodyn am ìc
m o d e l co m p o n cn t, th e N a v ic r -S to k c s cq u a tio n s a re so lved iv ith th e h y d r o s ta tíc
a s s u m p tio n (Itìd th e B o u ssin csq a p p ro xim a tio n . T kc tr a n s p o r t m o d cl coruĩists o f
th c ivatcr tc m p c ra tu rc a n d s a lin ity tra n sp o rt mocleLs. T h e v a r ia tio n s in th e Lưatcr
te m p c r a tu r e a n d s a lin ity in fĩu en ce th e Uỉater d e n sity , a n d in rc tu r n th e velo c ity
fic ld . T h e e q u a tio n s o f m o m e n tu m a n d c o n tin u ity arc soỉvccl n u m e r ic a lly u s in g
th e m o d c -s p littin g tcch n iq u e. A s th e tu rb u len ce m odel, a o n e-eq u a tio n k -e p siỉo n
tu rb u le n c e m o d e l is a p p lied . ỉn th e tra n sp o rt rnodel th e th r c e -d im c n tio n a l
tíd v c c tiv c d iffu 8 Ìo n e q u a tio n are solved. The m o d el is a p p lie d to a rec ta n g le
b a s in en clo sed by a Coastal b o u n d a ry a n d 'th ree opcn sea b o u n d a ries, tid a l
fo r c ỉn g is im p o se d in th c fo rm o f CI /ric tio n less K elvin w a ve w ith o Ị fr c q u e n c y
c n te r in g a t th e ivestcrn b o u n d a rỵ, frc sh w a te r lo a d in g w a s ta k c n in to a c c o u n t a t
lo cu tio n o f one river m o u th , Uỉhich rcached a to ta l o f lOOOm1 s 1

1. I n t r o d u c t i o n
A n e stu a r y is an a r ea o f in ter a c tio n betvveen s a lt a n d ír e s h vvater. T ho nnơ)§t
c o m m o n d e fin itio n u sed t h a t s t a t e s "an estu a ry is a s e m i-e n c lo s e d C oastal b o d y

of


vvater vvhich h a s a free c o n n e c tio n w ith the open sea and vvithin vvhich s e a w a t e r is
m e a s u r a b ly d ilu te d w ith fresh w a te r derived from ia n d d r a in a g e ”. T h e e s t u a r i m e

inHuence may extend to nearshore Coastal waters vvhere seavvater is diluted by Ịaind
d r a in a g e but b ey o n d th e c o n íìn e s o f e m e r g e n t land - m a s s e s .
T h e c la ss ic d e fin itio n of an estu a r y in c lu d e s t h e s e th r e e c h a r a c t e r is t u c s :
s e m ie n c lo s e d , free c o n n e c tio n vvith th e open sea , and ír e s h w a te r d e r iv ed from laind
d r a in a g e .

T hese

th r e e

c h a r a c te r is tic s

govern

th e

c o n c e n tr a tio n

of

s e a w a t; e r ,

therefore, s a lin ity is th e key to e s tu a r in e c la ss iíìc a tio n . T h e m ixing o f fresh V, a \ter
and

sea w ater


p rodu ces

d e n s ity

g r a d ie n ts

th a t

d r iv e

d is tin c t iv e

e stu a r in e

( g r a v ita tio n a l) c irc u la tio n p a tte r n s.
T h e s e c irc u la tio n ancỉ s h o a lin g p a tte rn s differ w ith e a ch e s t u a r y sy stc e m
accorcỉing to th e d ep th , tid a l a m p litu d e and p h a se at t h e m o u th , and th e a m o u n lt of
fresh w a te r flo w in g in to th e basin.

30


A t h r c c - d i m c n t i o n a l s ir n n la t ÌOĨI o f th c.

31

T ho tid e t h a t a p p r o a c h e s t h e m ou th of th e e s tu a r y is th e r e s u lt o f all th e
a str o n o m ic a l, m e te ọ r o lo g ic a l, se is m ic , and m a n -m a d e íactors a ffe c tin g am plit.ude
and (Yequency o f t h e vvave. A s th e tide e n te r s th e e s tu a r y , it is g r ea tly in flu e n c e d bv
th e river d e p th , w id th , an d d isc h a r g e.

S u p e r im p o s e d on t h is tid a l action is th e fr e s h w a t e r /s a ltw a te r in ter a c tio n . S a lt
w ater w ill a d v a n c e up a s y s t e m u n til th e tidal flơw can no longer o v e rc o m e th e
riverflow. D e p e n d in g on th e r ela tio n s h ip betvveen tid al flow a n d river flow, th e
estu a r y c a n be c la s s if ie d by its s a lin ity s tr u c tu r e a n d r e s u ltin g c irc u la tio n p a tte r n s.

