Tải bản đầy đủ (.pdf) (11 trang)

DSpace at VNU: Explicit secular equations of Stoneley waves in a non-homogeneous orthotropic elastic medium under the influence of gravity

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (310.29 KB, 11 trang )

Applied Mathematics and Computation 215 (2010) 3515–3525

Contents lists available at ScienceDirect

Applied Mathematics and Computation
journal homepage: www.elsevier.com/locate/amc

Explicit secular equations of Stoneley waves in a non-homogeneous
orthotropic elastic medium under the influence of gravity
Pham Chi Vinh a,*, Géza Seriani b
a
b

Faculty of Mathematics, Mechanics and Informatics, Hanoi University of Science, 334, Nguyen Trai Str., Thanh Xuan, Hanoi, Viet Nam
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Borgo Grotta Gigante 42/C, 34100 Sgonico, Trieste, Italy

a r t i c l e

i n f o

Keywords:
Stoneley waves
Stoneley wave velocity
Orthotropic
Secular equation
Non-homogeneous
Gravity

a b s t r a c t
The problem of Stoneley waves in a non-homogeneous orthotropic elastic medium under
the influence of gravity was studied recently by Abd-Alla and Ahmed [A.M. Abd-Alla, S.M.


Ahmed, Stoneley waves and Rayleigh waves in a non-homogeneous orthotropic elastic
medium under the influence of gravity, Appl. Math. Comput. 135 (2003) 187–200], who
derived the secular equation of the wave in the implicit form. In this paper, by using an
appropriate representation of the solution, we obtain the secular equation of the wave in
the explicit form. Moreover, considering its special cases, we derive explicit secular equations for a number of investigations of Stoneley waves under the influence of gravity, for
which only the implicit dispersion equations were previously obtained.
Ó 2009 Elsevier Inc. All rights reserved.

1. Introduction
The propagation of Stoneley waves under the effect of gravity is a significant problem in Seismology and Geophysics,
which has attracted the attention of researchers such as De and Sengupta [1], Dey and Sengupta [2], Das et al. [3]. These
authors, following Biot [4], all assumed the force of gravity to create a type of initial stress of hydrostatic nature, and derived
the secular equation of the wave in the implicit form. De and Sengupta [1] assumed the material is isotropic elastic, while
Dey and Sengupta [2] considered the case of transversely isotropic elastic materials. All supposed that the material is homogeneous. However, because any realistic model of the earth must take into account continuous changes of elastic properties
in the vertical direction, the problem was extended to the (exponentially) non-homogeneous case by Das et al. [3], who assumed that the material is isotropic. Recently, Abd-Alla and Ahmed [5] extended the problem to the orthotropic case; these
authors employed two displacement potentials for expressing the solution, and derived the secular equation of the wave in
the implicit form.
For Rayleigh and Stoneley waves, dispersion equations in the explicit form are very significant in practical applications.
They can be used for solving direct (forward) problems, i.e. studying the effects of material parameters on the wave velocity;
and especially the inverse problems, i.e. determining material parameters from the measured values of the wave speed. The
main purpose of this paper is to obtain the explicit secular equation of Stoneley waves under the effect of gravity for inhomogeneous orthotropic elastic materials. This equation is identified in the explicit form by using an appropriate representation of
solution. From this we derive the explicit secular equations for the particular cases investigated by De and Sengupta [1], Dey
and Sengupta [2], Das et al. [3], and Pal and Acharya [6], in which only implicit dispersion equations were obtained.
Note that a secular equation F ¼ 0 is called explicit if F is an explicit function of the wave velocity c, the wave number k,
and parameters characterizing materials and external effects (see for example, [7–9]). Otherwise we call it an implicit secular
equation.
* Corresponding author.
E-mail address: (P.C. Vinh).
0096-3003/$ - see front matter Ó 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2009.10.047



3516

P.C. Vinh, G. Seriani / Applied Mathematics and Computation 215 (2010) 3515–3525

Also note that, due to Abd-Alla and Ahmed’s incorrect representation of the solution (see [12]), the secular equation in the
implicit form derived by them in [5] for Stoneley waves is not valid.
2. Basic equations
Let us consider the two non-homogeneous orthotropic elastic bodies, X and XÃ , occupying the half-space x3 P 0; x3 6 0,
respectively, subject to gravity. They are in welded contact with each other at the plane x3 ¼ 0. These two media extend to an
infinitely great distance from the origin and XÃ is to be taken above X. Same quantities related to X and XÃ have the same
symbol but are systematically distinguished by an asterisk if pertaining to XÃ .
We are interested in planar motion in the ðx1 ; x3 Þ-plane with displacement components u1 ; u2 ; u3 such that:

ui ¼ ui ðx1 ; x3 ; tÞ;

i ¼ 1; 3; u2  0:

ð1Þ

Then the components of the stress tensor rij ; i; j ¼ 1; 3 are related to the displacement gradients by the following equations
[5]:

r11 ¼ c11 u1;1 þ c13 u3;3 ;
r33 ¼ c13 u1;1 þ c33 u3;3 ;
r13 ¼ c55 ðu1;3 þ u3;1 Þ;

ð2Þ


where cij are the material constants.
Equations of motion are of the form [5]:

r11;1 þ r13;3 þ qgu3;1 ¼ qu€1 ;
r13;1 þ r33;3 À qgu1;1 ¼ qu€3

ð3Þ

in which q is the mass density of the medium, and g is the acceleration due to gravity, a superposed dot denotes differentiation with respect to t, commas indicate differentiation with respect to spatial variables xi . In matrix (operator) form, following the Stroh formalism (see [10,11]), the Eqs. (2) and (3) are written as follows:

u0

r

!
¼N

0

u

!

r

ð4Þ

;

where u ¼ ½u1 ; u3 ŠT ; r ¼ ½r13 ; r33 ŠT , the symbol T indicates the transpose of a matrix, the prime indicates the derivative with

respect to x3 and:


"


N1
K

!
N2
;
N3

N1 ¼

!
À@ 1
1=c55
; N2 ¼
0
0
#
Àqg@ 1
; N 3 ¼ NT1 :
q@ 2t

0
Àðc13 =c33 Þ@ 1


q@ 2t þ ½ðc213 À c11 c33 Þ=c33 Š@ 21
qg@ 1

!
0
;
1=c33

ð5Þ

Here we use the notations: @ 1 ¼ @=ð@x1 Þ; @ 21 ¼ @ 2 =ð@x21 Þ; @ 2t ¼ @ 2 =ð@t 2 Þ. In addition to Eq. (4), the displacement vector u and
the traction vector r are required to satisfy the decay condition:

u ¼ 0;

r ¼ 0 at x3 ¼ þ1:

ð6Þ

Ã

For X we have equations similar to (1)–(5) in which the quantities are asterisked, and the decay condition (6) is replaced by:

uà ¼ 0;

rà ¼ 0 on x3 ¼ À1:

ð7Þ

Since the half-spaces are in welded contact with each other at the plane x3 ¼ 0, the displacement vector and the traction

vector must satisfy the continuous condition:

u ¼ uà ;

r ¼ rà on x3 ¼ 0:

ð8Þ

3. Explicit secular equation
Assume that the half-spaces X and XÃ are made of materials with an exponential depth profile:

cij ¼ c0ij e2mx3 ;
c0ij ;

0

Ã

Ã

2m x3
q ¼ q0 e2mx3 ; cÃij ¼ cÃ0
; qà ¼ qÃ0 e2m x3 ;
ij e

ð9Þ

where
q; m
q ; m are constants.

Now we consider the propagation of a wave, travelling with velocity c and wave number k in the x1 -direction, being
mostly confined to the neighbourhood of the interface x3 ¼ 0. Then the components u1 ; u3 of the displacement vector
and r13 ; r33 of the traction vector at the planes x3 ¼ const are found in the form (see [13]):
cÃ0
ij ;

Ã0

Ã


P.C. Vinh, G. Seriani / Applied Mathematics and Computation 215 (2010) 3515–3525

fuk ; rk3 gðx1 ; x3 ; tÞ ¼ feÀmx3 U k ðx3 Þ; iemx3 Rk ðx3 Þgeikðx1 ÀctÞ ;

k ¼ 1; 3:

3517

ð10Þ

Substituting (10) into (4) yields:

U0

!

¼ iM

R0




!
ð11Þ

;

R

U 3 ŠT ; R ¼ ½ R 1

where U ¼ ½ U 1



U

M1

M2

Q

M3

!

M1 ¼


;

kðX À dÞ

ia

Àia

kX

!
;

R3 ŠT , and:
Àiðm=kÞ

À1

ÀD

Àiðm=kÞ

"

!
;

!
iðm=kÞ
ÀD

;
M3 ¼
À1
iðm=kÞ

1=c055
M 2 ¼ ð1=kÞ
0

#
0
;
1=c033

ð12Þ

ðc013 Þ2 Þ=c033 ;

c011

here d ¼
À
D ¼ c013 =c033 ; a ¼ q0 g; X ¼ q0 c2 , the prime indicates the derivative with respect to y ¼ kx3 .
Following the approach employed in [9,14,15], by eliminating U from (11), the traction vector RðyÞ is the solution of the
equation:

aR00 À ibR0 À cR ¼ 0;

ð13Þ


where the matrices a; b; c are given by:

!
X
Àia=k
1
; d ¼ XðX À dÞ À ða=kÞ2
kd ia=k ðX À dÞ
!
1 0 g1
; g 1 ¼ d À ð1 þ DÞX
b ¼ M 1 Q À1 þ Q À1 M3 ¼
kd g 1 0
!
h0
img 0 =k þ iag 2 =k
1
c ¼ M1 Q À1 M3 À M2 ¼
kd Àimg 0 =k À iag 2 =k
h1

a ¼ Q À1 ¼

ð14Þ
ð15Þ
ð16Þ

in which

g 0 ¼ d À ð1 À DÞX;

m2 X

g2 ¼ D À

m2
2

k
2ma

;

d
þ 2 ;
c055
k
d
2maD
h1 ¼ 2 ðX À dÞ þ D2 X À 0 À
:
2
c33
k
k

h0 ¼

2

k

m2

þ ðX À dÞ À

ð17Þ

The displacement vector U is determined in terms of R by:

U ¼ ÀiQ

À1

R0 À Q À1 M3 R:

ð18Þ

Now we seek the solution of the Eq. (13) in the form:

RðyÞ ¼ eipy R0 ;

ð19Þ

where R0 is a non-zero constant vector, p is a complex number which must satisfy the condition:

Ip > jmj=k

ð20Þ

in order to ensure the decay condition (6). Substituting (19) into (13) leads to:


ðp2 a À pb þ cÞR0 ¼ 0:

ð21Þ

As R0 is a non-zero vector, the determinant of the system (21) must vanish. This provides an equation for determining p,
namely:

p4 À Sp2 þ P ¼ 0;

ð22Þ

where



d
1
1
2m2
XÀ 2 ;
þ
þ
0
0
0
c55
c33 c55
k



!
ðc011 À XÞðc055 À XÞ m2
1
1
d

À 2
þ 0 X À 2D À 0
0 0
0
c33 c55
c33 c55
c55
k

S ¼ 2D À

þ

m4
4

k

À

a2 þ 2amðc055 À c013 Þ
2

k c033 c055


:

ð23Þ


3518

P.C. Vinh, G. Seriani / Applied Mathematics and Computation 215 (2010) 3515–3525

It follows from (22) that:

p21 þ p22 ¼ S;
p21 ;

p21 p22 ¼ P;