2. T h e o r e t i c a l c o n s i d e r a t i o n s
To s im u lt e w ind d r iv e n circ u la tio n and d e n s ity c u r r e n ts th a t occur in Coastal
w a ters e s p e c ia lly in e s t u a r y s tr a tifie d bv s a lin itv and te m p e r a tu r e la y e r s c a u s in g
s ig n iíìc a n t la te r a l d e n s ity g r a d ie n ts , th r e e -d im e n tio n a l m a th e m a tic a l m odel are
n ecessa ry . T he d e v e lo p e đ th r e e -d im e n tio n a l

m a th e m a tic a l

model is c a p a b le of

co m p u tin g th e w a te r lev el a n d vvater particle v e lo city clistribution in th r e e princip al
directio n s

by

s o lv in g

ap p ro x im a tio n

and

th e

th e


N a v ie r -S to k e s

a s s u m p tio n

of

e q u a tio n s

ve rtica l

u s in g

h y d ro sta tic

th e

B o u s s in e s q

e q u ilib r iu m ,

th e

c o n tin u itv e q u a tio n an d e q u a tio n s of te m p e r a tu r e and s a lin ity .

2.1 G o v e r n in g eiỊ uations o f the m odel
T h e b a sic e q u a t io n s in th e th ree-cỉim en sion a l c a r te s ia n co o rd in a te s y s t e m are:
du

cu
— + // —


ct

dx

cu

du

d/ 1 y\ ỉ

ri ỵ

r

õp

0

p tí dx

õ

+ V — + Ví' — - A' = —

Đz

dv
«h'
cv

—- + // — + V

dx
dy

õv
d2

1

——
-+

1 dp

.
~

(1
dz

p(] õ y

cu
T ortz

d_

du


dz

( 2 . 1)

ơy

dx

+~

rx

r*y +

õy

(2 .2 )

yy

<ỉ

(2.3)

~\

(z
du
dx


dv
ôy

=0

(2.4)

1

dJ

d

ÕT
?T
cT

— + tỉ——+ V ——+ U’---oí cx (>V
02

--- --------- - + ---

ds

PS

d.S

ơ (


cỉ

rx

Õz

Õz \

(7s

-----+
5 . I I -----■> + V’ —

+ H' -—

A) c p d z

dz



ar
õx

■H

(~ :x

~ <• \
ô (

ÕS)
ò
ÕS)
+—
-T- -t- ---+
s
11 X "
d x { 11 ~õ x j õ y
5z

ar
ày

7/

(2.5)

ôy

(2 . 6 )

vvhere (u ,v tw ) a r e t h e c o m p o n e n ts of th e c u r r e n t , T d e n o te s t h e t e m p e r a t u r e , s th e
s a l i i i t y , f = 2 0 s i n 0 t h e C oriolis íreq u en cy, ũ

=271/86164 racl/s th e r o ta tio n


N guy en Minh Hu an

32


(Yequencv of t h e E a rth , g t h e a cceleratio n o f grav ity, p t h e p r e s s u r e , VT and ẢT th e
v e r tic a l

ed d y

v is c o s ity

and

diffusion co effic ien ts,

Ản th e

h o r iz o n ta l

diffusion

c o e ffic ie n t for s a ỉin it y a n d te m p e r a tu r e , p th e d e n s ity , Po a r e fe r e n c e d e n s ity , cft th e
s p e c iíic h e a t o f s e a w a t e r at c o n s ta n t p r e ssu r e and 1 (x, y, z, t) so la r irracliance.
T h e h o r iz o n ta l c o m p o n c n ts of th e s tr e s s te n s o r are d e fin e d by
■5

-2 v

yx

XV'

= V',


du

(2.7)

11 c x

du

ôv

dV

õx

( 2 .8 )

(2.9)
ỡy
w here

VH

is t h e h o r iz o n ta l diffusion coefficien t for m o m e n tu m .

T h e n u m e r ic a l s o lu tio n s o f th e m odel e q u a tio n s are g r e a t ly sim p liíled by
in tr o d u c in g a n e w v e rtica l coo rd in a te th a t tr a n s íb r m s both th e su rface and th e
b o tto m into c o o r d in a te o f su r fa c e s (P h illip s 19Õ7).

1


Suríàce ơ

Bottoni o

0

u

F igure 1.1. T he a-coorcỉinate transfom ation in th e vertical
T h e fo llo w in g c o o r d in a te tra n sfo rm a tio n is applied:
(t*. X*, y*, z*) = ự, X, y, Lf(a)),

(2 .10 )

vvhere
ơ =

z +h

z +h

c +h =1 T

( 2 . 11 )

is t h e c o m m o n ly usecỉ a -c o o r d in a te v a r y in g b e tw e e n 0 at th e bottom and 1 at the
s u r ía c e . T a k in g /(0 ) = 0 a n d / ’( 1 ) = 1 th e e q u a tio n o f th e b otto m ta k e s th e sim ple



A t hrcc-dirtient iotial simulation o f the.

33

form z* = 0 w h ile t h e m o v in g su rface tr a n sío r m s in to z* = L. T h is is íu r th e r
illu str a te d in F ig u r e 1 . 1 .
The

t r a n s ío r m e d

v e r s io n s

of

th e

e q u a tio n s

of

h o rizo n ta l

m o m e n tu m ,

h y d ro sta tic e q u iỉib r iu m , te m p e r a tu r e , s a lin ity and c o n tin u ity are g iv e n by

I c
>
I C
(:

—7 Ụu) + ^7 - ^ ụ i r
7 (Ci't
J ũx
..
=- » -p r r X

\

*/*« „
l £ ' Vj
t - 4 + Q\ + ,
~r

I
pu

õx

ũ , ,

./

x ì

c X

lí*

J


J

1

. .

-7 — r ( »

+ 7

J rí

0

,

V

1

r
T
1 õ
- ~ ự v ) + -7
J cv
J (2

7

(-/w v ) + — -


1 r‘/ >,

^

1

p í I^r r v

« - p ĩ - - - 7 - * r - f + c>; + -7 —

(■>'

( 2 . 12)

J õz*

v

0
7

J cx

cC

D

cz


du

/>i, (>>'

J (í:


v) +

fu

(2.13)

VJ d z ,

L Ũ S l = />

(2.14)

(V

J

+ -■!/7 ;ạ
d ...
V

+ 77 7 7 ^

J dt


_L -ẼL I g
Jp íi

dz’

c p

L A
7 / H r> •
./ d.v
^ >



~ G / .Ĩ ) + -ị—

1 ổ íJki

1

(^.S-) +

J ôx

./ rV
í)

J cy


Xi

(2.15)

dĩ'

Ỡ7' '

L_L
./ í V

J dt

JÀT

J dz*

+ - 7/ #-<■*•*•>
^7

.\

r-s
ỡr

1

-Ạ r(JvS ) + 1 ị ( V S )

J dy

a

J dx'

J dz

, \

JẢ II

ÕS
,

dx

fl.v

(2.16)


Nguyên Minh Hucunì

34

2.2. T u r b u l e n c e s c h e m e s
O n e of t h e m o s t in t r ic a t e p r o b le m s in o c e a n o g r a p h ic m o d ellin g is a n a đ e q u a tee
p a r a m e te r is a tio n o f v e r tic a l e x c h a n g e p rocesses. In th e p r e s e n t m od el th ey

a.ree


r e p r e s e n te d

tvvco

th r o u g h

th e

ed d y

co effic ien ts

VT

and

Ả r.

V a lu e s

for

th e s e

p a r a m e te r s a re to b e p r o v id e d by a tu r b u le n c e s c h e m e .
A large v a r ie t y o f tu r b u le n c e p a r a m e te r is a tio n s w ith a s u b s t a n t ia l r a n g e o:>f
c o m p le x ity h a v e b e e n p r o p o se d a n d v a lid a te d in t h e lite r a tu r e . T he se le c tio n o f ía
s u it a b le s c h e m e is o fte n a d iffic u lt ta s k sin ce it d e p e n d s o n t h e ty p e o f p h y s i c a i l
p r o c e s s e s specific for th e s im u a t e d area (e.g.tid es, t h e r m o c lin e s , river íronts,...).
In a n a lo g y w ith m o le c u la r d iffu sion w h ere t h e eddy v is c o s ity an d d if f u s io m

c o e ffic ie n ts are p r o p o r tio n a l to th e m e a n velocity t im e s and th e m ean free p a t h cof
t h e m o le c u le s, th e e d d y c o e ffc ie n ts

VT

a nd

ẢT

a re c o n s id e r e d a s th e product off :a

t u r b u le n t v e lo city s c a le a n d a le n g th scale / u s u a lly d e n o ted by th e K olm o go rov /P r a n d tl “m ix in g l e n g t h ”. A c o m m o n ly u se d v e lo city s c a le is th e sq u a re root

ooĩ

t h e tu r b u le n t k in e tic e n e r g y . T h is p a r a m e te r c a n b e o b ta in e d by s o lv in g a tr a n s p o r r t
e q u a tio n . T h e m o s t g e n e r a l form o f th is e q u a tio n s , as u s e d in th e program , iis
vvritten as

w h e r e th e tim e d e r iv a tiv e , t h e h o rizo n ta l and v e r tic a l a d v e c tio n as th e d iffu sico n
o p e r a to r s are d e fin e d by
1 d
T(k) = ^ ( J k )
J õt

( 2 . 1 8?a)

(2 .1 8 íb )

A Jk)= \~ (Jw k)

J dz

(2 .1 8 k )

(2.18^d)

N 2 and Af2 ar e s q u a r e d b u o v a n c v and sh ea r fr e q u e n c ie s g iv e n by


A thrce-dimcntional simulơtion of thc.