ð24Þ

p22

T

2

where
are two roots of the quadratic Eq. (22) for p . It is not difficult to demonstrate that the vector R0 ¼ ½A BŠ , the
solution of (21), is given by:

ia 2

img 0
p þ g1 p À
À iag 2 =k;
k
k
B ¼ Xp2 þ h0 :


ð25Þ

Let p1 ; p2 be the two roots of (22) satisfying the condition (20). Then the general solution of the Eq. (13) is:

!
!
A1 ip1 y
A2 ip2 y
e þ c2
e ;
B1
B2

RðyÞ ¼ c1

ð26Þ

where Ak ; Bk ðk ¼ 1; 2Þ are given by (25), in which p is replaced by pk , and pk ; c1 , and c2 ðc21 þ c22 – 0Þ are constants to be
determined.
We have the following result:
Proposition. Suppose p1 ; p2 are the two roots of (22) satisfying the condition (20). Then we have:


P > 0;

pffiffiffi
2 P À S > 0;

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
p1 þ p2 ¼ i 2 P À S;

pffiffiffi
p1 p2 ¼ À P ;

ð27Þ

where S; P are defined by (23).
Indeed, from (20) it follows that Imðpi Þ > 0. If the discriminant D of the quadratic Eq. (22) for p2 is non-negative, then its
two roots must be negative in order that Imðpi Þ > 0. In this case, P ¼ p21 p22 > 0 and the pair p1 ; p2 are of the form:
p1 ¼ ir 1 ; p2 ¼ ir 2 where r1 ; r2 are positive. If D < 0, the Eq. (22) for p2 has two conjugate complex roots, again
P ¼ p21 p22 > 0, and in order to ensure Imðpi Þ > 0, it must be p1 ¼ t þ ir and p2 ¼ Àt þ ir, where r is positive. In both cases,
P ¼ p21 p22 > 0; p1 p2 is a negative real number and p1 þ p2 is a purely imaginary number with a positive imaginary part, thus
are
ðp1 þ p2 Þ2 is a negative number. Therefore, with the help of (24), it follows that the relations (27) p
ffiffiffi true.
It is noted that the result (27)3, (27)4 were obtained in [13], but without showing that P > 0; 2 P À S > 0.
From (18) and (26) we have:

E1

UðyÞ ¼ c1


F1

!

E2

eip1 y þ c2

!

F2

eip2 y ;

ð28Þ

where

Ek ¼ e2 p2k À ie1 pk þ e0 ;
F k ¼ f3 p3k þ if2 p2k þ f1 pk þ if0 ;

ð29Þ

k ¼ 1; 2;

where ej ¼ bj =kd; j ¼ 0; 1; 2; fj ¼ wj =kd; j ¼ 0; 1; 2; 3, and:
2

2


b0 ¼ h0 ðDX À am=k Þ À ð1=k Þða þ XmÞðmg 0 þ ag 2 Þ;
b1 ¼ ð1=kÞ½g 1 ða þ XmÞ þ Xðmg 0 þ ag 2 Þ þ ah0 Š;
2

2

b2 ¼ ð1=k Þaða þ XmÞ þ g 1 X þ XðDX À am=k Þ;
2

w0 ¼ ð1=kÞh0 ½aD À mðX À dފ À ð1=kÞðmg 0 þ ag 2 ÞðX À d þ ma=k Þ;
2

ð30Þ

2

w1 ¼ g 1 ðX À d þ ma=k Þ þ ð1=k Þaðmg 0 þ ag 2 Þ þ ðX À dÞh0 ;
2

w2 ¼ ð1=kÞaðX À d þ ma=k Þ þ ð1=kÞag 1 þ ðX=kÞ½aD À mðX À dފ;
w3 ¼ d:
Similarly, vectors uà and

rà are sought in the form:
Ãx

fuÃk ; rÃk3 gðx1 ; x3 ; tÞ ¼ feÀm

3


Ãx

U Ãk ðx3 Þ; iem

3

RÃk ðx3 Þgeikðx1 ÀctÞ ;

k ¼ 1; 3

ð31Þ

in which

U Ã ¼ cÃ1

!
!

Ã
Ã
eip1 y þ cÃ2 2Ã eip2 y ;
F2

ð32Þ

!
!
AÃ1 ipà y
AÃ2 ipà y

1 þ cÃ
2 ;
2
à e
à e
B1
B2

ð33Þ

EÃ1
F Ã1

and

RÃ ¼ cÃ1


3519

P.C. Vinh, G. Seriani / Applied Mathematics and Computation 215 (2010) 3515–3525

where cÃ1 ; cÃ2 are constants to be determined, AÃk ; BÃk ; EÃk ; F Ãk ðk ¼ 1; 2Þ are defined by:
Ã

Ã

ia à 2
im g Ã0
Ã

ðpk Þ þ g Ã1 pÃk À
À ia g Ã2 =k;
k
k
Ã
BÃk ¼ X Ã ðpÃk Þ2 þ h0 ;

AÃk ¼

ð34Þ

EÃk ¼ eÃ2 ðpÃk Þ2 À ie1 pÃk þ eÃ0 ;
Ã

Ã

Ã

F Ãk ¼ f3Ã ðpÃk Þ3 þ if 2 ðpÃk Þ2 þ f1Ã pÃk þ if 0 ;

k ¼ 1; 2

Ã

Ã

Ã

Ã


Ã

in which aà ¼ qÃ0 g; g Ãj ; h0 are defined by formulas similar to those for g j ; h0 , and eÃj ¼ bj =kd ; fjà ¼ wÃj =kd and bj ; wÃj are exÃ
pressed by those similar to (30); furthermore, d ðDà ; dà ; X Ã Þ are given by the expressions similar to those for d ðD; d; XÞ,
Ã
Ã
and p1 ; p2 are two roots of the equation:

p4 À SÃ p2 þ PÃ ¼ 0

ð35Þ

satisfying:

IpÃj < À

jmà j
;
k

j ¼ 1; 2;

ð36Þ

here SÃ ; P Ã are determined by those similar to (23).
Analogously as above, one can show that:

PÃ > 0;

pffiffiffiffiffi

2 P Ã À SÃ > 0;

pffiffiffiffiffi
pÃ1 pÃ2 ¼ À PÃ ;

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffi
pÃ1 þ pÃ2 ¼ Ài 2 PÃ À SÃ :

ð37Þ

From the continuity conditions (8) we have:

U k ð0Þ ¼ U Ãk ð0Þ;

Rk ð0Þ ¼ RÃk ð0Þ;

k ¼ 1; 3:

ð38Þ

Eq. (38) yield a homogeneous linear system for c1 ; c2 ; cÃ1 ; cÃ2 . The secular equation, determining the Stoneley wave velocity c,
is obtained by vanishing the determinant of the system:


 E1

F
 1


 A1

B

E2

EÃ1

F2

F Ã1
AÃ1
BÃ1

A2
B2

1


EÃ2 

à 
F2 
 ¼ 0:
AÃ2 
BÃ2 

ð39Þ


After some algebraic manipulations, taking into account (25), (29) and (34) and removing the factor ðp1 À p2 ÞðpÃ1 À pÃ2 Þ , the
dispersion Eq. (39) is equivalent to:


 q11

q
 21

 q31

q
41

q12
q22

qÃ11
qÃ21

q32

qÃ31

q42

qÃ41


qÃ12 


qÃ22 
 ¼ 0;
qÃ32 
qà 

ð40Þ

42

where

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
2 P À S À b1 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
¼ b2 S þ b1 2 P À S þ 2b0 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
pffiffiffi
¼ w3 ðS À PÞ À w2 2 P À S þ w1 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
pffiffiffi
pffiffiffi
¼ Àw3 ðS þ PÞ 2 P À S À w2 S À w1 2 P À S À 2w0 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!

pffiffiffi
¼ d Àða=kÞ 2 P À S þ g 1 ;

q11 ¼ b2
q12
q21
q22
q31

q32 ¼ d ð2=kÞðmg 0 þ ag 2 Þ À ða=kÞS À g 1
q41 ¼ d X

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!
pffiffiffi
2 PÀS ;

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!
pffiffiffi
2 PÀS ;

q42 ¼ d½XS þ 2h0 Š;

ð41Þ


3520

P.C. Vinh, G. Seriani / Applied Mathematics and Computation 215 (2010) 3515–3525

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pffiffiffiffiffi
Ã
2 PÃ À SÃ À b1 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffi
Ã
Ã
Ã
¼ b2 SÃ À b1 2 PÃ À SÃ þ 2b0 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffi
pffiffiffiffiffi
¼ wÃ3 ðSÃ À PÃ Þ þ wÃ2 2 PÃ À SÃ þ wÃ1 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffi
pffiffiffiffiffi
pffiffiffiffiffi
¼ wÃ3 ðSÃ þ PÃ Þ 2 PÃ À SÃ À wÃ2 SÃ þ wÃ1 2 P Ã À SÃ À 2wÃ0
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!
pffiffiffiffiffi
Ã
¼ d ðaà =kÞ 2 P à À Sà þ g Ã1
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!
pffiffiffiffiffi
Ã
¼ d ð2=kÞðmà g Ã0 þ aà g Ã2 Þ À ðaà =kÞSà þ g Ã1 2 Pà À Sà ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!
!

pffiffiffiffiffi
Ã
Ã
¼ d ÀX Ã 2 PÃ À SÃ ; qÃ42 ¼ X Ã SÃ þ 2h0 :
Ã

qÃ11 ¼ Àb2
qÃ12
qÃ21
qÃ22
qÃ31
qÃ32
qÃ41

ð42Þ

It is clear that qij ; qÃij are explicit functions of c; k; . . ., thus, the secular Eq. (40) is fully explicit.
4. Special cases
4.1. Explicit secular equation for inhomogeneous isotropic media subject to gravity
The propagation of Stoneley waves in inhomogeneous isotropic solids under the effect of gravity was investigated by Das
et al. [3], but the authors did not derived the dispersion equation in the explicit form due to the characteristic equations for p
and pà being fully quartic. When the half-spaces are isotropic we have:

c011 ¼ c033 ¼ k0 þ 2l0 ;



c0Ã
11 ¼ c 33 ¼ k þ 2l ;


c055 ¼ l0 ;

c0Ã
55 ¼ l ;

c13 ¼ k0 ;

ð43Þ


c0Ã
13 ¼ k :

On view of (43), Eq. (40) becomes:


 q11

q
 21

 q31

q
41

q12

qÃ11


q22

qÃ21

q32
q42

hqÃ31
hqÃ41


qÃ12 

qÃ22 
 ¼ 0;
hqÃ32 
à 
hq42

ð44Þ

where h ¼ lÃ0 =l0 . The elements qij are given by:

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
2 P À S À b1 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
¼ b2 S þ b1 2 P À S þ 2b0 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pffiffiffi
pffiffiffi
¼ w3 ðS À PÞ À w2 2 P À S þ w1 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
pffiffiffi
pffiffiffi
¼ Àw3 ðS þ PÞ 2 P À S À w2 S À w1 2 P À S À 2w0 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!
pffiffiffi
¼ d À 2 P À S þ g 1 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!
pffiffiffi
 0 þ g 2 Þ À S À g 1 2 P À S ;
¼ d 2ðmg
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi !
pffiffiffi
¼ d x 2 P À S ; q42 ¼ d½xS þ 2h0 Š;

q11 ¼ b2
q12
q21
q22
q31
q32
q41

where x ¼ X=l0 ðxà ¼ X à =lÃ0 Þ and:


 Þ À ð þ xmÞð
 mg
 0 þ g 2 Þ;
b0 ¼ h0 ðDx À m
 þ xðmg
 0 þ g 2 Þ þ h0 Š;
b1 ¼ ½g 1 ð þ xmÞ
 þ g 1 x þ xðDx À mÞ;

b2 ¼ ð þ xmÞ
 À dފ À ðmg
 0 þ g 2 Þðx À d þ m
 Þ;
w0 ¼ h0 ½D À mðx


w1 ¼ g 1 ðx À d þ mÞ þ ðmg 0 þ g 2 Þ þ ðx À dÞh0 ;
 Þ þ g 1 þ x½D À mðx
 À dފ;
w2 ¼ ðx À d þ m
g 0 ¼ 2½2ð1 À c0 Þ À c0 xŠ;

w3 ¼ d;

ð45Þ


3521


P.C. Vinh, G. Seriani / Applied Mathematics and Computation 215 (2010) 3515–3525

 2;
g 1 ¼ 2ð1 À c0 Þð2 À xÞ; g 2 ¼ 1 À 2c0 À m
À 2
Á
0
2
 x þ ½x À 4ð1 À c ފð1 À xÞ þ  þ 2m
 ;
h0 ¼ m
À
Á
 2;
d ¼ x½x À 4ð1 À c0 ފ À 2 ; S ¼ ð1 þ c0 Þx À 2 À 2m
 2 ½2ð4c0 À 3Þ þ ð1 þ c0 ÞxŠ þ m
 4 À c0
P ¼ ð1 À xÞð1 À c0 xÞ À m

c0 ¼

l

0

k 0 þ 2l 0

0

;




qg
;
kl0

 ¼
m

2 2



 c0 À 1Þ;
À 2mð3

m
;
k

ð46Þ

where

D ¼ 1 À 2c0 ;

d ¼ 4l0 ð1 À c0 Þ:

ð47Þ



pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffi
pffiffiffi
The elements qÃij are expressed by formulas similar to (45) in which 2 P À S is replaced by À 2 P Ã À SÃ . The quantities
Ã
Ã
Ã
 à ; Dà ; dà are given by formulas similar to (46) and (47). Eq. (44), along with (45)–(47), estabbi ; wÃi ; g Ãi ; h0 ; d ; Sà ; P à ; cÃ0 ; à ; m
lishes the explicit secular equation of Stoneley waves for the case of inhomogeneous isotropic elastic half-spaces subject
to gravity. Note that qij and qÃij are dimensionless quantities.
4.2. Explicit secular equation for homogeneous transversely isotropic half-spaces subject to gravity
When two half-spaces are homogeneous, i.e. m ¼ mà ¼ 0, one can see that the explicit secular equation of the wave is of
the form (40), in which the elements qij are simplified to:

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
0
q11 ¼ À 2 P À S þ a=ðkc55 Þ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
a
q12 ¼ ÀS À 0
2 P À S þ 2Dð1 À X=c055 Þ;
kc
pffiffiffi 55
q21 ¼ S À P À D À ðX À dÞ=c055 ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h
pffiffiffii
pffiffiffi
0
q22 ¼ D þ ðX À dÞ=c055 À S À P 2 P À S þ 2ðaDÞ=ðkc55 Þ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
q31 ¼ Àða=kÞ 2 P À S þ d À ð1 þ DÞX;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
q32 ¼ ða=kÞð2D À SÞ À ½d À ð1 þ DÞXŠ 2 P À S;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
2
q41 ¼ X 2 P À S; q42 ¼ XS þ 2ðX À dÞð1 À X=c055 Þ þ 2a2 =ðk c055 Þ;

ð48Þ

where

S ¼ 2D À




d
1
1
þ 0 þ 0 X;
0

c55
c33 c55

ð49Þ

ðc011 À XÞðc055 À XÞ
a2
À 2
:
c033 c055
k c033 c055


pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffi
pffiffiffi
Elements qÃij ; i ¼ 1; 2; 3; 4; j ¼ 1; 2 are defined by formulas similar to (48) in which 2 P À S is replaced by À 2 P Ã À SÃ .
Note that, in this case, it can be shown that the Rayleigh wave velocity is limited by:
Ã0
Ã0
Ã0
0 < c2 < minðc055 =q0 ; c011 =q0 ; cÃ0
55 =q ; c 11 =q Þ:

ð50Þ

Indeed, in view of (49)1 we have:

h

i
S ¼ c033 ðX À c011 Þ þ c055 ðX À c055 Þ þ ðc013 þ c055 Þ2 =ðc033 c055 Þ:

ð51Þ

It follows from (27)1 and (49)2 that ðc011 À XÞ and ðc055 À XÞ must have the same sign. This yields:

0 < X < minðc011 ; c055 Þ or X > maxðc011 ; c055 Þ:

ð52Þ

2

Using (51) we see that the discriminant D ¼ S À 4P of Eq. (22) is given by:

n
Â
à Â
Ã2 o
D ¼ ðc013 þ c055 Þ4 þ 2ðc013 þ c055 Þ2 c033 ðX À c011 Þ þ c055 ðX À c055 Þ þ c033 ðX À c011 Þ À c055 ðX À c055 Þ =ðc033 c055 Þ2 þ

4a2
2
k c033 c055

:
ð53Þ

Now, if (52)2 exists, then it follows from (53) that D P 0, so Eq. (22) for this case has two real roots p21 ; p22 with the same sign,
according to (27)1. On the other hand, it is clear from (51) and (52)2 that S ¼ p21 þ p22 > 0. Thus, both p21 and p22 are positive.

This contradicts the fact that p1 ; p2 must have a positive imaginary part.