35

and /; d e n o t e s th e d is s ip a tio n r a te o f tu r b u le n c e e n e rg y . T h e d is s ip a tio n r a te is
p a r a m e te r is e d according to
k' 2
e = e „ = -ị-

>2 . 2 1 )

w h e r e cu is a c o n s ta n t d e te r m in e d by L\, = 0 .1 8 8 .
AU
d iffu sio n

tu r b u le n c e tr a n s p o r t
c o effic ien t

e q u a tio n s

are s o lv e d


vvith th e

vvhich is th e s a m e as t h e o n e u s e d

ẢfỊ

sam e

h o r ỉz o n ta l

in t h e e q u a t io n s o f

te m p e r a tu r e an d s a lin ity .
T h e ed d y c o effic ien ts ar e th e n e x p r e s s e d as

(2 .22 )

>*T = s b k2/c + xb,

VT = S Mk 2/c + vbt

w h e r e vht Ảh are prescribed b a c k g r o u n d c o e f fic ie n ts f Vi = / 0 7 [ m 2!s]; Ảfj = 7 0 5 Ị m 2/ s j
a n d s m, S), a r e u su a lly reffed a s th e s ta b ilitv íu n c t io n s . T h e ir e x p lic it íò rm s are
0 l()X ^ ()0 2 2 9 q v


" ” 1+ 0.47l a V + 0 .0 2 7 5 a ỉ
0.177


•v

s

(2.23)

U 0 4()3av

k*

where ữ N = — Ari?

(2.24)

o

for th c

O n e -e q u a tio n k -ep silo n tu r b u le n c e m odel is u s e d for p a r a m e t e r i s a t i o n
m ix in g le n g th and

d is s ip a tio n rate. W hen o n e -e q u a tio n

m o d el is c h o s e n , th e k-

eq u a tio n is s till so lv ed vvith c m o d elled a c co rd in g to (2 .21 ) w h ile / is d e te r m in e d
u sin g th e ío r m u la tio n , in itia lly proposed by B la c k a d a r (1 96 2), h a s th e form


= —


/

/>

+ — +





.

(2 .2 5 )

/a

H o r iz o n ta l diffusion te r m s are m e a n t to p a r a m e t e r iz e s u b g r id s c a le p r o c esses,
in practice th e h o rizo n ta l d iffu s iv itv
scale c o m p u ta tio n a l

n o is e th e y

sp a cin g s an d th e m a g n itu d e

V ịị

and

are ta k e n


Ả ịị

a re u s u a lly r e q u ir e d to d am p sm a ll

p ro p o rtio n a l to

o f th e velo citv d e íb r m a tio n

t h e h o r iz o n ta l

te n s o r

in

griđ

a n a lo g y w ith

S m a g o rin 3 ky*s (1963) p a r a m e te r is a tio n

V'// = C m0Ax Ay D T a nd

/.,/ = c .o Ax Ay D T.

(2.26)

2.3 B o u n d a r V a n d i n i t i a l c o n d i t i o n s
C o a sta l b o u n d a r ie s are c o n s id e r e d as im p r e g n a b le w a lls . T h is m e a n s
currrents, a d v e c tiv e and d iffu s iv e flu x es are s e t to zero


h a t all


Nguy en Minh Hucềìn

u = 0,

w = 0.

y = Q'

V= 0 ,

Juiị/ =0, ẢH— = 0

(2.27?)

Jvtỵ = 0 , ẢH— = 0 .

( 2 .2 8 Ỉ )

ôx

õy

O pen s e a (or river) b o u n d a r y co n d ition for the 2-1) m o d e n eed to be s u p p ỉie c d

eastern b o u n d a r ie s a n d for V a t S o u t h e r n a n d n o r t h e r r n
boundaries. A selection can be made between different types of open b o u n d a r -y

for

a t western a n d

u

conditions. T h e y h a v e th e form o f a ra d ia tio n co n d itio n d e r iv e d u s in g th e m e t h o d cof
c h a r a c te r is tic s [H e d str o m
[Rancỉall J. L eV e q u e

1979),

[Roed

and

Cooper,

1987],

[R uddick,

19 95Ị].