3522

P.C. Vinh, G. Seriani / Applied Mathematics and Computation 215 (2010) 3515–3525

Thus, it must be:

0 < X ¼ q0 c2 < minðc055 ; c011 Þ:

ð54Þ

Similarly, we have:
Ã0
0 < X Ã ¼ qÃ0 c2 < minðcÃ0
55 ; c 11 Þ:

ð55Þ

Then, from (54) and (55) we deduce (50).
Eq. (40) in which qij ; qÃij given by (48) is the explicit secular equation of Stoneley waves for orthotropic homogeneous elastic half-spaces subject to gravity. It provides the explicit secular equation of Stoneley waves for the transversely isotropic
case which was investigated by Dey and Sengupta [2].
When the media are isotropic we have the relations (43). From (40), (43), (48) and (49) one can see that the explicit secular equation for this case is:


 q11

q
 21


 q31

q
41

q12

qÃ11

q22

qÃ21

q32

qÃ31

q42

qÃ41


qÃ12 

qÃ22 
 ¼ 0;
qÃ32 
qÃ42 


ð56Þ

where qij are given by:

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
q11 ¼ À 2ð1 þ PÞ À ð1 þ c0 Þx þ ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
q12 ¼ ð1 À c0 Þð4 À 3xÞ À  2ð1 þ PÞ À ð1 þ c0 Þx;
pffiffiffi
q21 ¼ 1 À 2c0 þ c0 x À P;
pffiffiffi qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
q22 ¼ ð2c0 À 1 À c0 x À P Þ 2ð1 þ PÞ À ð1 þ c0 Þx þ 2ð1 À 2c0 Þ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
q31 ¼ À 2ð1 þ PÞ À ð1 þ c0 Þx þ 2ð1 À c0 Þð2 À xÞ;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
q32 ¼ ½4ð1 À c0 Þ À ð1 þ c0 ÞxŠ À 2ð1 À c0 Þð2 À xÞ 2ð1 þ PÞ À ð1 þ c0 Þx;
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
q41 ¼ Àx 2ð1 þ PÞ À ð1 þ c0 Þx;

ð57Þ

q42 ¼ x½ð1 þ c0 Þx À 2Š þ 2½x À 4ð1 À c0 ފð1 À xÞ þ 22
in which:


P ¼ ð1 À xÞð1 À c0 xÞ À c0
Elements

qÃij

2 2



:

ð58Þ

are determined by similar formulas to (57), in which

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffi
pffiffiffi
2ð1 þ PÞ À ð1 þ c0 Þx is replaced by À 2ð1 þ PÃ Þ À ð1 þ cÃ0 Þxà :
Eqs. (56)–(58) establish the explicit secular equation for the investigation [1].
4.3. Explicit secular equation for inhomogeneous transversely isotropic half-spaces
When gravity is absent, i.e. a ¼ aà ¼ 0, the dispersion equation of Stoneley waves is Eq. (40), in which qij are reduced to (qÃij
determined by the similar formulas):

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi

q11 ¼ À 2 P À S þ 2m;

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
 2 P À S þ 2Dð1 À X=c055 Þ þ 2m
 2;
q12 ¼ ÀS À 2m
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
pffiffiffi
 2 PÀSÀDþm
 2 À ðX À dÞ=c055 ;
q21 ¼ S À P þ m
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h
pffiffiffii
pffiffiffi
Â
Ã
 2 þ ðX À dÞ=c055 À S À P 2 P À S þ mS
 2 À ðX À dÞ=c055 ;
 þ ð2mÞ
 Dþm
q22 ¼ D À m
q31 ¼ d À ð1 þ DÞX;

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi
 À ð1 À DÞXŠ À ½d À ð1 þ DÞXŠ 2 P À S;
q32 ¼ 2m½d
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pffiffiffi

 2 X;
q41 ¼ X 2 P À S; q42 ¼ XS þ 2ðX À dÞð1 À X=c055 Þ þ 2m
where S is calculated by (23)1 and:

ð59Þ


3523

P.C. Vinh, G. Seriani / Applied Mathematics and Computation 215 (2010) 3515–3525



ðc011 À XÞðc055 À XÞ
2
Àm
c033 c055




!
1
1
d
þ
D
À
X
À

2
:
c033 c055
c055

ð60Þ

Eqs. (40), (59) and (60) provide the explicit secular equation for the investigation [6].
4.4. Explicit secular equation for homogeneous isotropic half-spaces
Now we consider the case when two half-spaces are homogeneous isotropic elastic and they are not subject to gravity. For
this case we have:

c11 ¼ c33 ¼ k þ 2l;

c55 ¼ l;

cÃ11 ¼ cÃ33 ¼ kà þ 2là ;

c13 ¼ k;
cÃ13 ¼ kà ;

cÃ55 ¼ là ;

ð61Þ

m ¼ mà ¼ a ¼ aà ¼ 0;

where k; l; kà ; là are Lame constants of the half-spaces. It is easy to verify that the roots pj ; pÃj ðj ¼ 1; 2Þ of the characteristic equations (22) and (35) are:

sffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
p1 ¼ i 1 À 2 ;
c1

sffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
p2 ¼ i 1 À 2 ;
c2

pÃ1

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
¼ Ài 1 À Ã2 ;
c1

pÃ2

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2
¼ Ài 1 À Ã2
c2

ð62Þ

Ã
Ã
Ã
Ã2
Ã

Ã
in which c21 ¼ ðk þ 2lÞ=q; c22 ¼ l=q; cÃ2
1 ¼ ðk þ 2l Þ=q ; c 2 ¼ l =q . It is clear that the secular equation (39) is equivalent
to:





1
1
À1
À1


Ã
Ã
Ã
Ã

 F =ðiE Þ
F
=ðiE
Þ
ÀF
=ðiE
Þ
ÀF
=ðiE
Þ

1
1
2
2


1
2
1
2

Ã
Ã
Ã
à  ¼ 0:
 A1 =ðiklE1 Þ A2 =ðiklE2 Þ ÀA1 =ðiklE1 Þ ÀA2 =ðiklE2 Þ 


 B =ðÀklE Þ B =ðÀklE Þ ÀBà =ðÀklEÃ Þ ÀBà =ðÀklEÃ Þ 
1
1
2
2
1
1
2
2

ð63Þ


By employing (25), (29), (34), (61), (62) one can show that:

F 1 =E1 ¼ p1 ;

A1 =ðkE1 Þ ¼ 2lp1 ;

¼
¼

¼ Àlð2 À c2 =c22 Þ=p2 ;

B2 =ðkE2 Þ ¼ À2l;
là pÃ1 ; BÃ1 =ðkEÃ1 Þ ¼ Àlà ð2 À c2 =cÃ2
2 Þ;
Ã
Ã
Ã
2
Ã2
Ã
¼ Àl ð2 À c =c2 Þ=p2 ; B2 =ðkE2 Þ ¼ À2là :

F 2 =E2 ¼ À1=p2 ;
F Ã1 =EÃ1
F Ã2 =EÃ2

B1 =ðkE1 Þ ¼ Àlð2 À c2 =c22 Þ;

A2 =ðkE2 Þ
Ã

pÃ1 ; AÃ1 =ðkE1 Þ ¼ 2
Ã
À1=pÃ2 ; AÃ2 =ðkE2 Þ

ð64Þ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ã
Ã
On use of (64) into (63) and setting pj ¼ Àbj =ðikÞ; pÃj ¼ bj =ðikÞ; j ¼ 1; 2 ðbj ¼ k 1 À c2 =c2j ; bj ¼ k 1 À c2 =cÃ2
j Þ we have:



1

 b =k
1


 2b1 =k

 2 À c2 =c2
2




Ã

Ã

k=b2
b1 =k
k=b2

Ã
à  ¼ 0
2
2
Ã
Ã
2
Ã2
ð2 À c =c2 Þðk=b2 Þ
2ðl =lÞðb1 =kÞ
ðl =lÞð2 À c =c2 Þðk=b2 Þ 

2
Àðlà =lÞð2 À c2 =cÃ2
À2ðlà =lÞ
2 Þ
1

À1

À1

ð65Þ


0.8

x=ρ0c2/c0

55

0.75

0.7

0.65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8


0.9

1

*

m

 Ã . Here D ¼ 0:5; d1 ¼ 2; d2 ¼ 0:7; DÃ ¼ 0:4; dÃ1 ¼ 2:5; dÃ2 ¼ 0:6;
Fig. 1. Dependence of the dimensionless Stoneley wave velocity x ¼ q0 c2 =c055 on m
 ¼ À0:1; / ¼ 0; d3 ¼ 0:25; d4 ¼ 0:3.
m


3524

P.C. Vinh, G. Seriani / Applied Mathematics and Computation 215 (2010) 3515–3525

This is the secular equation of Stoneley waves for the case of two homogeneous isotropic elastic half-spaces without the effect of gravity, that coincides with the one published in [16].
5. Numerical results and discussion
It is readily to see from (40) that the dimensionless Stoneley wave velocity x ¼ q0 c2 =c055 depends on 11 dimensionless
Ã
Ã
Ã0
Ã0
Ã0
Ã0
Ã0
 ¼ m=k; / ¼ g=ðkc22 Þ; DÃ ¼ cÃ0
parameters, namely, D ¼ c013 =c033 ; d1 ¼ c011 =c055 ; d2 ¼ c055 =c033 ; m

13 =c33 ; d1 ¼ c11 =c55 ; d2 ¼ c55 =c 33 ;
0
2
0
0
 à ¼ mà =k; d3 ¼ qÃ0 =q0 ; d4 ¼ cÃ0
=c
,
here
c
¼
c
=
q
.
Given
11
these
dimensionless
parameters,
it
is
not
difficult
to
m
55
55
2
55

numerically calculate the dimensionless Stoneley wave velocity x using the dispersion Eq. (40). It is well known that, for
the homogeneous isotropic half-spaces not being subject to the gravity, the Stoneley wave exists if shear velocities
c2 ¼ l=q and cÃ2 ¼ là =qà differ only slightly (see, for example, [16,17]), we therefore take d3 ¼ 0:25; d4 ¼ 0:3.
 Ã in three cases: XÃ is isotropic with
 Ã . Fig. 2 shows the variation of x with m
Fig. 1 shows the dependence of x on m
Ã
Ã
Ã
Ã
Dà ¼ 0:5; d1 ¼ 4; d2 ¼ 0:25 ðkà ¼ 2là Þ; Xà is orthotropic with Dà ¼ 0:5; d1 ¼ 6; d2 ¼ 0:25; Xà is orthotropic with
Ã
Ã
Ã
 for different values of the parameter /, while Fig. 4
D ¼ 0:5; d1 ¼ 2; d2 ¼ 0:25. Fig. 3 presents the dependence of x on m

shows the variation with / of x for distinct values of the parameter m.
It is clear from Figs. 1, 3 and 4 that the dimensionless Stoneley wave velocity x depends strongly on the inhomogeneity
and the gravity. Especially, the Fig. 2 shows that the orthotropy also strongly affects on the dimensionless Stoneley wave

0.9
0.85

x=ρ0c2/c0

55

0.8
0.75

0.7
0.65
0.6
0.55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

*

m


 Ã for three cases: XÃ is isotropic (dashed line) with
Fig. 2. Dependence of the dimensionless Stoneley wave velocity x ¼ q0 c2 =c055 on m
Ã
Ã
Ã
Ã
Ã
Ã
Dà ¼ 0:5; d1 ¼ 4; d2 ¼ 0:25 ðkà ¼ 2là Þ; Xà is orthotropic with Dà ¼ 0:5; d1 ¼ 6; d2 ¼ 0:25 (solid line); Xà is orthotropic with Dà ¼ 0:5; d1 ¼ 2; d2 ¼ 0:25
 ¼ À0:1; / ¼ 0; d3 ¼ 0:25; d4 ¼ 0:3.
(dash-dot line). For all cases X is orthotropic with D ¼ 0:5; d1 ¼ 2; d2 ¼ 0:7, and m