1997]. T h is is b a se d on the in te g r a tio n o f th e e q u a t io n s for t h ie

incoming and o u tg o in g R ie m a n n v a r ia b le s

) = ( Ũ ± cỉ; . V t c C )


.

(2.2 Í9 )

3. N u m e r i c a l s i m u l a t i o n
T h e ai 111 of th e t e s t is to s im u la t e th e ev o lu tio n o f a tid a lly m o d u la te d riveer
plum c u s in g th e fo llo w in g c o n d itio n s o f a b a s in w ith vvater d e p th r a n g in g from 3im
in the sh o r e lin e to 2 0 m in th e offshore boundary. T h e co m j)u ta tio n a l d o m a in , h a is
the form o f a r e c ta n g le b a s in en c lo se d by a Coastal (solicỉ) b o u n d a r y and th r e e opoĩn
sea b o u n d aries. For c o n v e n ie n c e , th e Coastal b o u n d ary w ill be d e n o te d b y

thìe

Southern b ou n d ary, th e la t t e r by th e vvestern, e a s te r n c r o ss-sh o r e b o u n d a r ie s anul
the nortbern a lo n g s h o r e b o u n d a r y . T he b a s in h a s a le n g th of 120 km, a w idth o f 410
kin, in th e Southern b o u n d a r y th e r e is tho river mouth s it u a t e d in th e d is ta n c e o f fí)0
km from th e vvestern b o u n d a r y and d isc h a r g e vvator to b a sin insid o ono h a b ío r
constructed by 2 g ro in s. T h e h o r iz o n ta l r eso lu tio n of grid is 5 0 0 m and 2 0 le v e ỉ s aire
used in th e v e rtica l. T h e a r ea is rillecl in itia lly w ith seavvater h a v in g a unifor*m
sa lin ity o f 30 PSƯ.
ỉ ỉ iittsei I

Km
40

30

20


10

Hi ve ì n u m ỉ h

F i g u r e 3. ỉ:

The computational domain


A threc-dirncntional sirntỉlntion of thc.

37

Ticlal ĩo rcin g is im p o se d in th e form of a f r ic tio n le s s

K elvin w a v e with

ír eq u e n c v of Oj e n t e r in g at th e vvcstern b ou n d ary a n d p r o p a g a t in g a lo n g th e const
[V a n Rijn,

1 98 9 a n d

Rudciick et. al.,

1995]. T h e in c o m in g

R ic m a n n varial>le,

s p e c ia liz e d at t h e vvestern bou n d a rv , th e n ta k e s th e form
(3 .1 )


R. = u +cỊ = 2 c F |Mr = 2cA e ,v/c coso)~t ,

w h e r e th e C oriolis fr e q u e n c y is e v a lu a te d at a l a t i t u d e o f 2 0 , (0 is th e 0 . tiđal
ír eq u e n c y , A = 0 .8 m a n d ư , r, c are th e d e p t h -in te g r a t e d a lo n g s h o r e cu r re n t, th e
barotropic

vvave s p e e d

and

th e s u r ía c e e le v a t io n .T h e

a m p ỉit u d e

o f th o w a v e

d e c r e a s e s e x p o n e n t ia llv vvith d is ta n c e to th e c o a s t vvith a d e c a v s c a le g iv e n hy th e
barotropic R o ssb y r a d iu s c / f -

120 km. T h e a m p lit u d e A e '

o f th e harm onic

fu n ction Flíflr is storecỉ for e a ch o p e n boundary node.
A zero n o r m a l graciient co n d itio n is s e le c te d at th e e a s t e r n a n d northorn
bouncỉaries, i.e.
~ ự /
<\x


-c£) =0

(3.2)

4 -(V -c O
ry

=0

T he la te r c o n d itio n is ju s tifíe d bv th e fact th a t th e vviđth o f t h e b a s in is much

sm aller than th e external Rossby radius c / f .
Sin ce th e v a lu e o f Q is unknovvn at th e r iv er m o u th , t h e o p e n boundary
concỉition a t t h e in le t is n o longer d e íìn e d in t e r m s o f th e in c o m in g R iem an n
va riab le

but by s p e c if y in g th e c r o ss-sh o r e c o m p o n e n t o f t h e clepth

current.

T h is is g iv e n

in tcg r a te d

a s th e s u m o f a r e s id u a l v a lu e , r e p r e s e n t in g th e

river

cỉischarge, and a tid a l c o m p o n e n t
V = c F hnr = % + A tHcos(o) t - (pr)

w

(3.3)

w h e r e Q,i = 1000 m Vs is t h e r iv er d isc h a r g e, vv = 5 0 0 m t h e w id t h o f t h e in le t and Á,
= 0.6 m/s th e a m p litu d e o f th e tid a l c u rren t a t th e m o u th o f th e river. T h e p h a se tp,
is d eterm in cd bv

(pr = c

2

(3.4)

where D = 2 6 .0 k ĨTÌ so th a t D, l c r e p r e s e n ts th e t im e t r a v e lle d bv t h e K elvin w a v e
from the w e r s te r n b o u n d a r y to th e river m outh. O b s e r v a t io n s in tho river plum e
show th at th e a lo n g s h o r e a n d c ro ss-sh o re c o m p a n e n t a r e a n t i- p h a s e vvhich e x p la in s
th e use of th e factor 7t/ 2 [V an Rijn, 1989].


38

N gu y en Minh Ị ỉ Uan
III a d d itio n to thi' p r e v io u s c o n d itio n s for the 2 -D m ode, open b o u n d a ry

c o n d itio n s h a v e to be im p o se đ d u rin g th e final run for th e h o r iz o n ta l v e locity
d e v ia tio n s

(u\ V 9 a n d


the s a lin it y

s.

A t th e o p e n s e a b o u n d a r ie s a zero norm al g r a d ie n t co n d itio n is ta k en for all
q u a n t it ie s . In th e c a s e o f s a lin it y th is procedure is a r e a s o n a b le a p p ro x im a tio n
s in c e th e p lu m e n e v e r in t e r s e c t s th e vvestern and northorn b o u n d a r y w h ile the
cross-bounclary g r a d ie n t is m u ch sm n ller th an th e a lo n g b o u n d a ry g r a d ie n t a t the
e a s t e r n bou ndary.
T h e d e ía u lt c o n d it io n s a re no longer a p p lica b le a t th e river m o u th w h e r e u'
and

s

are s p e c iíìe d in th e form o f a tvvo-layer s tr a tific a tio n

s = 10 P S U ,
v ’ = - 0 .2 [m .s ‘]

v ’ = 0.6 [m.s !j

if

z> -5

i f - H < 2 < - 5,

( 3.5)


vvhere ổ = 5 m is th e s p e c iíìe d d ep th o f th e p lu m e la yer a t th e m ou th . In t h is vvay
fresh w a te r is r e le a s e d th r o u g h th e su rface la y e r vvhereas s a lt ic r s e a w a te r flows
into th e e s t u a r y th ro u g h th e bottom layer. A zero g r a d ie n t co n d itio n is a p p lie d for
s a lin it y in th e bottom la y er.

4. D i s c u s s i o n
A lth o u g h the d e v e lo p e d program is able to e x a m in e th e role of d ifferen t
p h y sic a l íorcin g n ie c h a n is m (b a th y m e tr y , tid es, w ind, w a ve) on th e p lu m e stru ctu re,
tho in te n tio n h e r e is to t e s t s o m e of th e a b o v e -m en tio n e d forcing a n d the role of the
S m a g o r iỉisk y ío r m u la tio n for h o r iz o n ta l diffusion and th e u p w in d sc h e m e for the
advort.ion o f m o m e n tu m .

F ỉg u res 4.1. Surface d istrib u tio n o f current and salin ity after õOh sim u la tion (fmal run)
F ig u r es 4.1 - 4 .5 c le a r ly sh o w how th e p lu m e e v o lv e s d u r in g a tidal cycle. At
tho tim e w h e n th e a lo n g s h o r e cu rren t r ev c r se s s ig n a n d tho o u tflo w roaches its


A three-dimentional simulation of the.
m a x im u m , a nevv blob o f írcsh w ater e n te r s th e b a s in . m o v in g seavvards (ỈMgure
á 1ì
xO.Skm



20

10

4 0


5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

x0.5km

F igures 4.2. S u rface distribution o fc u r r en t and sa lin ity after Õ2h sim u la tio n
A s th e e a s t w a r d d irected tidal w av e b e c o m e s s tr o n g e r , th e fresh vvater patch
is d e fle c te d to th e r ig h t (F igu re 4 .3 ).
x0.5km

20

40

50

60

70


80

90

100

110

0 5k

F igure 4 . 3 : S u ría ce distribution o fc u r r e n t and sa lin ity after 54h sim u la tio n
D u r in g th is p h a s e of th e tid e both the b u lg e an d th e C oas ta l p lu m e expancl
sea w a r d s . W h en th e tid a l c u r re n t r e v e r se s s ig n a g a in and t u r n s to th e w e s t, th e
c u r re n t in s id e th e p lu m e is first s o u t h e a s t w a r d s p u s h in g th e b u lg e to w a r d s th e
c o a st (F ỉg u re 4.4).