0 2 0

x=ρ c /c55

0.8

0.75

0.7

0.65
−1

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

0

m

 for different values of the parameter / : / ¼ 0 (dash-dot line), / ¼ 0:2
Fig. 3. Dependence of the dimensionless Stoneley wave velocity x ¼ q0 c2 =c055 on m
Ã
Ã
 Ã ¼ 0:1; d3 ¼ 0:25; d4 ¼ 0:3.
(solid line), / ¼ 0:5 (dashed line). For three cases: D ¼ 0:5; d1 ¼ 2; d2 ¼ 0:7; DÃ ¼ 0:5; d1 ¼ 4; d2 ¼ 0:25; m


P.C. Vinh, G. Seriani / Applied Mathematics and Computation 215 (2010) 3515–3525

3525

0.9
0.8

x=ρ0c2/c0

55

0.7
0.6
0.5
0.4
0.3
0.2
0

0.1

0.2


0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ
 : m
 ¼ 0 (solid line), m
 ¼ À0:1
Fig. 4. Dependence of the dimensionless Stoneley wave velocity x ¼ q0 c2 =c055 on / for different values of the parameter m
 Ã ¼ 0:2; d3 ¼ 0:25; d4 ¼ 0:3.
 ¼ À0:4 (dash-dot line). Here D ¼ 0:5; d1 ¼ 2; d2 ¼ 0:7; DÃ ¼ 0:4; dÃ1 ¼ 2:5; dÃ2 ¼ 0:6; m
(dashed line), m

velocity x. This is unlike the conclusion of Alla-Abd and Ahmed [5] which stated that the effect of orthotropy on the Stoneley
wave is small and can be neglected.
6. Conclusions
In this paper, we have derived the explicit secular equation of Stoneley waves in a non-homogeneous orthotropic elastic

medium, under the influence of gravity, using an appropriate representation of the solution. From this secular equation, we
also derive explicit secular equations for a number of cases previously investigated for Stoneley waves under the influence of
gravity, for both homogeneous and non-homogeneous elastic media. These explicit secular equations will be useful in practical applications. The numerical results show that the Stoneley wave velocity depends strongly on the inhomogeneity, the
anisotropy and the gravity.
Acknowledgements
The first author undertook this work during his visit to OGS (Istituto Nazionale di Oceanografia e Geofisica Sperimentale)
with the support of the ICTP Programme for Training and Research in Italian Laboratories, Trieste, Italy.
References
[1] S.N. De, P.R. Sengupta, Surface waves under the influence of gravity, Gerlands Beitr, Geophysik 85 (1976) 311–318.
[2] S.K. Dey, P.R. Sengupta, Effects of anisotropy on surface waves under the influence of gravity, Acta Geophys. Polonica XXVI (1978) 291–298.
[3] S.C. Das, D.P. Acharya, D.R. Sengupta, Surface waves in an inhomogeneous elastic medium under the influence of gravity, Rev. Roumaine Sci. Technol.
Ser. Mech. Appl. 37 (1992) 359–368.
[4] M.A. Biot, Mechanics of Incremental Deformation, Wiley, New York, 1965.
[5] A.M. Abd-Alla, S.M. Ahmed, Stoneley waves and Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence of gravity,
Appl. Math. Comput. 135 (2003) 187–200.
[6] P.K. Pal, D. Acharya, Effects of inhomogeneity on surface waves in anisotropic media, Sadhana 23 (1998) 247–258.
[7] T.C.T. Ting, An explicit secular equation for surface waves in an elastic material of general anisotropy, Quart. J. Mech. Appl. Math. 55 (2) (2002) 297–
311.
[8] T.C.T. Ting, Explicit secular equations for surface waves in an anisotropic elastic half-space from Rayleigh to today, in: Surface Waves in Anisotropic and
Laminated Bodies and Defects Detection, NATO Sci. Ser. II Math. Phys. Chem., vol. 163, Kluwer Acad. Publ., Dordrecht, 2004, pp. 95–116.
[9] M. Destrade, The explicit secular equation for surface acoustic waves in monoclinic elastic crystals, J. Acoust. Soc. Am. 109 (2001) 1338–1402.
[10] A.N. Stroh, Dislocations and cracks in anisotropic elasticity, Philos. Mag. 3 (1958) 625–646.
[11] A.N. Stroh, Steady state problems in anisotropic elasticity, J. Math. Phys. 41 (1962) 77–103.
[12] Pham Chi Vinh, Geza Seriani, Comments to Stoneley waves and Rayleigh waves in a non-homogeneous orthotropic elastic medium under the influence
of gravity by Abd-Alla and Ahmed, Appl. Math. Comput. 135 (2003) 187–200 (Submitted to Applied Mathematics and Computations (2009)).
[13] M. Destrade, Seismic Rayleigh waves on an exponentially graded orthotropic elastic half-space, Proc. Roy. Soc. A 463 (2007) 495–502.
[14] M. Destrade, Surface waves in orthotropic incompressible materials, J. Acoust. Soc. Am. 110 (2001) 837.
[15] M. Destrade, Rayleigh waves in symmetry planes of crystals: explicit secular equations and some explicit wave speeds, Mech. Mater. 35 (2003) 931.
[16] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973.
[17] A.A. Kaufman, A.L. Levshin, Acoustic and Elastic Wave Fields in Geophysics, III, Elsevier, 2005.




×