Nguyen Minh H u a m

40
x0.5km

40

3 0

20

40


50

60

70

80

90

100

110

x 0 Skm

Kigure 4.4: Su rface đ istrib u tio n of current and salin ity after 56h sim u lation
A nd fin ally s o u t h w e s t w a r đ s red u cin g the e x t e n t o f th e b u lg e and th e c o a stía l
p lu m e (F ig u r e 4.5). T h e m a in fe a tu r e here is th at th e b u lg e a n d th e C o a s t a l p lu m ie
o s c illa te vvith th e tid e.

x0.5km

40

30

20


10

4 0

5 0

60

70

80

90

100

110

x 0 .5 k n i

Figure 4 .5 : Surface distribution of current and salinity after 62h simulation
T ho current a n d s a l i n i t y field s along tho tr a n s e c ts sh o w th e p r e se n e e of an
ọ s tu a r in e -t y p e c ir c u la iio n (P ig u r e 4.5). In tho c r o ss-sh o r è tr a n s e c t u p w e llin g tak
place at the coast vvhile cỉownwelling occurs at the eđge of tlìG plume by tòhe
c o n v e r g e n c e of tho s u r f a c e o u tflo w current. A s im ila r p h e n o m e n o n is s e e n in Ithe
Coastal jet whc»re d o w n w e llin g motions are c rea ted by th(* con vorgonce o f th e coasttal
jet. III th e c a s e o f a n o n -tiđ a l p lu m e the p lu m e la y e r is shallovver and th e ừ on ita l
gradients


are

stronger

comparccỉ

to t h e

tidal

(Nìse w h e r o

turbulent

diffusrion

in c r o a se s tho d ep th o f th e su r fa c e la y e r and red u ces th e v ertica l s tr a tiĩic a tio n .


A t h r e c - d i m e n t i o n a l s ỉ m u l a t ỉ o n o f th e .

Lớpơ

20

15

10

5


5

to

15

20

* 0 . 5k m

F igu re 4.6: Cross-sectional distribution o f cu rren t and sa lin ity

after 66h simulation in the a-coordinate
5. C o n c l u d i n g r e m a r k s

This paper presented a three dimensional model which consists of a
circu la tio n m od el, a tr a n sp o r t m odel, and a o n e e q u a tio n k -e p silo n tu r b u le n c e
m odel. T h e u se o f th r e e -d im e n s io n a l m od els is u n a v o id a b le in all c a s e s w h e r e th e
in flu e n c e o f d e n s it y d istr ib u tio n cannot be n o g le e d or a n d in w in d d riv en flow s,
w hich h a ve ty p ic a lly th r e e -d im e n sio n a l ch a ra cter. T h e d e v e lo p e d m odel a ls o m u st
to he vvell c a lib r a te d an d v erificated vvith a n o t h e r n u m e r ic a l e x p e r im e n t a l and

prototype data.

Questions about this article and source code in PORTRAN of prograni can be
a d d re sse d to N g u y e n M inh H uan , Paculty o f H y d r o -M e te o ro lo g y a n d O c ea n o g ra p h y ,

of Natural Sciences.




A c k n o w le d g m e n ts. This work has been supported by the Hanoi University

((2001-2003) project coded 7317001.

1

REFERENCES
1.

B lack ad ar A.K., T h e vertical d istr ib u tio n o f w in d a n d tu r b u le n t e x c h a n g e in a
neutral a tm o s p h e r e , Journcil o f G e o p h y sic a l R e s e a r c h ? 6 7 ( 1 9 6 2 ) , 3 0 9 5 - 3 1 0 2 .

2.

B lu m b er g A .F .a n d M ellor G .L., A d escr ip tio n o f a th r e e c ỉim e n sio n a l Coastal

ocean circulation model. In: N.S.Heaps (Editor), Three-dimensional Coastal
Octean M odels, C o a s ta l a n d K stu n r in e S c i e n c e s , Vo].4, A m e r ic a n G e o p h y s ic a l

Union,Washington D.C., 1987pp.l -16.


42

Nguyen Minh H u a n

3.


D a v ie s A .M ., A b o tto m b o u n d a r y la y e r -r e s o lv in g t h r e e - d im e n s io n a l tid a l m od el:
A s e n s it iv it y s tu d y o f eddy v is c o s ity
O c e a n o g r a p h y , 2 3 ( 1 9 9 3 ) 1 437 - 1 4 5 3 .

ĩo r m u la tio n ,

Journal

of

P h ysic a l

4 . Phillips N.A., A coordinate system having some special advantages for
numerical íbrecasting, J o u r n a l o f M e tc o r o lo g y , 14(1957), 184-185.
5.

H e d str o m G .w . , N o n r e fle c tin g bou n d ary c o n d itio n s for n o n lin e a r h yp erb olic
s y s t e m s , ổ o u r n a l o f C o m p u t a t i o n a l P h y s i c s , 3 0 (1 9 7 9 ) 2 2 2 - 2 3 7 .

6.

Leo c . v a n Rjin, P r in c ip le s o f flu id flow and s u r fa c e in rivers, e s tu a r ie s , s e a s
and o c ea n s, A q u a P u b l i c a t i o n s , 1989, pp. 2 1 6 -2 2 6 .

7.

R oed L .p .a n d C ooper C .K., A s t u d y o f v a r io u s open b o u n d a r y c o n d itio n s f o r
u)ind-forccd


b a r o tr o p ic

B .M .J a m a r t (E d ito rs),

n u m e r ic a l

ocean

T h r e e -d im e n s io n a l

m o d e ls,
m o d els

In:

J .C .J .N ih o u l

o f m a r in e

and

and!

estu a rin eì

d y n a m ic s, E lse v ie r , A m s te r d a m , 1987, p p .3 0 5 - 3 3 5 .

8 . Randall J. LeVeque, N o n l i n e a r C o n s e r v a tio n L a w s a n d P i n ite V o lu m e M e t h o d l
fo r A s tr o p h y s ic a l F lu id F lo w , S p rin g er -V e r la g , W a s h in g t o n D . c , 1998.
9.


R uddick K.G., M o d e l l i n g o f C oastal p r o c e s s e s in ỷ ĩu en ce d by the fre sh u ja te rr
d is c h a r g e o f the R h i n e , U n iv . de L i'e g e, B e lg iu m , 1995, 2 4 7 pp.

TA P CHỈ KH O A HỌC O H Q G H N . KHTN & CN, T.X1X. Nọ1, 2003_________

K Ế T Q U Ả M Ồ P H Ỏ N G 3 C H I Ê U C H E Đ Ộ D Ò N G CHAY
V Ù N G CỬA S Ô N G C H Ị U TÁC Đ Ộ N G CỦA T H Ủ Y T R l Ể ư
N g u y ể n M in h H u â n
K h o a K h i tư ợ n g T h ủ y v ã n và H ả i d ư ơ n g h ọ c,
Đ ạ i h ọ c K h o a học T ự n h iê n , Đ H Q G H à N ộ i
Mô hìn h th ủ y đ ộ n g lực 3 c h iề u dược, sử d ụ n g tr o n g t ín h toán mô ph ỏng m ự íc
m íốc, v ậ n tốc d òn g c h ả y và p h â n bô độ m uỗi ở v ù n g nước cửa sô n g ph ân tầ n g c h ịiu
tá c đ ộn g của th ủ y tr iề u . M ô h ìn h bao gồm các phương tr ìn h th ủ y động lực, trưvểẩn
tả i v à được k h ép kín b ằ n g cá c sơ đồ rổì. Hệ ph ư ơng tr ìn h th ủ y động lực của mô h ìm h


hệ

phương tr ìn h

N a v ie r - S t o k e s sử

dụng

giả t h u y ế t th ủ y tìn h

và xấp

xỉ


B o u s sin e s q . Sự b iế n đ ộn g c ủ a n h iệ t độ và độ m uối s ẽ ảnh hưởng lên m ộ t độ cuảa

nước và mật độ biến đổi sẽ ảnh hưởng ngược lại lên trường dòng chảy. Hệ phươmg
tr ìn h dộng lượng và liê n tụ c dược giả i b ằ n g p h ư ơ ng p h áp p h â n tách th à n h phần, íá p
d u n g mò hình rôì k-ep silon m ột phương trình. Trong m ô hình tải, các phương tr ìm h
kh u y ẽch tán đôi lưu ba c h iể u được sử dụng. Mô h ìn h được áp dụ ng cho khu vực biêển
v e n bò có của sô n g vối một b iê n cứng và 3 biên lỏng, mực nước biến động ở biên lỏsng
phía tây do tác động củ a só n g triều 0 ,, lưu lượng nước sô n g chảy vào vùng tính có rmô
phỏng

khu vực

cả n g với giá tr ị là 1000m 3.s

Kết quả tín h toá n đã mô phỏng đượccch ế

độ đặc trưng của dòng c hảy 3 ch iểu v ù n g cửa sông chịu tác động của thủy triểu.



×